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Some aspects of nonstationarity. 1

T. CONSTANTINESCU

1. Introduction

Recently, several contractive completion problems were considered in papers
as [5], [6], [10), and in [5] an approach based on a lifting theorem for the representa-
tions of the algebra of upper triangular matrices was proposed.

The aim of the present paper is to point out another variant — a “‘nonstation-
ary” one — for the lifting theorem of Sarason—Sz.-Nagy—Foiag which can be
also used for the above mentioned completion problems. Parametrizations with
choice parameters and linear fractional maps are obtained also in this case.

The content of the paper is the following: in Section 2 we obtain a time-vari-
ant analog for some other basic results in Sz.-Nagy—Foias theory of contrac-
tions, as model for discrete time, time-variant linear systems. In Section 3 we de-
scribe the nonstationary variant of the lifting theorem and in the last section we
show how some completion problems fit in our approach.

II. The max:king model

In this section we are concerned with time-variant linear systems in the fol-
lowing state-space representation:

{xn 1= T;l* Xn +DT,. u,

Yn =DT: Xn—T, ty neZ

1.0

where {#,},cz is a given family of Hilbert spaces, T,€% (5., #,) are contrac-
tions, u,€Dr , Y€ Drs, X,€,, and for a contraction T€ZL (¥, #’) we use
the standard notations D;=(I—T*T)¥? and @,=D;#. Now, we consider the
positive-definite kernel & associated by the algorithm in [7], Theorem 2.4, to the
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parameters G',.,_ i+1=T;, i€Z, and zero in rest. Using Theorem 3.2 in [7], the Kol-
mogorov decomposition of & is simply given by the unitary operators

Wo: Hosr = An

(12) W( d*n lad* ml n+1| dn+ladn+29“')=
= ( d*.n—2s *,n—1s ‘DT: *,n+]:lhn+l|, _T;l*d*.n+DT,.hn+1’ dn+1, dn+2, )

where
J{;' =...®@T:_2€B97~:_l®| '#n |@9Tn®@Tn+l®

Let us pursue by introducing the main elements of the geometrical model of

(1.1). Define the spaces
At = 0D, Dy, D ...

and the isometries
(1.3) Wihs ko= 0, W =Wl
and use the Wold decomposition for the family {#,*},.,. Wedenote L=x*0©
oW, * A%, and according to the form (1.2) of the Kolmogorov decomposmon
we identify £ =W(... 2001 O[O, JO0S...).

Moreover, define %} = ﬂ W,.. W ytyh 4y and then

n+1

(14) At = (L@ D Wi Wity 1 Lk, )ORT.
p=1

Similar considerations take place for the spaces
.%;'_ =... @@T:_l @%l
and the isometries T
(1.5) Wity = Az, W = WAL

We use the notation & =X, OW,”,%,_, and taking (1.2) into account,
we identify ,Z’;=H{,*(...0@0,"€B|9Tn|69069...). It is also useful to denote the
space ... 0@D7:®[0|D0®...C X4, by DG and ..00[0]02, @0®...c A,
by @‘,3: Another application of the Wold decomposition for the family{#,~ };=,-1
will produce a decomposition

At =(%r eaea Wiy L) BR
Now define the spaces
o = @ Wi Wty B30 09500 D Wy Wyt 950,

q=1 p=0
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and

Thyger”

Jg"'inp — p@l VV,,*_I W 9(1) (1)® @ W, .. ”+q 9(1)

A usual condition in Sz.-Nagy-—Foias theory (and also in system theory) is
to ask A=A "P\V H°" for every n€Z. We have by direct computation using
(1.2) that

Hp© (HyiooV ™) =

= {hety| .. N To—oToos b = | T bl = A =T A = |5 T A =...}

which corresponds to Theorem 1. 3.2 in [16].
Finally, we define the family of characteristic operators of the system (1.1) by
the formula

.

(1.6) Qu: i~ A, Q, = Praa| A,
We obtain a first result concerning the geometry of the spaces %,.

2.1. Theorem. For a system (1.1) satzsfyzng the condition H,=H"Py A"
JSor every n€Z, _the following relations hold:

%’; — x"'o;:té%:, P i
H, = A+ {0, ud(I— Q..)quEEB Wooo W p1 D)., }-

Proof, The first relation is obvious. For the second one, we remark that

At = HNV VW Wt p—1H iy
p=1
and, as

W 95D OW, #yy = #,0 DT
one obtains
Hr c #0959 oW, 29 &

n+l

The converse inclusion is clear, consequently

Ay = A O, 0V, 95),.8...),

n+l

which completes the proof.

Then we introduce the marking model. The marking operators appear as the
main elements involved by the Kolmogorov decomposition of an arbitrary posi-
tive-definite kernel. In our case, define the spaces:

My =D D and M_ = B Dr,
nezZ "

neZ



382 T. Constantinescu

and the operators

MS: @ Dpr—~ GB Dry»
(17) { kzn+1
Mn+ (d*.n+l H d*.n+2’ ) - (0: d*,n+la d*.n+2a )
M;: @ 9Dr.~> D D1,
(18) { kzni1 k=n
Mn_ (dn+19 d"+2, ) = (0, d,,.H N d,,+2, )

Our goal is to obtain identifications for #™®, #°™, s, and the characteristic
operators in terms of the marking operators (1.7) and (1.8) and the marking spaces
A, and #_. For this aim, we introduce the following unitary operators

¢+ fo“t—’clll+, )
(19) {¢+( GBI/V*+1d=$= n1)2 £n1)1®Wd( 1)69 )—( *,—1’|d*.0| d* 1> )

& AP - M,
110 {or (oM d, 0dD oW, i) = (.. d_1.]do]. i, -,

where

d;,_nl) = (’ 0, d*,n’ IOI, 0, '-')€%;|+13 d*.negT:

and L o

dp(|1)=(~.., 0’ |2dn’0,'“)€‘%l‘l’ d"E@T".

- The-first remark is that for every ncZ we get

B 0.(P) =0

where @ is the transfer operator of the system (1.1) — see [11] for defini-
tion. @ is a lower triangular operator such that its matricial elements are
0,-,-=DT17}+1...T,-~1DT; for i€Z, j<i and @y=-T7* i€Z. O is a contraction
and we obtain the following identification of J¢, in the model given by the marking
operators: first we define the unitary operator

(1.11) Gpe: B — Do fl_, Bae(I—0)k=Dgb;k, ket
®; R} ;

then
(1.12) V) Ay~ M, DDgM_, ¥,= di,f@%,:

and ¥, is a unitary operator yielding a natural identification of J£, in the marking
model. Moreover, we have the following result which constitutes the time-variant
analogue of the Sz.-Nagy--Foias functional model of a contraction.
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Theorem 2.2. For a system (1.1) satisfying the condition =X PV A"
for every n€Z, the following relations hold through the identifications ¥,,:

Hy = (kea @T,f ®Do-/l-)6_{@v®D9 vlvekea 91,,},

T(us®v) = Pp (Mju, ®M;v_), u, ®v_€H,.
Proof. From (1.4), (1.12) and (1.11) _it follows that

W, Ayt = OF (L ® D Wt . Wk p 1 Lt ) Dl
p=1
and by (1.9) we have
¢:($+ @ W+ +p 13’n+p)— @91'*-

In a similar way,
- 75 eW,95),,8...= @ r,

kzn
and the first relation follows from Theorem 2.1. For the second relation we have
to use the more remark that

O} W (O | B Dye = M
kzn+1

O W (D7) | D Dr =M.
k=n+1

Remark 2.3. The inverse problem of realization a given lower triangular con-
traction as a transfer operator of a certain system is treated for instance in [11]
and [2].

‘III. Nonstationary lifting-

In this section we describe a nonstationary variant for the lifting theorem of
Sarason—Sz.-Nagy—Foias.

This variant is inspired by similar phenomena in the study of nonstatlonary
processes (see [12], 13}, [7]) and the difference from the ‘“‘stationary” variant of
Sarason—Sz.-Nagy—Foias is not structural, but only one of complexity. Con-
sequently, we will have only to indicate the necessary changes, the proofs following
the known ones.- FiX two integers —so=M<o, —co<N=oc, M=N and two
families {T,}py=n=n> {T, }u=ssy of contractions (the extremal indices are attained
only for finite M and N), T,e £ (¥, .1, ), T €L (H, 1, ;). Let {4 y=p=ne1
be a family of contractions, 4,6 (#,, #,) and suppose that it intertwines {7}
and {T,}, i.. ‘

o T Ani1r = 4,7,
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for M=n=N. For {T }yy=.,=y consider its associated kernel by the rule mentioned
at the beginning of Section2 and let {W}y=,=n, W,€L (K11, H;) be its Kol-
mogorov decomposition, always written in the form (1.2). We have similar objects
associated to {T)}yy=.=n. Now, the following result extends the lifting theorem of
Sarason—Sz.-Nagy—Foiag. Denote by P, the orthogonal projection of X, onto
H#, and similarly, P,

Theorem 3.1. The set
CID ({An}MSnsN+l) -
= {{B }MS,,S,,,+1 | B, are contractions in F(H,*, A1), W, * B,.1 = B, W},
Rl’ Bn - An Bx}
is nonvoid.

Proof. Let X}}" be the matrix of B,, then writing the intertwining conditions,

one gets:
XD =4, X®=0, j>1

X =0, j=i
XPT,+XPDr, = Dp Aypiy

XPT,+XP Dy, = X", k=3
and
XP=x"1_, i,j=3.

Define the operators

3.1 Se—1n’ Dt > Dy Sicin = X PDr—XP T
such that the finite sections of B, are contractions if and only if the operators
) fA,,T;,...T;,_i,k_l, veey An];lDT:+l’ A,'DT:
ceey A Sln
(3.2) VG = ey St,n415 So,n+1
DT Ntk lAk-l-k’ Sl,n.+k—1> veey Sk—l,n+k—1

are also contractions for k=1.

If we define Co,=A4,T,=T,A4,,,, then there exist contractions Y,: 9 Mind 14
and ¥,: 97:~9c:, such that 4,Dr»=Dc: ¥, and Dr, A4,11=Y, D¢ and using
[4], [9] there exists an operator S,, such that C,. 1s a contraction. Now, the same
approximation procedure as in [3] finishes the proof.

We can continue the analysis of the set CID ({4,}y=y=n+1) in order to derive
results similar to those in [1], [3]. That is, a parametrization with a family of free
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parameters (generalizing the choice sequences in [3]) and a parametrization with
lower triangular contractions — a Schur type formula — are obtained.

For a sequence of contractions {G;, Gs, ...}, Gi€ L (¥, #'), G, L Ds,_,» )
L(G,, G,, ...) is the row contraction determined by these parameters,

L(Gl, Gz, ...) = (Gl’ DG: Gz, seey DG‘* DG;-I Gk’ ...)
and similar considerations hold for column contractions, denoted by C(G,, G,, ...).

Theorem 3.2. There exists a one-to-one correspondence between

CID ({An}M§n§N+1)
and the families of contractions {G;} such that G, €% Dsy » D), M=n=N
and GUEQ(@GM ) QG;_MH) for i=2, M=j=N. The co;'respondence is ex-
plicitely taken by the formula:
Skn = L(Kn Glna G2na EERE] Gk—l,n) Qk—-l,n C<Yn—k+l > Gl.n—k+1 s G2,n—k+29 seey Gk—l,n—l)+
+DY: DG::- DG;:-:,nG""DGk-l,n-l DGl,n-knDYn-kn’
where the operators Qy, can be also described in terms of the parameters G;.

Proof. We only skech the beginning, the rest paralleling the proof in 8] of a
slight modified variant of the main algorithm in [3].

First of all, Q,,=-C;, for M=n=N. Denote by F, the kXk principal
submatrix of C,,, , and by direct computations, we have

C [ En DF;;. ﬁ;‘n C(I’ns Gln)
o L(Yn+1’ Gl,n+])QInDF1,, Sz,n+1

where Q,, and 3,, are obvious identifications of the defects of F,,. Using once again
[4], [9] we get the desired formula for S,, with

an = an I'?l*r: ﬁ}lkn .
Then we compute

ch,, —Con Y: $ Ak DC;,, —Con ?:
Qm[ 0 Dy« ] =—0,,F 5, 0 Dy ] =
D —Connr Y,
= 0y BiDpy =04, Dy, Ey = [ o T gy
" 0 DYn+1

As in [8] we find
[CJ;' 0] [DY:na" DY:ub"
@="lo 1l gsa vib,
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with a,a}+b, b*—I and we define the operator

VOn'"@CJ,,GBQY: - Zc,,®9y,.,
Dys a, Dy« b,
I/On ____[ Yn+1 Yn+l .

*
_),n’:-lan _I’n+1bn
From now on we can continue as in {8].

Remark 3.3. Using Theorem 5.2 in [2] and Theorem 3.2 above, a parametriza-
tion of CID ({4,}y=n=n+:) With lower triangular contractions can be derived,
together with corresponding Schur type formulae as in Corollary 6.1 in [3].

Iv. Appli cations

In this section -we show the way some completion problems can be solved using
Theorem 3.1.

(A) For fixed operators (C;.,, ;€L (#;, #},,) | j=0, 0=r=N) we find con-
ditions for the existence of lower triangular contractive extensions. This problem
can be viewed as a “nonstationary” Carathéodory—FeJer problem and can be
~solved as in [15].

We define for #=0

N ’ N-1

Tn @Jﬁ.ﬁ,k—»@ n+k
k=1 k=0
00 0
T = I0 0
00 IO

and
N-1 N-1
. 7
A,: D m+k_> D Kk
k=0 k=0

Con 0 0.. 0

— Cn+1.n Cn+l,n+1 0.. 0
A, = ,
Cn+N—1,n Cn+N—1,n+N—1

We have that T,4,,,=A4,T, and if we suppose that A, are contractions, we
can use Theorem 3.1 in order to show that there exists a family of contractions
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{B,},=0 such that ,
M,B,,, =B,M,, FB,=A,F,

where M, are marking operators as those given by (1.7) or (1.8).
Using an adaptation of Lemma V. 3.2 in [16], {B,},=, gives rise to a contrac-
tive lower triangular extension of the given family of operators.

Proposition 4.1. In order that the family (C,,, ; | j=0, 0=r=N) has a con-
tractive lower triangular extension it is necessary and sufficient that A, are contrac-
tions for n=0. '

Moreover, Theorem 3.1 and Remark 3.3 give parametrizations for all the
solutions.

(B) Theorem 3.1 can be used to solve completion problems with a finite num-
ber of data, those named as Nehari completions in [5]. We indicate here (for sim-
plicity) only the very particular case of completing

Coo C01]
Cio
to a contraction. Take

COO

. I
Ay =(Co0> Co1); A= CIO] , Ty =(,0), Ty= [O]
then T, 4,=A,T,. Moreover,
— I 0] - [I]
0 - 0 I > o — 0

and if 4, and A4, are supposed to be contractions, then Theorem 3.1 asserts the

. ) Cy C
existence of a contraction [ 00 01] such that
22-

21
e e [

Consequently, C, =C,, and a contractive completion of the given
(Coos Cox> Cyo) is '

" [Coo C01]
Cio Cod’

This shows that Theorem 3.1 (together with the parametrization in Theorem 3.2)
for M=N=0 is equivalent with [4] and [9].

(C) Another application here is an extension of Theorem 5 in [5] and of a
similar result in {14].
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Proposition 42, Let A and B be two lower triangular operators,
AES’(@ A, EB H)), BE.S?(@ x,, @ #,). Then a necessary and suﬁcient con-

dition for the exzstence of a Iower trlangular contraction C¢ .?(@ @ 4 ")
such that A=CB is that A*A=B*B.

Proof. Take 4,=A4 | @ #,, B,=B | @ #, and M,, M, and M, be marking
operators as (1 7) and (1. 8) such that

M;An-i-l = An.an M:Bn‘}-l = BnMn'

Since 4 and B are lower triangular, then A}A4,=B!B, for n€Z and there
exist uniquely determined contractions X,: Ran B, B,—~ Ran A, A, such that 4,=X,B,.
From now on we can follow [14].
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