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Best coapproximation and Schauder bases in Banach spaces 

GEETHA S. RAO and M. SWAMINATHAN 

1. Introduction 

V. N . NIKOL'SKII [8], [9] studied the problem of best approximation in Banach 
spaces with basis. The study was carried out further by J . R . RETHERFORD [ 1 3 ] , [ 1 4 ] . He 
characterized (strictly) monotone bases and (strictly) comonotone bases by means of 
best approximation. He also characterized (strict) orthogonality and (strict) co-
orthogonality in Banach spaces having unconditional bases by means of best 
approximation. Some further connections between best approximation and theory 
of bases can be found in the book of I . SINGER [ 1 7 ] . 

Another kind of approximation known as "Best coapproximation" was in-
troduced by C. FRANCHETTI and M. FURI[2]. The work was continued on this 
topic by P . L . PAPINI and I. SINGER [ 1 0 ] , [ 1 1 ] , GEETHA S . RAO[3] and others. In 
this paper, some characterizations of bases in Banach spaces are obtained by means 
of best coapproximation. Certain kind of norms are introduced using best coapprox-
imation in which the given bases are (strictly) monotone and (strictly) comonotone, 
respectively. Equivalent norms are provided in which the given bases possess the 
special properties. The analogous theory is detailed in Banach spaces having un-
conditional bases. 

2. Notation and terminology 

Let E be a Banach space. A sequence { x j in £ is a basis of E if for every x£E 
there exists a unique sequence of scalars {a„}cK such that 

oo 

(1) X= 
i=l 
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A system (x„,/„), {xn}c.E, {fn}<zE* is biorthogonal if fi(xJ)=ôij. If ( x„ , / J is 
a biorthogonal system with {x„} a basis in E, then (x„, /„) is a Schauder basis for 
ZT if for each x££, 

(2) * = ¿y;(x)x, . . 
¡=1 

{/JJCJE* may some times be called an associated sequence of coefficient func-
t iona l (a.s.c.f.—here after). A sequence {x„} in £ is a basic sequence if {x„} is a 
basis of the closed linear subspace [x„] of E where [.] denotes the linear span of 
x„'s. A basis {xn} of E is unconditional if the convergence of (1) or (2) is uncon-
ditional, for each x£E. 

Let E be a Banach space, G be a linear subspace of E and x£E. An element 
g0£G is a best approximation of x from G if 

(3) ll*-goll S | |x-g | | (g€G). 

The set of best approximations of x from G is denoted by PG(x). An element g0£G 
is a best coapproximation of x from G if 

(4) ' llgo-gll S | |x -g | | (gÇG). 

The set of best coapproximations of x from, G is denoted by Ra (x). For a sequence 
{xn}oîE, let 

G„ = [*i> *2> •••> xn) and G" = [x„+1, x„+ 2 , ...]. 

Let i2, ..., where J f dénotes the set of all natural 
numbers. For a sequence {x„} of E, let 

Gd = [Xji i£d] and Gd = [x;: for d£3>. 

A sequence {x„} is basic in E (an unconditional basic in E) if there is a K such that 
for every m S n {dad', d'^Sti) and arbitrary scalars OL1, a2 , ..., a„ ({a,},ed.) 

| | 2 « i * i \ \ M l ( 1 2 « , x , | | * K \ \ 2 i=1 ¡=1 i€d' 

Let (x„,/„) be a Schauder basis for E. Then J„(X) and r„(x) (respectively ^d(x), /-d(x)) 
are defined as 

n 
s „ ( x ) = 2 f i ( x ) X i a n d r„(x) = x-s„(x) 

¡=i 

(Sd(x) = 2 f i ( x ) x > a n d rd(x) = X-Sj(x)). iZi 
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3. Characterization of monotone bases 

D e f i n i t i o n 3.1. Let E be a Banach space with a basis {x„}. Then E is said 
to satisfy Property ( A i f there exists no collection of scalars a„+1, a„+2, a„+m, 

n + m 
for all n,m£jV, such that 2 laiM0 and satisfying 

i = n + l 

n n+m 
|2«.-*. | | = I I 2 ««*«|| = 
i=l /=1 

M | n+m 

2 ^¡Xi+^r 2 «;*; i=l Z i=m+1 

Def in i t i on 3.2. Let E be a Banach space with a basis {x„}. Then E is said 
to satisfy Property (Az) if there exists no collection of scalars 

n 
for all m^jV, such that M ^ O and satisfying 

ism + l 

|| 2 « i * i | H I . 2 «,*i|| = 
i=n+1 i=m-j-l 

«*» 1 n 

2 aixi+"y 2 a.-*i 
¡=« + 1 i=m + l 

R e m a r k 3.1. All Banach spaces having basis {x„} and are strictly convex sat-
isfy Property (/1J and Property (/12). But there is no connection between Prop-
erty (/lj) and Property (A2) in general. 

Following [15], the next definition is introduced. 

D e f i n i t i o n 3.3. If {x„} is a basis for a Banach space E, then 

(i) {x„} is monotone if | | 2 ai*i|| —1| 2 a>x>|| for all n and for all. collections 

of scalars ax, a2, ..., a„, an + 1 , ..., an+m6K. 
n + m 

(ii) {x„} is strictly monotone if strict inequality holds in (i) whenever 2 la;l 9^0. 
/ = n + l 

OO OO CO 

(iii) {x,,} is comonotone if I I2 a;xi | | —1| 2 aixi | | whenever 2 xixi converges 
i—n i — m i — n 

and for all collections of scalars <xm, am + 1 , ..., a„, an + 1 . . . €K. 
(iv) {x„} is strictly comonotone if strict inequality holds in (iii) whenever 

2 M * o. 
i = m 

Theorem 3.1. Let E be a Banach space with a basis {x„}. The following state-
ments are true about {x„}: 

(i) {x„} is monotone if and only if Ra (x)= {i„(x)} n=\, 2, ... . 
(ii) {x„} is strictly monotone if and only if Rc ( X ) = { J „ ( X ) } N = l, 2, ... and E 

satisfies Property (A^). 
(iii) {x„} is comonotone if and only if RG„ (x) = {r„ (x)} «=1,2 , ... . 
(iv) {x„} is strictly comonotone if and only if Ra„(x)= {/"„(x)} n = l, 2, ... and 

E satisfies Property (Az). 
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P r o o f , (i) {*„} is monotone, then || a,x,|| = | | .Z a,x,|| for all scalars a„+1£K. 

Then, if x= 2 cHiXidE, it follows that 
¡=i 

|| 2 aixi~ 2 Pixi\\ = || 2(«i-Pi)Xi\\ ^ ||i(«i-)?i)^+aB+1x„+1|| s ... ¡=x ¡=1 J=I ¡=i 

- s || J («,-/»«)*,+ 2 ««*i|| = ||*- ¿ M l 
¡=i i=n+i ;=i 

for all 2 ^¡xi=P(^SN(x))IGA. Thus s„(x)£RGn(x). On the other hand, E=G„® 

•••]. ^ ( 0 ) =>[x.+i,...] and ^ ( O i n G ^ i O } , where 1 ^ ( 0 ) = 
= {y£E\RA T h e r e f o r e E=G„®RG

1(0) a n d RCn(x) is u n i q u e f o r e v e r y 
x£E\GN (from [3]), i.e. J?G n (x)=K(*)} as sn(x)eRGn(x)(xdE). 

n + m 
If Rc (x)={^„(x)}, then for x = 2 aixn it follows that 

" t = l . 

IIi «^-/>11 == || Y «iXt-p\\ \p£Gn). 
,n+m 

- « - J , I 

Since 0£Gn5 it follows that 

n n+m 
I I 4 M M I . 4 ««^11 i=i »=1 

for all collections of scalars a l , a2, ..., a„, a n + 1 , . . . , an + m£K. Thus {x„} is mo-
notone. 

(ii) If * G n ( x ) = K ( * ) } , then 

,n+m 

'¡=i I l i M N f e 

for all collections of scalars a l 5 a 2 , . . . , a„, a n + 1 , . . . , a„+m€K was proved. 
If equality holds for some collection of scalars (say) o^, a 2 , . . . , a„, 

n+m 
aB+i.-»a»+meK, with 2 l«.!^0» then 

i=n +1 

I l i M H l T M l -1=1 »=i 

Consider 
n J n + m II 

2 a i x i +— 2 <*ixi • Since 
¡=i 2 ¡=1 

(n J n+m •\ n 

i=1 ^ ¡=11 + 1 / i=1 
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it follows that 

IliMN i=i 

ii J n+m 

2 a i * i + t 2 
1=1 ^ i = n + l 

(6) 

On the other hand, 

n J n + m 

2 « i x i + T 2 a i x i ¡=l z ¡=„+1 
1 " 

2 <*txi 
,-=1 

+ 
\ n+m 

t 2 atxi ± ¡=i H I 2 ^ 1 1 -¡=i 

From (5) and (6), it follows that 

n J n -f-m 

1=1 z i = n + l 

ll ,1+m II 
= 11.2 M l 1 = 1 

for some collection of scalars a1 ; a 2 , . . . , a„, a„ + 1 , . . . , aB+m£K with 2 lail 
¡ = n + l 

in contradiction to the Property ( / t j satisfied by E. Thus {x„} is strictly monotone. 
Proceeding to the other implication, if 

• " .. N N + M I. 

for all collections of scalars a l 9 a2 , ..., a„, a„+1, ..., an+mGK with 2 tal^O» 
i = n + l 

then it is clear that it implies Ra (*) ={•$•„(*)} and Property (Aj) for E. 
(iii) Consider {xn} is comonotone. Then 

|| II ¿««»«II 
i=n i=m 

oo 

for all collections of scalars am , a m + 1 , a n , for which 2 a i x t convergent. 
i = n 

oo 

Then for x= 2 aixi£E> it follows that, 

K O ) - 2 M H I 2 <*ixi- 2 M N I 2 (dt-Pdxt+B.x.W*-... 
i=n+1 i = n + l i = n + l i = n + l 

- H I 2 (« i -&)* i + 2 « i * . | H I * - 2 M l i = n + l 1=1 i = n + l 

for all 2 P i x i = P { ^ r n ( x ) ) i G \ Thus rn(x)€Ra„(x). But E=G"®[xu x2, ...,*„], 

#¡¿(0)^[x1,x2, ...,x„] and i?en1(0)riG,,={0}. Therefore E=Gn®R£(0) and 
RCn(x) is unique for all x£E\Gn. Thus i?G„(x)={rn(x)}. 

8« 
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On the other hand if /?c„(x)= {/„(x)}, then for x = 2 it; follows that i = m+1 

|| 2 «¡Xi-p\| ^ || 2 /»|| 
"i = n + l ' i = m +1 

for all p£G". Since 0£Gn, it follows that 

|| 2 M M I ^ M l 
i=H+l i=m+l 

oo 

for all collections of scalars am + 1 , ..., an + 1 , ... £K for which 2 a i x i i s c o n " i = ll + l 
vergent. 

(iv)If i?G„(x)=K(x)}, then 

|| 2 M N I I . 2 M l 
i = n + l i = m + l 

for all scalars am + 1 , ..., an + 1 , ... €K for which- 2 i s convergent. If equality i = n + l 
holds for some am + 1 , . . . ,a„+ 1 , ... €K (say) with 2 k l ^0,-then 

i — m + l 

|| 2 M l = || 2 M l -
i = n + l i = m + l 

Consider 2 a i * i + T 2 since 
i = n + l 2 i = m + l 

1 n • Y °° 
' 2 a i * i = 2 

i = n + l i = m + l ' i = n + 1 

it is clear that 

(7) 

On the other hand, 

II 2 M l ^ 
i = n + l 

2 2 
>=l i+ l i = m + l 

(8) 
CO 1 n 

2 otiXi+— 2 
f = n + l A i = m + l 

•JII f M I + j n . ¿ a ^ l h l l . i ^ M I 
^ / = « + 1 ^ i = m + l i = n + l 

From (7) and (8), it follows that 

II 2 M l = i=n+i 
2 2 «¡*i 

i = n + l ^ l = m + l H I 2 M i = m + l 

for some collection of scalars am + 1 , ..., a„+1, ...€K with. 2 la;l contra-
i-m + l • • 

dieting Property (A2) satisfied by E. Hence, (x,,) is strictly comoriotone. 
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Proceeding to the other implication, if II 2 a,xJ|-=|| 2 a;X,|| for all col-
" i = n + l " < = m + l " 

n CO 

lections of scalars am + 1 , ..., a„+1, ... £K with 2 Kl and 2 a i x t is con-
i=m + l i = n + l 

vergent, then it is clear that i?G„(x)= {r„(x)} for x£E and E satisfies Property (A2). 

Def in i t i on 3.4. The norm in a Banach space E with a basis {x„} is called a 
CT-norm (with respect to the basis {x„}) if 

(a) for every x£E and n= 1 ,2 , . . . , there exists a unique polynomial RG (x)= 
= {.y„(x)} of best coapproximation to x. 

(b) E satisfies Property (A^. 
Observe that CT-norms will be denoted by || • ||CT. 

De f in i t i on 3.5. The norm in a Banach space E with a basis {x„} is called a 
CK-norm (with respect to the basis {x„}) if 

(a) for every x£E, and «=1 ,2 , ... there exists a unique polynomial com-
plement Rg„(X)— {/"„(X*)} of best coapproximation to x. 

(b) E satisfies Property (A2). 
Note that CK-norms are denoted by || • ||CK. 

De f in i t i on 3.6. The norm in a Banach space E with a basis {x„} is called a 
CTK-norm (with respect to the basis {x„}) if it is simultaneously a CT-norm and a 
CK-norm with respect to this basis. 

CTK -norms are denoted by fl • ||CTK-

Lemma 3.1. Let E be a Banach space with a basis {x„}. The following state-
ments are true: 

(i) The norm in E is a CT-norm if and only if 

l l z M H I . 2 M l i=i (=i 

for all collections of scalars , a2, ..., a„+1€K with 
(ii) The norm in E is a CK-norm if and only if 

oo eo 

II 2 Ml < ||2 Ml 
. t = n + l i-n 

oo 

for all sequence of scalars. {a„}~ with a„^0 for which the series 2 xixi ' s con~ 
i — n 

vergent. 
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(iii) If the norm in E is CTK-norm, then 

II i м ы | 2 Ч * . ц i=J+l i=i 

for all collections of scalars ah a l + 1 , ..., a„, an+1£K with |a,| + |an+1| ¿¿0. 

Proo f . The proof is clear from the proof of Theorem 3.1. 

Example 3.1. A CK-norm which is not a CT-norm: The numbers 

И с к = max j? + sup \y}\) (х = (^)€с0) 

define a norm on c0, equivalent to the initial norm of c0. This norm || • [|CK is a 
CK-norm but not a CT-norm with respect to the unit vector basis {*„} of c0. On 
the other hand, it follows that 

1*I+*21CK = m a x ( l + 1 , j (1 + 1 ) , j (1 + 1 ) , . . . ] = 2 

||*1+*2+Хз1ск = max (l +1, - i ( 1 +1)+1 , i - ( 1 + 1 +1), 1 (1 + 1 +1) , . . . ) == 2. 

Hence by Lemma 3.1, this is not a CT-norm. 

Example 3.2. A CT-norm which is not a CK-norm: For every integer и ^ 2 , 
let 7cl n denote the collection of all permutations of the set 

{2, 3, . . . , n — l ,n + l, Л+2,.. .}. 
Then the numbers 

Ы1ст= sup sup ( M + f J i V i i ) ( x = ( y i ) e C o ) 

define a norm on c0, equivalent to the initial norm of c0. This is a CT-norm but 
not a CK-norm with respect to the unit vector basis {*„} of c0. The violation in 
the characterizing inequality of CK-norm in Lemma 3 . 1 was shown by I . SINGER [17] . 

R e m a r k 3.2. The above examples show that there is no relation between 
CT-norms and CK-norms. That there can exist a basis and a norm which is a 
CT-norm but not a CK-norm and vice versa can be observed by the above examples. 

Theorem 3.2. Let E be a Banach space with a basis {x„} and let {fn}aE* 
be the a.s.c.f Then the following statements, hold. 

(i) A CT-norm on E equivalent to the initial norm on E can be introduced by 
the formula 

(9) W c r = J 4 " 1/iW^ll + sup || J f(x) x,|| 
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(ii) A CK-norm on E equivalent to the initial norm on E can be introduced by 
the formula 

(10) M a c = max i - i J UiWxiW +1| 2 / ¡ ( M l ) 

and also another equivalent CK-norm on E, by the formula 

(11) MCK = 2 4 - 11/iW^II + sup I I 2 /<(*) xt\\ ¡ = 1 i = l 

(iii) A CTK-norm on E equivalent to initial norm on E can be introduced by 
the formula 

(12) Ml ere = 2 4r U(*)*iH + SUP || 2 fiix)*i|| 
i = l ^ lgn,m<oo i=1 

and another equivalent CTK-norm on E by the formula 

(13) M e r e == sup { f l i / i W ^ l l c K + ll 2 /i(*)*«||cr}. 
l^n^oo i = 1 ¡ = n + l 

P r o o f . The fact that all these numbers define a norm and all these norms 
are equivalent to the original norm on E was proved previously and can be found 
in [17]. Now that they actually have the property of CT, CK, CTK-norms is 
proved here. 

n " 1 fc 

(i) | | Z M | c t = ^ ^ r l a i ^ l + m a x j l ^ a ^ i l l < 

< 2 4-IM+, max ||2*i*i|l= || 2 «¡^IIct 
( = 1 i—K̂ .n + 1 i -1 ¡ = 1 

for any scalars o^, a 2 , . . . , a„, an + 1€K with an+1?^0. Hence by Lemma 3.1, it 
follows that it is a CT-norm. oo (ii). (ii)!. Let {a,},™! be a sequence of scalars with a ^ ^ O , such that 2 a i x i 

i—l 
converges. Then it follows that for a suitable number n0 with 

I l i M U ^ Z M + l l 2 M b i—l "0 i=l i=n0+l 

2 I M I + || 2 M l = , max ( 1 i K ^ l l + H 2 M l ) = «0 1=1-1 i=n0+l I-lSii«»VKi= j_i '¡=n+l / 

= II 2 M U " i=l-l 
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Hence from Lemma 3.1, it follows that this norm is a CK-norm. 

(ii)2. || 2 «¡^lIcK = 2 4r + max || j? oef*f|| < 
i=l i=l 'Sn<co i~n 

» J oo oo 

< 2 max || 2 a i x i | | — || 2 ai*.-||cK-

Hence from Lemma 3.1, it is clear that this norm is a CK-norm. 

4. Characterization of bases 

For a sequence {y„} in a Banach space E, let Pn=[y,'. /=«] and let P= (J Pn. 
n = l 

For p£P, p= 2 aiyi f ° r some n, let 
i=1 

and 

2 Oifji if rn < n 
i = 1 
p if m ^ n 

r"m(p) = psn
m(p). 

Def in i t i on 4.1.. The norm || • || of E is a 
n 

(i) weak CT-norm relative to {}>„} if for each polynomial pdP, p— 2 aiJi 
¡=i m . 

and each mg/i, the polynomial 2 ai)'i ¡s the unique best coapproximation to p 
¡=x 

from i^m], 
n (ii) weak CK-norm relative to {y„} if for each polynomial p£P, p — 2 a iJ ; 

¡=i n 
and each m ^ n the complementary polynomial 2 a.J;i is the best coapproxi-

i = m +1 
mation t o p from [y,: m + l ^ / ^ n ] . 

(iii) weak CTK-norm relative to {%} if it is simultaneously a weak CK-norm 
and a weak CT-norm relative to .{j>„}. 

Remark 4.1. It is clear that if {*„} is a basis for E, then a CT-, CK-, CTK-
norm with respect to {*„} is a weak CT-norm, weak CK-norm and weak CTK-
norm relative to {x,,}. Example 3.1 shows that the converse is false. 

Theorem 4.1. Let {y„} be a non-zero sequence in a Banach space E with the 
norm ||-||. Then the following statements hold. 
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(i) The norm is a weak CT-norm relative to {yn} if and only if 

(*i) supsup{||s„(/>): p£P, || ^ 1} = 1. ft 

(ii) The norm is a weak CK-norm relative to {j>„} if and only if 

(*2) sup sup {||r„0)1: pep, bll S 1} = 1. n 

(iii) The norm is a weak CTK-norm relative to {>>„} if and only if 

max [(*!), (*2)] = 1. 

R e m a r k 4.2. Here s„(p) and rn(p) will assume the roles of sk
n(p) and rk

n(p) 
k 

whenever p£P is expressible in the form p= 2xiyi for some kdjV and (*x) 
i = 1 

and (*2) denote the expressions on the left-hand side of the equations. 
n 

Proof of Theo rem 4.1. (1) Suppose that p — ^ ^ i y ^ P an (* ( * i ) = l . Let 
¡=i 

m 

Piy£Pm- If IIP-ylMO, let p'=\\p—y\\ y). Then it follows that 11/11 = 1. 
Therefore, K „ ( / ) | | ^ l by property ( * , ) - l . But -1(/>-y))| | sS 1 
implies 

\K(jp-y)l 

KOO-y|| s ¡p-yl 

i.e. sn
m(p) is a best coapproximation to p. But since P„=Pm®[xm+1, ...,x„], it fol-

lows that RP (p) is unique. Therefore s"m {p) is the unique best coapproximation 
to p. On the other hand, if ||/?—y||=0, then s"m{p)=p=y and the result is trivial. 

n 
Conversely if sn

m(p) is the unique best coapproximation to p~ 2 aiyi f ° r 

i = l 
mSn and for \\p\\ s 1, it follows that !l ¿„(p)!! = MI = 1 • Since only finite sums 
are dealt with, a p£P and n can be found such that ||.?„(/>) II is nearly 1. Thus 
(* i )= l -

(ii) and (iii). The proofs of (ii) and (iii) are similar and are omitted. 

Theorem 4.2. Let E be a Banach space with a basis {x„}. A norm on E is a 
weak CK-norm if and only if 

H i « . » I N I I ¿ M l 
i=m i = iii — 1 

for arbitrary scalars am-lt am, ..., a„, am_17i0 and m, n—\,2, .... 

Proof . The proof is similar to that of (ii) of Lemma 3.1. 
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Theorem 4.3. The following statements about {*„} a sequence in a Banach 
space E with i£.Jf\=E are equivalent: 

(i) {x„} is a basis for E. 
(ii) A weak CT-norm can be introduced relative to {*„} on E equivalent to the 

original norm on E. 
(iii) A weak CK-norm can be introduced relative to {*„} on E equivalent to the 

original norm on E. 
(iv) A weak CTK-norm can be introduced relative to {x„} on E equivalent to 

the original norm on E. 

Proof , (i) implies the other three was proved in the stronger form in Section 3 
of this paper. If (ii) and (iii) implies (i), then (iv) also implies (i). So (ii) implies (i) 
is proved here as the other implication is similar. 

Suppose p=q, 2 (¡(¡x^O, then by Theorem 4.1, it follows that 
i = l 

M i M l - 1 ¿ M I N * i=l *=1 
(i.e.) 

^ ( ¿ M N I l i M I ¡=1 ¡=1 
(i.e.) 

I l i M N i i M I -i=x 1=1 
4 

If 2 a ;*i=0, then, since the norm is a weak CT-norm, 
¡ = 1 , 

I l i a . J C . I I H l i M b 0 
¡ = 1 ¡ = 1 

implying 

2 «¡*i = 0 i=l 
for all p^q. Thus Grinblyum's A>condition is satisfied with K= 1. 

5. Characterising orthogonal bases 

De f in i t i on 5.1. Let £ be a Banach space having a sequence {*„}. Follow-
ing [17], 

(i) {x„} is orthogonal provided || 2 a;xi||—II 2 ai*i|l arbitrary d l 7 d2£S>, 
i€<li ¡idt 

with d1czdi and arbitrary collection of scalars {a,}ied . 



Best coapproxirriation in Banach spaces 351 

(ii) {x„} is strictly orthogonal if the inequality is strict whenever 2 kil^O-
i£d2\dt 

(iii) {x„} is coorthogonal if II 2 ai*f|| —II 2 a>*ill f° r arbitrary d^d^Si 
• e^rsia' »S^Xdi 

with dx<zd2 and arbitrary collection of scalars {a,} for which 2 a ; x ; is con-
fer 

vergent. 
(iv) {x„} is strictly coorthogonal. if the inequality of (iii) is strict whenever 

2 hMO. i£d2\dL 

Theorem 5.1. Let E be a Banach space having an unconditional basis {x„}. 
Then the following statements are true: 

(i) {x„} is orthogonal if and only if ^Gd(x)={jd(x)} for all 
(ii) {x„} is strictly orthogonal if and only if J?G(j(x)= (jd(x)} for all and 

E has the property that there exist no scalars {ajjed «^ , for all d2, d^S! with 
d2Z}dy and 2 N satisfying 

iidi\dl 

|| 2 M b II2 Ml 2<*iXi + -7T 2 aiXi ied, £ itd^sAi 

(iii) {x„} is strictly coorthogonal if and only if Rcd(x)= {/"d(x)} for all 
and E has the property that there exist no scalars for all d%,d^3> with 
d2z>d1 and 2 I^I^O satisfying 

II 2 M b II ^ ««*ilb 2 2 <*>xi ¡ e /V , L i€<isV, 

Proof . The proof is similar to Theorem 3.1 and is omitted. 

Remark 5.1. Since the notions of orthogonal and coorthogonal bases are 
equivalent, the characterization of coorthogonal bases is omitted in Theorem 5.1. 
Analogous to Definitions 3.4, 3.5 and 3.6, one may call the norms satisfying the 
"if" parts of (ii), (iii) and (ii) and (iii) of Theorem 5.1 as CNT-, CNK-, CNTK-
norms respectively. While every CNK-norm is a CNT-norm, the converse is not 
always true. Example 3.1 illustrates this. 

Theorem 5.2. Let E be a Banach space with an unconditional basis {x„}. Then 
every norm in E in which -RG<i(x)={/'d(x)} and there exist no scalars {«,},-€dj\di> 
for all d2, dye_9> with d2Z)dx and 2 KI^O satisfying 

!| 2 M l = II 2 M b i€jT\dt i€Jr\dl 
2 2 aixi i€jr\d, £ i edjV, 

also has RG^(x)= {jd(x)} and the property that there exist no scalars {«¡};€dl\di, 
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for all dx, d2^Sl with d2z^d1 and y. |a,| satisfying 
iedaNii 

II2 M l = l | 2 M I = i€dj iZdi 2 «¡*;+4- 2 a.*i igd, ^ ¡6d,v, 

P roof . Every strictly coorthogonal basis is strictly orthogonal. This was proved 
by R E T H E R F O R D [ 1 4 ] . Hence the theorem follows. 

T h e o r e m 5.3. Let E be a Banach space with an unconditional basis {*„} and 
let {f„}czE* be the a.s.c.f Then a norm [| • ||+ on E can be introduced, equivalent to 
the initial norm on E, in which i?Gd(x) = {rd(x)} and there exist no scalars {«,},• 
for all d2, d^S) with d2^dt and j? |off| satisfying 

• edaXii 

2 M M 2 M l = 2 <*.-*«+4" 2 ai*i i€Jf\d, igdjXd! 
by the formula 

MI*= ¿ 4 - i i / i w * i i + sup H i / ; , ( • * ) * , l 
i=l Z {¡v't ¡J£!l j = l 

P roof . The equivalence of norms follows from I . S INGER [ 1 7 , p. 5 5 4 ] . To 
prove that || has the required properties, it will be sufficient by Theorem 5.1 
to prove that {*„} is strictly coorthogonal in this norm. Let d1, d2<z3> with dx<zd2 

and 2 be such that 2 atxi converges. Then it follows that 
i(d2\d i i€^\d2 

jr\d, = ( ^ v y u ^ . V i ) -
Hence 

II 2 « 1 * 4 = 2 i !«,*,!•+ sup | | 2 « ^ o l h 

1 " 
< 2 -5r'll«i*il+ sup ' || 2 = || 2 M l * -¡e.fV, I (i„i; ¡„lesnAJ, J=i ' ¡eAJ, 

Thus {.Y„} is strictly coorthogonal in || • [|+ and the proof is complete. 

6. Characterization of unconditional bases 

Let {}>„} be a sequence in a Banach space E. Let Pd—[y,]iid where 
d={h,i2, .,.,i„}cjV, i.e., d£3! and P= U Pd. For p£S, let p = 2 a;Ji> then 

{ 2 Ot.¡Xi if d'<z d 
16* 
p if d c z d ' 

rdd<p) = p-4(p)-



Best coapproxirriation in Banach spaces 353 

R e m a r k 6.1. is not defined whenever d'Cld^O and neither dad' or 
d'ad hold. . . . 

D e f i n i t i o n 6.1. A norm on E is a 

(i) weak CNTK-norm relative to {>>„} if for each polynomial p£P, p= 2 aiJi 
igd 

and for each d'ad, the polynomial 2! ' s the unique best coapproximation 
¡€<f' 

top from b;];<Ed'-

R e m a r k 6.1. It should be noted here that analogous definitions of weak 
CNT-, weak CNK-norms coincide with that of weak CNTK-norm. 

Theo rem 6.1. Let {y„} be a non-zero sequence in a Banach space E with norm 
|| • ||. The norm is a weak CNTK-norm relative to {yn} if and only if 

sup sup {|lsdC/>)|i: peP,-\\p\\ S 1}= 1. 

a 

Proof . Similar to the proof of Theorem 4.1. 

R e m a r k 6.2. sd(p) will assume the role of sd(p) whenever p~ 2 «.¡y^P. iid' 
Theorem 6.2. The following statements about a sequence {y„} in a Banach 

space E with [yi\iijr=E are equivalent: 
(i) {}>„} is an unconditional basis of E. 

(ii) A weak CNTK-norm relative to {y„} can be introduced on E equivalent to 
the original norm on E. 

Proo f . The proof is similar to that of Theorem 4.3. 

7. Remarks 

Let E be a Banach space with norm || • ||. A sequence {M,} of non-trivial sub-
spaces of E is called a decomposition of E provided for each x£E, there exists a 

CO 

unique sequence {x,} such that x ;£M ; and 2 x i = x > the convergence being in 
¡=i 

the norm topology. It is also possible to define for each /, a projection i?: 2J—M; 
by Pi(x)=xi. If each projection is continuous, then the pair {M;, i?} is called a 
Schauder decomposition. The notions of a Schauder basis and a Schauder decomposi-
tion are almost similar in the view point of approximation theory. Best approxima-
tion and Schauder decompositions were studied by P . K . JAIN and K . AHMAD [ 4 ] , 

[5], [6]. Hence the analogous results of best coapproximation and bases in Banach 
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spaces can be carried over to Schauder decompositions. Though the results look 
different, the idea is the same. Therefore the analogous results, even though known 
to the authors, are not elaborated. 
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