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Some aspects of nonstationarity. I 

T . C O N S T A N T I N E S C U 

I. Introduction 

Recently, several contractive completion problems were considered in papers 
as [5], [6], [10], and in [5] an approach based on a lifting theorem for the representa-
tions of the algebra of upper triangular matrices was proposed. 

The aim of the present paper is to point out another variant — a "nonstation-
ary" one — for the lifting theorem of Sarason—Sz.-Nagy—Foiaj which can be 
also used for the above mentioned completion problems. Parametrizations with 
choice parameters and linear fractional maps are obtained also in this case. 

The content of the paper is the following: in Section 2 we obtain a time-vari-
ant analog for some other basic results in Sz.-Nagy—Foia? theory of contrac-
tions, as model for discrete time, time-variant linear systems. In Section 3 we de-
scribe the nonstationary variant of the lifting theorem and in the last section we 
show how some completion problems fit in our approach. 

In this section we are concerned with time-variant linear systems in the fol-
lowing state-space representation: 

where {jf„}„€Z is a given family of Hilbert spaces, ( J F n + 1 , a r e contrac-
tions, and for a contraction Jii") we use 
the standard notations D T = ( I - T * T ) U 2 and 3 > T = D T J E . Now, we consider the 
positive-definite kernel £f associated by the algorithm in [7], Theorem 2.4, to the 

II. The marking model 

(1.1) 

R e c e i v e d M a y 1 7 , 1 9 8 8 . 
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parameters Giii+1=Tit /£Z, and zero in rest. Using Theorem 3.2 in [7], the Kol-
mogorov decomposition of £f is simply given by the unitary operators 

(1.2) 

where 

JTn+l " " ^n 

hn+l > 4 + li dn + 2 , •••) = 

= (•••d+.n-a. ii*.n-i. ^T*d*.n+Tnhn+i > ~Tn d^„+DTfihn+1,dn+1,dn+2,...) 

Let us pursue by introducing the main elements of the geometrical model of 
(1.1). Define the spaces 

and the isometries 

(1.3) W+: Jf„+
+1 - JT.+, (V+ = fVJXXi 

and use the Wold decomposition for the family {Wk
+}kSn. We denote = Jfn

+ © 
and according to the form (1.2) of the Kolmogorov decomposition, 

we identify Se+=Wn(... © 0 © ^ © ©OS- . ) . 

Moreover, define f ) Wn...Wn+p-Xn
+

+p+2 and then 
p = 0 

(1.4) ¿T.+ = (^„+© © 
p=i 

Similar considerations take place for the spaces 

and the isometries 
(1.5) W-: - W;- = W*\X-. 

We use the notation £C~ — QWn
 a n d taking (1.2) into account, 

we identify =W*(...0®O jFn®\&Tn\®0©...). It is also useful to denote the 
space . . .®0f f i^ r*©|0 | f f i0©. . . c J f n + 1 by ^ ^ and . . .Off i l ) ]©0 r n ©O®.. .c jT n 

by . Another application of the Wold decomposition for the family{f^~} t an_1 

will produce a decomposition 
CO 

P = 1 

Now define the spaces 

XT = © Wn*_!... fV„% © © © ... ( - 1 ) 
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and 

= © W„*_x... W * _ © W„... fVK+9@% 
p=l " 4=0 

A usual condition in Sz.-Nagy—Foia§ theory (and also in system theory) is 
to ask JTn=J^ inpV.?f°ut for every Z. We have by direct computation using 
(1.2) that 

/ „ e № i i P V J „ o u l ) = 

= {h^„\... IIT^r,,^! = WT^hW = ||A|| = IK*A|| = \\Tn*+1T*h\\ =...} 

which corresponds to Theorem I. 3.2 in [16]. 
Finally, we define the family of characteristic operators of the system (1.1) by 

the formula 

(1.6) Qn: Jf„inp - Qn = 

We obtain a first result concerning the geometry of the spaces . 

2.1. Theorem. For a system (1.1) satisfying the condition Jifn= 
for every n£Z, the following relations hold: 

= ^Q{Qnu®(I-Qn)u\ue® Wn... }. 
P=I 

Proof . The first relation is obvious. For the second one, we remark that 

= JT.V V W„... 
P=i 

and, as 

one obtains 

The converse inclusion is clear, consequently 

= e i ^ r l e wH ©...), 

which completes the proof. 
Then we introduce the marking model. The marking operators appear as the 

main elements involved by the Kolmogorov decomposition of an arbitrary posi-
tive-definite kernel. In our case, define the spaces: 

M+ — © 9 j * and J ( - = © 2>T 
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and the operators 

(1.7) 
•M:-. © £>T* - © @T*, 

FTSN + 1 " * £ N " 

) = (0, + ¿*.n + 2, •••) 

M': © 
{ 

,mn ® ^Tfc -*" tf ^Tfc» (1.8) | kSn+1 kmn 
\ . M - ( d n + 1 , d n + 2 , . . . ) = ( 0 , d n + 1 , d n + 2 , ...). 

Our goal is to obtain identifications for Jf„inp, Jfn
out, and the characteristic 

operators in terms of the marking operators (1.7) and (1.8) and the marking spaces 
J/+ and Jt_. For this aim, we introduce the following unitary operators 

{(p-r 

<5-: X„inp - M. : r<p- : - , 
( L 1 0 ) W C - - © ^ - ^ © ^ © « 
where 

arid 
d i ; « = (..., 0, [0], 0, ...)€ JT.+i, 

dW = (..., 0 , 0 , ^ , 0 , d n €0 r „-

The first remark is that for every Z we get 

WQni?;)-1 = 0 

where 0 is the transfer operator of the system (1.1) — see [11] for defini-
tion. 0 is a lower triangular operator such that its matricial elements are 
0ij—DT for /eZ, ; < i and 0 U = - T * , Z. 0 is a contraction 
and we obtain the following identification of ^ in the model given by the marking 
operators: first we define the unitary operator 

(1.11) <PK: St* ~ D e J t _ , (I — Q„) k = £>0 <P~ k , k ^ " " 

then 

(1.12) V n : J f B - J / + ® D e M _ , Wn = <P+®$ai 

and f n is a unitary operator yielding a natural identification of in the marking 
model. Moreover, we have the following result which constitutes the time-variant 
analogue of the Sz.-Nagy—Foia§ functional model of a contraction. 
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Theorem 2.2. For a system (IA) satisfying the condition JiTn=Jf„inpV Jfn
ont 

for every n£ Z, the following relations hold through the identifications 

#en = (© ®T* ®D0J(-)Q{Qv®De v\v£ © 0rk}, 
kmn kmn 

Tn(u+®vJ) = PjPn(M + u+®M-vJ), 

Proof . From (1.4), (1.12) and (1.11) it follows that 

P=i 
and by (1.9) we have 

®®W+... Wn%p_^n\p) = © . 
p=l kmn 

In a similar way, 

kmn 

and the first relation follows from Theorem 2.1. For the second relation we have 
to use the more remark that 

<t>:K(4>:+iT i © ®t* = M+ 
kmn + 1 

f n I © ®Tk = M ; . fcSn + 1 

R e m a r k 2.3. The inverse problem of realization a given lower triangular con-
traction as a transfer operator of a certain system is treated for instance in [11] 
and [2]. 

III. Nonstationary lifting 

In this section we describe a nonstationary variant for the lifting theorem of 
Sarason—Sz.-Nagy—Foia§. 

This variant is inspired by similar phenomena in the study of nonstationary 
processes (see [12], [13], [7]) and the difference from the "stationary" variant of 
Sarason—Sz.-Nagy—Foia§ is not structural, but only one of complexity. Con-
sequently, we will have only to indicate the necessary changes, the proofs following 
the known ones. Fix two integers — — M ^ N and two 
families {Tn}MSnSN, of contractions (the extremal indices are attained 
only for finite M and N), Tn£&(jrn+1, < ) . Let {An}MSnSN+1 

be a family of contractions, A„£&(Ji?n, and suppose that it intertwines {7 }̂ 
and {T;i i.e. 

TnAn+1 — A„Tn 



384 T. Constantinescu 

for MSn^N. For {Tn}MSnSN consider its associated kernel by the rule mentioned 
at the beginning of Section 2 and let {Wn}MS„^N, Wn£SC(Xa+1, J Q be its Kol-
mogorov decomposition, always written in the form (1.2). We have similar objects 
associated to t O n snsN • Now, the following result extends the lifting theorem of 
Sarason—Sz.-Nagy—Foiaç. Denote by P„ the orthogonal projection of Jfn

+ onto 
and similarly, pt . 

T h e o r e m 3.1. The set 

CID({4,}M S n s N + 1) = 

= {{BnU^nsN+i I Bn are contractions in Jf„'+), ^ + Bn+1 = BnWn
+, 

P;Bn = AnPn) 

is nonvoid. 

Proof . Let X\f be the matrix of B„, then writing the intertwining conditions, 
one gets : 

X®=An, X<f = 0, 1 

X\f = o, j > i 

X®Ttt+X&>DTn = DKA„+1 

X i f T n + X i f D T n = Xi".\% fc53 
and 

Define the operators 

(3.1) Sk_Un. ®T* - S>K Sk_Un = Xl?DT*-Xin: 

such that the finite sections of B„ are contractions if and only if the operators 

(3.2) Ckn = 

AnTn...Tm+k.lt AnTnDT*^, AnDT* 
Sin 

•••> Â—1.M+Ä—1 

are also contractions for fcsl. 
If we define C0n=AnT„—T^An+1, then there exist contractions Yn : 3ic 

and Yn: such that AnD^£>c*0X and DrnAn+i=Y„DCon and using 
[4], [9] there exists an operator Sln such that Cln is a contraction. Now, the same 
approximation procedure as in [3] finishes the proof. 

We can continue the analysis of the set CID ({An}M^n^N+1) in order to derive 
results similar to those in [1], [3]. That is, a parametrization with a family of free 
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parameters (generalizing the choice sequences in [3]) and a parametrization with 
lower triangular contractions — a Schur type Formula — are obtained. 

For a sequence of contractions {Gl5 Ga, ...}, G ^ g ^ f , J f ' ) , t , 
L(G1} G2,...) is the row contraction determined by these parameters, 

L(Gi, G2, ...) = (G1, Dc* G 2 , . . . , Dg* ... Dc*_tGk, ...) 

and similar considerations hold for column contractions, denoted by C((?i, G2, ...). 

Theorem 3.2. There exists a one-to-one correspondence between 

CID ( K } M S „ Siv + l) 

and the families of contractions {Gi}} such that Gln££?(@G , 3>G* ), MSn^N 
n n 

and G i j Ç i for i=2, M^j^N. The correspondence is ex-
plicitly taken by the formula: 

Skn = L(Yn, Gln, G2n, •••, Gk_lt„)Qk-lin C(Yn_k+1, Glin_t+15 G2:„_k+2,..., Gt_1>n_1) + 

+Dv*Dr* ...Dr* Gt„Dr ...Dr Dv 

where the operators Qkn can be also described in terms of the parameters . 

Proof . We only skech the beginning, the rest paralleling the proof in [8] of a 
slight modified variant of the main algorithm in [3]. 

First of all, Q0n= for M^n^N. Denote by Fkn the kxk principal 
submatrix of Ck+1>„ and by direct computations, we have 

Un 
Fm DF*ÙtnC(Yn,Glny 

+1; 'Sa.n+i 

where Qln and Qln are obvious identifications of the defects of Fln. Using once again 
[4], [9] we get the desired formula for S^ with 

Qln^-QlnF*Q*ln. 
Then we compute 

r Dr* -Cn„f* 1 [Dr* — Cn„ Y* 1 n \ c I — o F* o* c°" — 
0 D?* J [ 0 DT* ¡~ 

- O F * / ) . - O N F * - P0^."*1 _ C o*B + l I"+ 1l F* - - "ln fm Dp*n - - Uln DFln t j j , - I 0 D I t l n . Yn +1 
As in [8] we find 

l o /J l rn*+1a„ yn*+1z>J 
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with a„a*+bnb*=I and we define the operator 

rDv* a„ Dv* bn V = \Dy^a- Drs.M 
0n 1 -Yn*+1an -Y*+1bJ-

From now on we can continue as in [8]. 

Remark 3.3. Using Theorem 5.2 in [2] and Theorem 3.2 above, a parametriza-
tion of CID ({^i„}MSnSiV+1) with lower triangular contractions can be derived, 
together with corresponding Schur type formulae as in Corollary 6.1 in [3]. 

IV. Applications 

In this section we show the way some completion problems can be solved using 
Theorem 3.1. 

(A) For fixed operators I y'sO, O ^ r ^ N ) we find con-
ditions for the existence of lower triangular contractive extensions. This problem 
can be viewed as a "nonstationary" Carathéodory—Fejér problem and can be 
solved as in [15]. 

We define for nëO 
N N-L 

T„: © •^n + k-*" © ^n + k 
*=1 k=0 

T = •*• #1 

and 

0 0 . . . 0 
10... 0 

0 0 1 0 

N-1 N-L 
© œ n + k - © *m'+k 

k=0 fc=0 

An = 

Cn n 
Cn + l,n 

""N + JV-L.N 

'n+l,n+l 

0 . . . 
0 . . . 

0 
0 

^n + JV-l,n+JV-l. 

We have that TnAn+1—AnT„ and if we suppose that A„ are contractions, we 
can use Theorem 3.1 in order to show that there exists à family of contractions 
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{•B„}nS0 such that 
MNBN+1 = BnM„, PNBN = A„PN 

where M„ are marking operators as those given by (1.7) or (1.8). 
Using an adaptation of Lemma V. 3.2 in [16], {i?n}„so gives rise to a contrac-

tive lower triangular extension of the given family of operators. 

P r o p o s i t i o n 4.1. In order that the family (CJ+rJ \ j^O, O^r^N) has a con-
tractive lower triangular extension it is necessary and sufficient that An are contrac-
tions for nsO. 

Moreover, Theorem 3.1 and Remark 3.3 give parametrizations for all the 
solutions. 

(B) Theorem 3.1 can be used to solve completion problems with a finite num-
ber of data, those named as Nehari completions in [5]. We indicate here (for sim-
plicity) only the very particular case of completing 

[Goo Q i l 
C10 J 

to a contraction. Take 

A0 = (C00;C01), A = T0' = (I, o), T0 = [Q
7] 

then TqA^AqTq. Moreover, 

and if A0 and Ay are supposed to be contractions, then Theorem 3.1 asserts the 

existence of a contraction [ 00 011 such that 
LC21 G22J 

r / 01 rc 0 0 l _ rc0„ Co i l r / l 
lo /J LcioJ ~ lc 2 1 C 2 2 J Lo J • 

Consequently, C2 1=C1 0 and a contractive completion of the given 
(Coo » C01, C j o ) is 

This shows that Theorem 3.1 (together with the parametrization in Theorem 3.2) 
for M=N=0 is equivalent with [4] and [9]. 

(C) Another application here is an extension of Theorem 5 in [5] and of a 
similar result in [14]. 
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Propos i t i on 4.2. Let A and B be two lower triangular operators, 
Ae^f((B -K, © 5£JS?( © © Then a necessary and sufficient con-

nG Z N€Z "6Z 1£Z 
dition for the existence of a lower triangular contraction C£.S?(© © J f ^ ) 

N£Z NIZ 
such that A=CB is that A*A^B*B. 

Proof . Take An=A | © 3Vk, B„=B | © ^ and M„, M'n and Ml be marking 
ksn ksn 

operators as (1.7) and (1.8) such that 

M'nAn+1 = AnMn, M:Bn+1 = B„M„. 

Since A and B are lower triangular, then A*An^B*Bn for n£Z and there 
exist uniquely determined contractions Xn: Ran Ran An such that A„=X„Bn. 
From now on we can follow [14]. 
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