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Note on Feurier series with nonnegative coefficients

J. NEMETH#*)

1. Let f(x) be a continuous and 2n-periodic function and let
0 f(x)~% + > (a, cos kx + by sin kx)
k=1

be its Fourier series. Denote s,=s,(x) the n-th partial sum of (1). If w(8) is a non-
decreasing continuous function on the interval [0, 2x] having the properties

@(0) =0, ©(5;+3,) = () +w(Jy)

for any 0=6,=6,=6;+6,=2n, then it will be called modulus of continuity.
Define the following classes of functions

V) He = {f: | fx+h)—f(0)] = O(w(h)},
3 (HOY = {f: If(x+1)+f(x—0)=2/(x)] = O(w(h)},
where | -] denotes the usual maximum norm. If w(d)=4* then we write Lip o

instead of H%.

In 1948 G. G. LorENTZ [7] proved a theorem containing a coefficient-condition
for feLipa in the case if the sequence of the Fourier coefficients is monotonic.
Namely he proved the following result.

Theorem A ([7]). Let A,i0 and let 2, be the Fourier sine or cosine coefficients of
@. Then ¢€ Llp o (O<oa< ]) if and only if ﬂ":O(n-l—“)_

Later this result was generalized by R. P. Boas [1] in 1967 as follows:

*) This result was partly obtained while the author visited to the Ohio State University,
Columbus, U.S.A. in the academic years 1985—86 and 1986—87.
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84 J. Németh

Theorem B ([1]). Let 1,=0 and let ], be the sine or cosine coefficients of ¢.
Then @€Lipa (O<a<1) if and only if

(4) 2l =0(n"),
or equivalently .
® 2 b = 0(r™)

In 1980 L. LEINDLER in connection with certain investigations in the theory of
strong approximation by Fourier series, defined some function classes which are more
general than Lip « but narrower than H®. Namely he gave the following definition.

Let w,(0) (0=a=1) denote a modulus of continuity having the following pro-
perties:

(i) for any o'=a there exists a natural number p=pu(a’) such that
©) 2" @, (27"¥) > 20,(2™") holds for all n=1;

(i) for every natural number v there exists a natural number N (v) such that
@) 2w, 27" Y) = 20,27 if n> N(v)

Using ®,(6) L. LEINDLER defined the function class Lip o, in the following way

Lip o, = {/: |/&x+h)—fC)l = O(w (M)} .

Recently the author of the present paper generallzed the result of R. P. Boas formu-
lated in Theofem B and some other ones for Lip w, instead of Lip «.
For example we proved the following

Theorem C ([8]). Let 2,=0 and 7, be the Fourier sine or cosine coefficients of
‘@. Then ' SoeE T :
quLip W, (O < =< l)
if and only if _
® zz"-=0[wz(ij],= s r
k=n n .
or equivalently AR

© Sk = [”“’(%)]

The question of further generalizations for-arbitrary w(dy and H® can naturally
be arisen.

The first results in this direction were already glven by A. 1. RUBINSTEIN ([9])
for cosine series, furthermore V. G. Krorov and L LEINDLER ([3], see. also in [6])
for the sine case. Their results read as follows
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Theorem D ([9)). Let f be an even function belonging to H® and let a, be its
Fourier coefficients with a,=0 (n=1,2,...). Then

(10) 'kg" g = O[a) [%]]
and -

1 2 1 % w@®
(11 7kglka,‘=o(7”[ 5 dt]

hold for some fix 6,>0.
If o satisfies the condition

t2

(12) 5 f 0 i — 0(w(3)
L]

then conditions (10) and (11) are sufficient for

fEH®.
It should be noted that (10) implies (11) for any w, namely
]

fo w(t)

t2

n n n n 1
Ska =3 Fa=00 Jo(r)=0w a,
k=1 k=1_i=k ‘ k=1 k 1/n
and thus for the special moduli of continuity w satisfying relation (12) the condition
(10) itself is a sufficient condition.

Theorem E ([3] Lemma 3, see also in [6]). If 4,20 and

g(X) = 5’ )‘n Sin nx
n=1

belongs to the class H® then

(13) ' kg":kak - O[nw (%J]

The aim of this paper is to show that neither (10) nor (13) is sufficient for the
corresponding function to be in H; furthermore to give sufficient condition for
JE€H®” in both cases. We also show that (10) is a necessary and sufficient condition
for f'to belong to the class (H“)* (which is broader than H*®, so this result in this sense
is a little sharper than that of Rubinstein). Finally it will be proved that (10) and (13),
respectively, is not only a necessary but also sufficient condition for f€ H® and
gEH®, if the coefficients @, and b, form monotonically decreasing sequences.

2. Now we formulate our results.
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Theorem 1. If 7,=0 and A, are the Fourier sine or cosine coefficients of ¢,
then the conditions

(14) ‘-21 ki =0 [nw (%]]
and

(5) ki Jy = O[w {%\j]
imply
(16) QEH®.

Remark. The well-known Weierstrass function

= cos2'x
=2 o
n=1
shows that (15) itself is not sufficient for @€ H® (since f¢H® if w(8)=45 and (15)
is obviously satisfied).
The example

oo

_ b e
g(x)—’é;m(?sm3 x

proves that from (14) alone (16) does not follow. This function was constructed by
A. 1. RUBINSTEIN ([9]) in connection with lacunary series. He proved that g¢ H®,

for w(s) =

oz o] At the same time it can easily be checked that (14) holds.
08

Theorem 2. If a,=0 and a, are the Fourier cosine coefficients of f then

(172) fEH)®
if and only if '

e 1
(17b) Zak=0(w (;J]

k=n

Remark. Notice that (17b) implies
. C n n 1 .
(18) - - Ska=K S [_]
) k=1 k=1 k

and using the standard estimation we have that (18) implies

SEH,
where

’ w*(t):.= t:izli]'w [—%)
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In fact, since from (17a) (18) follows we have that

= 1

k=n n

implies f€ H** and Theorem 2 gives that the same condition (17a) implies
Fe(H?Y,
too. Thus the following question can be arisen: whether
(20) SEH® & fe(H)*
or not.
We can prove that

@D JEH )" = feHe

but the converse is false. Really, from Theorem 2 we have that

fe(eey' = 3 a,=0 [w (—,11—]]

which assures that f€ H**, so (21) is proved. In order to prove that

(22) SEH = fe(H®)*

we consider the following function

(23) Jx)= ZO'Q Iorin cos nx
k=1

and let w(f)=t, thatis, w (t)=tlogt. From Theorem 4 of [8] it follows that

fEHé logé (= Hw*)
because both

log k logn
& 25 o2
and
©5) g gk in kx“ — 0(log n)

hold. And at the same time
SEHY = (H°),
because

logn (1-—-cos2nh) =

—If(0+2h)+f(0 2m)—=2f(O)} = Z;

sin®n
2 h2

Z’ " sintnh = 22 2‘ log = 2h|logh|,

87
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which gives that
I/ (x+h)+f(x— )= 2f(x)} = O(h),

that is, f¢(H%* and so (22) is proved.

Theorem 3. If bl0 and g(x) = S’b,‘ sin kx then
k=1

(26a) gEH®
if and only if

n 1
(26b) kg; kb, =0 [nw [7)] .

Theorem 4. If 40 and f(x)= fak cos kx then
k=1

(27a) ' JfEH®
if and only if ,

= i
(27b) ké'l a, =0 [a) (7)] .

3. We require the following lemmas.

Lemma 1. Let {a,} be a sequence of nonnegative numbers and @ be a modulus of
continuity. Then

(28) Sa=0 [w (l]]
k=n n
implies C
(29) " k*a, = O [nzw(lj].
k=1 n

Proof.*) Using (28) we have -

(30) S k2a, = Z"'(Zk—l)zn'ai§22"ka)(i)=l.
k=1 k=1 i=k k=1 k

Since for any w the inequality

(1) ol _, 90 o=y

xl xZ

*) This very elegant proof is due to L. Leindler; the author’s original one was much more
complicated. )
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(see for example [11] p. 103) holds I can be estimated as follows

(32 I=2n-2nw [l] =4n’w [l)
n n
Thus (30) and (32) give (29).

Lemma 2. Let a,=0 and a, be the Fourier cosine coefficients of f. Then

(33) g a, =0 [a) {%)] and || é’ kasinkx|| =0 [nw [%]]
imply B -
(34) feH®,

This lemma can be proved in the same way as Theorem 4 in [8] for w,(5).

4. Proofs.

Proof of Theorem 1. We detail the proof just for cosine series. Set

(35) fGe+2m)—f(x)| = 2| gx Jy sin k(x-+ b sin kh| =

[1/h] g :
=2(> hsinkh+ 3 A)=I+IL
k=1 k=[1/k]

Since
(36) I= Kh:lg”i] ki, Si’; :h = th:l:Z/T Ky,
from (14) it follows that
37 I = O(w(h).
By using (15) we have that
(38) ' II = O(w(h).
So (33), (36), (37) and (38) give that
JEH®,

Theorem 1 is completed.

Proof of Theorem 2. Suppose that (17b) holds. Then
(9) |fCe+2h)+/(x—2k) = 2f(x)| = 4| 5 ay sin kh cos kx| =
k=1

1 Zkh oo
sin + 2, a,.

o fi/r
=4 a,sin? kh = 4h? k:a, ———
kg k kg; W2V TR T
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The first item of the last formula does not exceed O(w (h)) because of Lemma 1;
and from (17b) we get that the second one is also O(w(%)). So (17b)=(17a) is proved.

Turning to prove (17a)=(17b) first we note that the proof will be led by the same
way as A. I. RuBINSTEIN didin [9]. Let 1,(x, g) be the Jackson polynomial defined by

4

3 ,, sin n ;
(40) I(x, g) = 3@ D) JF10) — = | %
- sin —

This polynomial can be written in the following form

2n—-2
“én L(x,g)= % + kg; of¥ (ay cos kx+ by sin kx),

where a, by are the Fourier coefficients of g and ¢{” are defined as follows

1 (Cn—k+1)! (n k+1)']
(mn _— = = n—
@2 &” = 5 oy lon—k =)~ r—or) for 1=k=n=2
— I
o™ = 1 @nk+ D! o 2k =2n-2,

= 2n@nr+]) @n—k—2)!

Formula (42) was given by G. P. Sarranova ([10]).
Consider the following difference for

Jx) = f a, cos kx
k=1

(43) JO)—1,0; /) = Z’ I at+ 3 a.

k=2n-1

1
It can be proved that the order of approximation by polynomial (40) is O [a) [—))
for n

gE(H)*

(see for example [2] pp. 496—497).
Using this fact and that 1—{”=0 we have from (43)"

2°'° a.=0 [a) [—1—)] )
k=2n—1 n
which was to be proved.

Theorem 2 is completed.

Proof of Theorem 3. The statement (26a)=(26b) was proved by V. G. KRro-
Tov and L. LEINDLER (see Theorem E). Now we suppose (26b). It is obvious that to
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prove (26a) it is sufficient to show

(44) lg(h)—g0)| = K;-w(h)
and
(45) lg(x)—gx+h)| = K,w(h), for 0 <h=x=n.
First we prove (44).
Set
wn o ]
(46) lg(h)—g©)| = | > bysinkh|+| > besinkh| = I+IL
k=1 k=[1/h] _
Using (26b) we can estimate I as follows
[/m i [/l
@7) T=h'> kb 0K = k'S kb, = 0(0(B).
k=1 kh k=1

From the well-known inequality

(48) | Zm’ a sin kx| = % a, (a4, x€(0, m))
k=n
it follows that

1
(49) 11 = 4— bym-

But taking into account that b,}, from (26b) we have

()

From (49) and (50) we get
63)) II = O(w(h)).

Using (46), (47) and (51) we obtain (44).
Now we verify (45). Consider

(52) IgCe+h)—g ()l = | 3 by (sinkx—sin k(x+h))| =
k=1
[’ ) -
= |2 bkcosk(x+h)smkh|+| 2 bksinkx—sink(x+h)|§
k=1 k=[1/h]

[1/"] o oo
= |2 bysinkh|+| 3 besinkx|+| 3 bysink(x+h)| = [+IV+11".
k=1 k=[1/h} k=[1/H]

.By (47) we have
(53) I = O(w(h)).
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Taking into account again (48), (49) and the condition 0<h=x we have that the
magnitude of either II’ or 11" is O(w(h)), that is,

59 IV +11” = O(w(h)).
Thus (52), (53) and (54) give (45) which is the desired statement.

Theorem 3 is completed.

Proof of Theorem 4. Using Theorem 2 and the fact that H®c(H®)*
the statement (27a)=(27b) can immediately be obtained. Concerning the opposite
direction, by Lemma 2, it is enough to show that

(55) || 3 ka, sinkx|| = K - no [l] .
’ k=1 n

1 1
Let x€(0, =) be fixed and let v denote [——]; if n> —, then split up the left hand
x x

side of (55) into two parts as follows

56) || 3 kaysinkx|| = | 3 kaysinkx||+]| 3 kaysinkx|| = 1+11.
k=1 k=1

k=v=1
Estimating I we get

(57 I =K,x > k2a,.
k=1

Taking into account the monotonity of a, and (27b) we have

(58) ka, =0 [a) (%)]
From (58) it follows that

(59) x Ska=Kyx 3 ko [%]émw (i]
k=1 k=1 n

In the last step we used again inequality (31) and n>v.
Thus from (57) and (59)

(60) | 120 [nw (%)]

can be obtained.
Now we estimate the second item in (56). Since

n

©1) 1= || 3 kasinkx|| = || 3 3 asinix||+v 3 a, = I+ 11"
k=v i=k i=v

k=v
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and using again (48) and (58)
LI} n 1311 1
2 = -+ = (—] — = [—] .
62) I1 Kk=v ~ Klvk;;kw e K, nw -

And for II” using (58) we immediately obtain that

(63) II” = K, now (%] ,
and (61), (62), (63) give that
(64) 11 =0[na) [%]]

Thus (60) and (64) together give (56) which was to be proved.
Theorem 4 is completed.
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