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Best coapproximation and Schauder bases in Banach spaces

GEETHA S. RAO and M. SWAMINATHAN

1. Introduction

V. N. Nikov’sk1 [8], [9] studied the problem of best approximation in Banach
spaces with basis. The study was carried out further by J. R. RETHERFORD [13], [14]. He
characterized (strictly) monotone bases and (strictly) comonotone bases by means of
best approximation. He also characterized (strict) orthogonality and (strict) co-
orthogonality in Banach spaces having unconditional bases by means of best
approximation. Some further connections between best approximation and theory
of bases can be found in the book of I. SINGER [17].

Another kind of approximation known as “Best coapproximation” was in-
troduced by C. FRANCHETTI and M. Furi[2]. The work was continued on this
topic by P. L. Papint and-I. SINGER [10], [11], GEETHA S. RA0[3] and others. In
this paper, some characterizations of bases in Banach spaces are obtained by means
of best coapproximation. Certain kind of norms are introduced using best coapprox-
imation in which the given bases are (strictly) monotone and (strictly) comonotone,
respectively. Equivalent norms are provided in which the given bases possess the
special properties. The analogous theory is detailed in Banach spaces having un-
conditional bases. ' : o

2. Notation and terminology

Let E be a Banach space. A sequence {x,} in E is a basis of E if for every x€E
there exists a unique sequence of scalars {«,}cK such that

(1) v X = Z’ o X;.
i=1
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A system (x,,f,), {x,})<E, {f,J<E* is biorthogonal if f;(x)=6;;. If (x,,f;) is
a biorthogonal system with {x,} a basis in E, then (x,,f,) is a Schauder basis for
E if for each x€E,

@ x= 3fn.

{f.}<E* may some times be called an associated sequence of coefficient func-
tionals (a.s.c.f.—here after). A sequence {x,} in E is a basic sequence if {x,} is a
basis of the closed linear subspace [x,] of £ where [.] denotes the linear span of
x,’s. A basis {x,} of E is unconditional if the convergence of (1) or (2) is uncon-
ditional, for each x€E.

Let £ be a Banach space, G be a linear subspace of £ and x€E. An element
8€G is a best approximation of x from G if

3 ' lx—gol = x—gl (g€G).

The set of best approximatith of x from G is denoted by Py (x). An element 8,€G
is a best coapproximation of x from G if

@ lgo—gl =lx—g| (g€G)-

The set of best coapproximations of x from G is denoted by Rg(x). For a sequence
{x,} of E, let : '

G, =[x, X, .., x,] and G" = [X,41, Xppgs -] -

Let 2={{i\, s, ..., i,})CH|l=n<e}, where 4 dénotes the set of all hatural
numbers. For a sequence {x,} of E, let

G, =[x;: ied] and "G =[x;; ieA\d], for dc2.

A sequence {x,} is basic in E (an unconditional basic in E) if there is a K such that
for every m=n (dcd’, d’¢9) and arbitrary scalars o, o, ..., %, ({&:}ics)

|3 el = K| S euxl] (|3 el = K| 3 ).

Let (x,,f,) bea Schauder basis for E. Then s,(x) and r,(x) (respectlvely sd(x) rq(x))
are defined as . .

0= Zh@x ad () =x-5()
_(Sd(x) = %; filx)x; and ry(x) = x—s, (x)).
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3. Characterization of monotone bases

Definition 3.1. Let E be a Banach space with a basis {x,}. Then E is said
to satisfy Property (A,) if there exists no collection of scalars o, ;, 0,155 o5 %yrms

n+m
for all n, me A", such that > |0 and satisfying

i=n41
' n n+m n 1 n+m
|lZ°‘ix.'” = ”Z “ixi”= ”2 “ixi‘.f'j ) 2 ox|.
i=1 i=1 i=1 i=m-+1

Definition 3.2. Let E be a Banach space with a basis {x,}. Then E is said
to satisfy Property (A,) if there exists no collection of scalars o, 1, 0,05 - s ys

for'all n, meA", such that Zn' lot;| %0 and satisfying

i=m+1 .
= = = 1
| 2 wml=1 2wl =] 3wty 2 on]-
i=n+1 i=m+1 i=n+1 i=m+1

Remark 3.1. All Banach spaces having basis {x,} and are strictly convex sat-
isfy Property (A,) and Property (4,). But there is no connection between Prop-
erty (4,) and Property (A,) in general.

Following [15], the next definition is introduced.

Definition 3.3. If {x,} is a basis for a Banach space E, then
n n+m
(D) {x.} is monotone if || 3 a;x;||=|| 3 ;x| for all » and for all collections
.. i=1 i=1 .

of scalars oy, ay, ...y Oy Xpi1s o5 TnimEK.
n+m
(ii) {x,}is strictly monotone if strict inequality holds in (i) whenever - 5 |a;| 0.
. i=n+1

(-] oo [=-4
(iii) {x,} is comonotone if || 3 a,x||=|| 3 «:x;|| whenever 3 «;x; converges
i=n i=m X i=n

and for all collections of scalars o,,, Oy yys -.os Oys Fpyy... EK.
@iv) {x,} is strictly comonotone if strict inequality holds in (iii) whenever

n-1
Z forid 0.

Theorem 3.1. Let E be a Banach space with a basis {x,}. The following state-

ments are true about {x,}:
() {x,} is monotone if and only if. R; (x)={s,(x)} n=1,2,.

(1) {x,} is strictly monotone if and only if Rg (x) {5, (x)} n—l 2,... and E
satisfies Property (A,).

(iii) {x,} is comonotone if and only if RG,,(x) { (X)) n= l 2,.

@iv) {x,} is strictly comonotone lf and only lf RG,.(x) {r =)} n-] 2,... and
E satisfies Property (A,). '

8
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..n ntl
Proof. (i) {x,}is monotone, then || 3 a;x;||=|| 3 ;x| for all scalars «,,,€K
i=1 i=1
Then, if x= > a;x;,€E, it follows that
i=1

|3 ecxi= 3 Bl = | 2 B0 x| = | 2 im Bd ity %y 5 o

e = ||i§(ai—ﬂg)xi+i=§laixill = ”x— ig:ﬂ,-x;"

for all z"ﬁ,. %=p(#5,(x))€G,. Thus s,(x)cR; (x). On the other hand, E=G,®

@[xn+la n+2s * ] R; I(O)D[xn-l-la . ] and Rc_;:(o)nGn={0}a where RE:(0)=
={y€E|R; (»)30}. Therefore E= G,®R;'(0) and R; (x) is unique for every
x€E\G, (from [3]), ie. Rg (x)={s,(x)} as s,(x)€Rg (x) (xEE).

n+m :
If R; (x)={s,(x)}, then for x= > a;x;, it follows that
n i1 T

n . n+m - .
"ig,; c‘ixi—l’” = "é aixi_p” (peG,).
Since 0€G,, it follows that ‘

n n+m
| 2 exll={| 2 wxi
) i=1 i=1
for all collections of scalars a;, ty, ...y %y Xyyys -oos Gprm€K. Thus {x,} is mo-
notone.

Gi) If RGn(x)={s,,(x)}, then

o
12 ax)= ]| wx)
i=1 i=1

for all collections of scalars oy, ag,

ooy Opy a,,;l, s % €K was proved.
If equality holds for some collection of scalars (say)

Opi1s «ees GprmEK, with 2 fo;} 20, then

i=n+1

Oyy Ogy oeuy Oy

n n4+m
|2 x| = [| 3 el
i=1 i=1

n 1 2+m
2 “ixi'*"i' 2 X

Consider

. Since
i=1

(5) ch(é'ax+ ! ’g'max;) é;a,-x,,

i=n+1
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it follows that

ntm

||Z’ocx"5”2'ozx+ Zax

On the other hand,

n ] nim 1 n n+m n
(6) AT E ”— Sax|+(l= > ocix.-" = || 3 x|
i=1 2; i=n+1 2 i=1 2 =1 i=1

From (5) and (6), it follows that

l n+m

n n 1 aim
||ié;oz,-x,-”=“i§;a,.xi+-2—i 2 )| = 12

n+
for some collection of scalars o, 0tg, ..., Oy Upygs .m0y Gpim€EK With 2 Jor;] 20,
. i=n+1
in contradiction to the Property (A,) satisfied by E. Thus {x,} is strictly monotone.

Proceeding to the other implication, if

+m.
13 e < o]
i=1 i=1

. . n+m
for all collections of scalars o, oy, ..., %y Hyiys -oos Gyam€K  with FRAEIR
L

then it is clear that it implies Rg (x)= {s,(x)} and Property (4,) for E.
(iii) Consider {x,} is comonotone. Then

| 2 o] = | 2 e
=n i=m
_for all collections of scalars o, #,415 ...» %, ...€K for which > «;x; is convergent.
i=n

Then for x=5’ o;x;,CE, it follows that,
i=1
o= 3 Bxfl =] 3 wx— 3 Bxl|s]| 3 @—Bixtax)=..
i=n+1 i=n+1 i=n+1 i=n+1

= ”'="Z°'°1 (0 —B) x; + é;“ixi" = "x—i=§1 ﬂixi”

for all 2’ Bix;=p(#r,(x))€G". Thus r,(x)€Rs(x). But E=G"®[x;, X3, ..., X,],

(O)D[xl,xz,. »X%] and RZ1(0Q)NG"={0}. Therefore E=G"®R;}(0) and
RG,.(x) is unique for all er\G" Thus Rgn(x)={r,(x)}.
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On the other hand if Rg.(x)={r,(x)}, then for x= 5’ o;x;, it follows that

i=m+1
i=n+1 i=m+1

for all peG". Since 0€G”, it follows that

| = oHCII—H P axll

. - ,

for all collections of scalars a1, ..., %41, ... €K for which Z’la,-x,- is con-
i=n+

vergent. :

(iv) If Rgn(x)={r,(x)}, then

N 2 wxf=]| 2 e
i=n+1 . i=m+1

oo

for all scalars apyqs -.es %y, -.. €K for whichr > a;x; is convergent. If equality

i=n+1

holds for some ¢,11, ..., %yi1, ... EK (say) with Zn' [ee;] %0, -then

i=m+1

.3 axl =15 ax

Consider 5’ ax+— Zn' o;x,. Since

=m+1

. ch( 22 a x'+ 28 o x] 22 a[x“
. i=n+1 i=m+1 i=n+1
it is clear that

R - E Sl DR e
i=n+1 i=n+1

i=m+1

On the other hand,
1 n
2 x; +o 2 aX;
+

Il =n+1 i=m

From (7) and (8), it follows that

1 9°,
=51 3wl gl 3wl =1, 3 ol

|3 ozx”—” 2 wxity 2 aixil¥||i=§laixi||

—m+1

for some collectlon of sca]ars Cmt1s - .,a,,+1,. €K with ,'Z' [al;éO contra-
i=m+

dicting Property (Ag) satisfied by . Hence {x,} is-strictly comonotone
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o

3 wxf|<| 3 x| for all col-

Proceeding to the other implication, if || >
i=n+1 i=m+1

ll oo
lections of scalars &, 1, ...y %11, ... EK with 2’ [l 20 and 3 a;x; is con-
i=n+1

vergent, then it is clear that Rgn(x)= {r,(x)} for xEE and E satisfies Property (A,).

Definition 3.4. The norm in a Banach space E with a basis {x,} is called a
CT-norm (with respect to the basis {x, }) if
(a) forevery x€E and n=1,2, ..., there ex1stsaun1que polynom1a1 R - (x)=
= {s5,(x)} of best coapproximation to X.
(b) E satisfies Property (A4,).
- Observe that CT-norms will be denoted by | :||cr.

‘Definition 3.5. The norm in a Banach space E with a basis {x,}.is called a
CK-norm (with respect to the basis {x,}) if

(a) for every x€E, and n=1,2,... there exists a unique polynomial com-
plement Rg.(x)={r,(x)} of best coapproximation to x.

(b) E satisfies Property (A»).

Note that CK-norms are denoted by || ]ICK

Definition 3.6. The norm in a Banach space E with a basis {x,} is called a
CTK-norm (with respect to the basis {x,}) if it is simultaneously a CT-norm and a
CK-norm with respect to this basis.

CTK-norms are denoted by |- lcrk-
Lemma 3.1. Let E be a Banach space with a basis {x,}. The following state-

ments are true:
(i) The norm in E is a CT-norm if and only if

n - n+1
1.2 e < | 2 el
i=1 i=1

for all collections of ;calars Oy, O,y ooy 0, EK with o, #0.
(ii) The norm in E is a CK-norm if and only if

-] -]
| > ol <|| 3 e
i=n+1 i=n

for all sequence of scalars {u,}; with «,50 for which the series 3 a;x; is con-
. . ) ) i=n

vergent.
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(iii) If the norm in E is CTK-norm, then

n n+1
| > wxll<] > o]
i=l+1 i=l
for all collections of scalars oy, ay s, ..., 0, 0, €K with [o]+ |0, 4]520.
_ Proof. The proof is clear from the proof of Theorem 3.1.

Example 3.1. A CK-norm which is not a CT-norm: The numbers
12,
I xllex = max ("n‘ 2 i+ Sllp |}’j|) (x = (.Vi)eco)
=n<oo i=1 n+l1=s N

define a norm on ¢,, equivalent to the initial norm of ¢,. This norm || is a
CK-norm but not a CT-norm with respect to the unit vector basis {x,} of ¢,. On
the other hand, it follows that

[lx1+x2[]q<=max(l+l —(1+1), (1+1),...]=2

' 1 1 .
“xl“l‘X2+x3ﬂCK= max (1+1, —2—(1+1)+1, ?(1+1+1), Z(1+1+1), ...] = 2.
Hence by Lemma 3.1, this is not a CT-norm.

Example 3.2. A CT-norm which is not a CK-norm: For every integer nz=2,
let = , denote the collection of all permutations of the set

2,3, ...,n—1L,n+1,n+2,..}.
Then the numbers - '

“xler= sup sup (ly 1|+g; 22 ""’l] (x = (r)eco)

2=n<co d€my ,

define a norm on ¢,, equivalent to the initial norm of ¢,. This is @ CT-norm but )
not a CK-norm with respect to the unit vector basis {x,} of ¢,. The violation in
the characterizing inequality of CK-norm in Lemma 3.1 was shown by I. SINGER [17].

Remark 3.2. The above examples show that there is no relation between
CT-norms and CK-norms. That there can exist a basis and a norm which is a
CT-norm but not a CK-norm and vice versa can be observed by the above examples.

Theorem 3.2. Let E be a Banach space with a basis {x,} and let {f,}CE*
be the a.s.c.f. Then the following statements. hold.

(i) A CT-norm on E equivalent to the initial norm on E can be introduced by
the formula

) Ilcr 2°° 5 i@l + sup ||2f(x)xi||
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(ii)) A CK-norm on E equwalent to the initial norm on E can be introduced by
the formula

(10) teloc = max (5 Z 1Al +] 3 o)

and also another equivalent CK-norm on E, by the formula

an e = 35 LG+ swp [ 39 x|

(iii) 4 CTK-norm on E equivalent to initial norm on E can be introduced by
the formula

(12 e = 3 e Lixi+_suwp || 2 5=

and another equivalent CTK-norm on E by the formula

13) e = _sup_ {2 i xllex+]| 2 fit)er)-

Proof. The fact that all these numbers define a norm agd all these norms
are equivalent to the original norm on E was proved previously and can be found
in [17]. Now that they actually have the property of CT, CK, CTK-norms is
proved here.

. n n 1
(@ ”__Z;“ixi”cr = Z;—ZT“ il + max ”Z o x| <

i 1=k=n

= B s, o | 3wl = 12 eonler

1=k=n+1

for any scalars a, 0, ..., o, 0,4,€K with «,,;7#0. Hence by Lemma 3.1, it
follows that it is a CT-norm.
(ii). (ii),. Let {a;};>, be a sequence of scalars with «;_,0, such that 5’ 0 %;
i=l

converges. Then it follows that for a suitable number 7, with /=n,<ce,
oo 1 M oo
” 2 aixi”CK =—2 ““ixi”"'" 2 “ixi" =
i=1 Mo i=i i=ng+1 _

< 3l ] 3 x| =, max L 3 3wl +] 3 aixll) =

l-l=n<eo \ N ;71

L 5 o xi”cx-_

=]-1
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Hence from Lemma 3.1, it follows that this norm is’a CK-norm.

. & S 1 =
(ii),. “;gl' a,x,-"cx = i%’ —2'.—|Iaixi|| +l§m"21§° ”.‘:2.. a,-x;” =
< 3 5l ol s |2 x| = || 3 xex.

Hence from Lemma 3.1,’ it is clear that this norm is a CK-norm.

4. Characterization of bases

For a sequence {y,}in a Banach space E, let P=[y;: i=n] and let P= U P,

For peP, p= Z’a,y, for some n, , let

s (p) = Zay, 1f m=n

/4 if m=n
and
r(p) = p—su(p)-
Definition 4.1., The norm ||| of Eisa
(i) weak CT-norm relative to {y,} if for each polynom1a1 PEP, p= Z’a,y,

and each m=n, the polynomial Z’ «;p; is the unique best coapprox1mat10n to p
’ i=1
from [y;: i=m).

(ii) weak CK-norm relative to {y,} if for each polynomial peP, p= Zn &y
i=1 .

and each m=n the complementary polynomial 2 «;y, is the best coapproxi-
i i +1 .
mation to p from [y;: m+1=i=n].
(iii) weak CTK-norm relative to {y,} if it is simultaneously a weak CK-norm
and a weak CT-norm relative to {y,,}

Remark 4.1. Tt is clear that if {x,} is a basis for E, then a CT-, CK-, CTK-
norm with respect to {x,} is a weak CT-norm, weak CK-norm and weak CTK-
norm relative to {x,}. Example 3.1 shows that the converse is false.

Theorem 4.1. Let {y,} be a non-zero sequence in a Banach space E with the
norm || - ||. Then the following statements hold.
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(i) The norm is a weak CT-norm relative to {y,} if and only. if
(*2) sup sup {ls,(p): pEP, ol =1}=1.

(ii) The norm is a Weak CK-norm relative to {y,} lf and only if
(%2) supsup {[r,(P)]: peP, |pl =1} = 1.

(iii) The norm is a weak CTK-norm relative to {y,} if and only if

max [(#,), (+5)] = L.
Remark 42 Hele S, (p) and r,(p) will assume the roles of s"(p) and r(p)
whenever pEP is expressible in the form p= Zoc ;y; for some k€A and (x,)

and (%) denote the expressions on the left-hand 51de of the equations.

Proof of Theorem 4.1. (1) Suppose that p:Z"’a,-yiEP and (%,)=1. Let
i=1

y=2 Biy€B,. If [p—yl=0, let p’=|p—y] ~*(p—y). Then it follows that || p’| =1.
i=1

Therefore, | si(p)=1 by property (%)=1. But |si(lp—7]~2(p—7)||=1

implies

. s (p = = lp—7l,
1.€.

Isz(p) =7l = lp—7l,

ie. s%(p) is a best coapproximation to p: But since B,=F,®[X,y, ..., X,), it fol-
lows that R,,m(p) is unique. Therefore s} (p) is the unique best coapproximation
to p. On the other hand, if [[p—7y|=0, then s} (p)=p=y and the result is trivial.

R n
Conversely if s7(p) is the unique best coapproximation to p= 2 &;y;  for
“

m=n and for [p{|=1, it follows that ||s%(p)=|pll=1. Since only finite sums
are dealt with, a p€P and » can be found such that |s,(p)|l is nearly 1. Thus

(*1)=1.

(i) and (iii). The proofs of (ii) and (iii) are similar and are omitted.

Theorem 4.2. Let E be a Banach space with a basis {x,}. A norm on E is a
weak CK-norm if and only if

IS enl=] 3 i

for arbitrary scalars o, ys Qs orvs Oys Cm_1 70 and m,n=1,2, ....

Proof. The proof is similar ‘to that of (ii) of Lemma 3.1,
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Theorem 4.3. The following statements about {x,} a sequence in a Banach
space E with [x;,ic A/ |=E are equivalent:

(i) {x,} is a basis for E.

(ii) A weak CT-norm can be introduced relative to {x,} on E equivalent to the
original norm on E.

(iii) A weak CK-norm can be introduced relative to {x,} on E equivalent to the
original norm on E.

(iv) 4 weak CTK-norm can be introduced relative to {x,} on E equivalent to
the original norm on E.

“Proof. (i) implies the other three was proved in the stronger form in Section 3
of this paper. If (ii) and (iii) implies (i), then (iv) also implies (i). So (ii) implies (i)
is proved here as the other implication is similar.

Suppose p=gq, Zq' o;x;#0, then by Theorem 4.1, it follows that
i=1

|ls2 (".Zq;aixi”_l _Zq;aix,.)" =1
i= i=
(i.e.)
4 q
(2 x| = | 3 e
(i.e.)
L q
| 2 x| =} 3 ol
i=1 i=1

q . .
If - > a;x;=0, then, since-the norm is a weak CT-norm,
i=1

P q
|2 el =1 2 mml =0
implying

for all p=q. Thus Grinblyum’s K-condition is satisfied with K=1.

5. Characterising orthogonal bases

Definition 5.1. Let E be a Banach space having a sequence {x,}. Follow-
ing [17],

" (i) {x,} is orthogonal provided ”Zd' aix,-”g"zd' a;x;|| for arbitrary d,, dye 2,
i€dy i€ds
with d,cd, and arbitrary collection of scalars {;};¢,, -
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(ii) {x,} is strictly orthogonal if the inequality is strict whenever 3 .. |ot]|=O0.
i€da\dy

(iii) {x,} is coorthogonal if || 2 a,-xi”é” 2 a;x,-" for arbitrary dl,dzegv
ieANdg - iedNd
with dycd, and arbitrary collection of scalars {o;} ix'or which > «;x; is con-
; icx

vergent.
(@iv) {x,} is strictly coorthogonal .if the inequality of (iii) is strict whenever

2 l“il #0.

icda\d;

Theorem 5.1. Let E be a Banach space havzng an unconditional basis {x,}.
Then the following statements are true:
() {x,} is orthogonal if and only if Rg (x)={sy(x)} for all dE@
(ii) {x,} is strictly orthogonal if and only if R, ()={s4(x)} for all de2 and
E has the property that there exist no scalars {a; },e g, Jor all dy, i€ D with
dyody and 3 |a|#0 satisfying

icdy\ dy
1
"Z aixi” = "2 “ixi" = ” Z“i-xi+7. 2 %X
i€d, i€d, i€d, icdNd, ‘
(iii) {x,} is strictly coorthogonal if and only if Rgu(x)={r,(x)} for all dc2
and E has the property that there exist no scalars {0};cqxga,» for all d,,d €2 with
d;od, and 2’ |o)} %0 satisfying

icda\

1
|| ozx"—” dax”—” Z' ocx+2i62' cxx,-“.

i€ NIy N4,

Proof. The proof is similar to Theorem 3.1 and is omitted.

Remark 5.1, Since the notions of orthogonal and coorthogonal bases are
equivalent, the characterization of coorthogonal bases is omitted in Theorem 5.1.
Analogous to Definitions 3.4, 3.5 and 3.6, one may call the norms satisfying the
“if” parts of (ii), (iii) and (ii) and (iii) of Theorem 5.1 as CNT-, CNK-, CNTK-
norms respectively. While every CNK-norm is a CNT-norm, the converse is not
always true. Example 3.1 illustrates this.

Theorem 5.2. Let E be a Banach space with an uhcondtttonal basis {x,}. Then
every norm in E in which Rga(x)={ry(x)} and there exist no scalars. {a; heana,
for all dz,dleg with dyDd, and 2’ lo;] %0 satisfying

1

icda\
also has Rg (x)= {54()} and the property -that there exist no scalars {a};c 4>

1
I, 2, wxll =1 2, el = | 2, oty 2w

i€dy\4,



352 Geetha S. Rao and M. Swaminathan

Sforall d,,d,¢9 with d,od, and 3 |o|#0 satisfying
iedR 4

2 aixi+l

ied, 2

2wl =1 5wl = 2w
i€d, i€d, i€dy\d,

Proof. Every strictly coorthogonal basis is strictly orthogonal. This was proved
by RETHERFORD [14]. Hence the theorem follows.

Theorem 5.3. Let E be a Banach space with an unconditional basis {x,} and
let {f,}TE* be the a.s.c.f. Then a norm | - |, on E can be introduced, equivalent to
the initial norm on E, in which Rga(x)={r,(x)} and there exist no scalars {t:};c s 4,5

for all d,,d, €9 with d,od, and jo.l #0  satisfying
icda\d; . )

1
. ” 2 Ot,-xi” = “ Z Otix,-” = ll 2 Ot,-xi+-—- 2 Otix,-“ s
e, ieiNd, i€ 2 jedNd,
by the formula
‘ =1 i .
Ixl= 2 5 1fiG)xl+  sup |2 £, %
i=1 {ipigs -nnin}€9 j=1
Proof. The equivalence of norms follows from I. SINGER [17, p. 554]. To
prove that | -]|, has the required properties, it will be sufficient by Theorem 5.1
to prove that {x,} is strictly coorthogonal in this norm. Let d,, d,6® with d,cd,

and > |a]=0 besuchthat 3 «;x; converges. Then it follows that
i€de\dy i€A\dz

-/V\dl = (JV\dz)U(dz\dl);

Hence
1 ‘ . n
” 2 aixi”*= 2 =t lex]+ sup ”Z'aijxi,” =
1EANd, ie/Nd, _2 lipiy 0 i, € IO\, j=1
< — et X;l su ;X |= 0 Xl
iEJ’Z\dl 2 " i) (i,,i,,...,i,,)ganm\d, ”,;; Y ‘j“ “ie.ﬁ’z\dl ' ”*
Thus {x,} is strictly coorthogonal in |||, and the proof is complete.

6. Characterization of unconditional bases

- Let {y,} be a sequence in a Banach space E. Let P=[y];c, where
d={iy, iy, ..., i,})C N, ie., dc¢2 and P=|) P. For pcS, let p=> a,y;, then
i fed

{Zaixi if dcd
sd.(p) = {i€e
() =" it ded

ri(p) = p—s4(p).
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Remark 6.1. s%(p) is not defined whenever d’(\d>=@ and neither dcd’ or
d’cd hold.

Definition 6.1. Anormon Eis a

(i) weak CNTK-norm relative to {y,} if for each polynomial p€P, p= 3 o;y;
i€a

and for each d’cd, the polynomial » o;y; is the unique best coapproximation
i€d’
to p from [yJica- - '

Remark 6.1. It should be noted here that analogous definitions of weak
CNT-, weak CNK-norms coincide with that of weak CNTK-norm.

Theorem 6.1. Let {y,} be a non-zero sequence in a Banach space E with norm
|-ll. The norm is a weak CNTK-norm relative to {y,} if and only if

supsup {|sa(p): peP,’[p] =1} = 1.

Proof. Similar to the proof of Theorem 4.1.

Remark 6.2. 5,(p) will assume the role of s%(p) whenever p= > a,y,€ P.
. fed’

Theorem 6.2. The following statements about a sequence.{y,} in a Banach
space E with [y,);c ,=E are equivalent:

() {y.} is an unconditional basis of E.

(ii) A4 weak CNTK-norm relative to {y,} can be introduced on E equivalent to
the original norm on E. '

Proof. The proof is similar to that of Theorem 4.3.

7. Remarks

Let E be a Banach space with norm Il - II. Asequence {M;} of non-trivial sub-
spaces of E is called a decomposition of E provided for each x€E, there exists a

unique sequeace {x;} such that x;6M; and > x;=x, the convergence being in
i=1

the norm topology. It is also possible to define for each i, a projection P: E—~M;
by B(x)=x;. If each projection is continuous, then the pair {M;, P} is called a
Schauder decomposition. The notions of a Schauder basis and a Schauder decomposi-
tion are almost similar in the view point of approximation theory. Best approxima-
tion and Schauder decompositions were studied by P. K. JAIN and K. AHMAD [4],
[S], [6]. Hence the analogous results of best coapproximation and bases in Banach
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spaces can be carried over to Schauder decompositions. Though the results look
different, the idea is the same. Therefore the analogous results, even though known
to the authors, are not elaborated.
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