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On imbedding theorems for weighted polynomial approximation
and modulus of continuity of functions

NGUYEN XUAN KY

0. Introduction

Let ¢ and ¥ be two measurable functions on (a, b), (—~=a<b= ). Denote
(L)WY (L)=@(L)Y (L), the set of those measurable functions f on (a, b) for
which .

f e(Lf ) v (11GN) dx

exists. In the case Yy =1 and ¢(x)= |x|’J ‘(1=p<e) we usually write L? instead of

p(L)(L).
The norm of f€L*(a, b) is defined by

b
Il = ( f lf(x)l"dx)"’-

The space L? of all the functions of periodic 2r will be denoted by LP[2n]. The
modulus of contmmty of a functxon f€L"(a, b) is deﬁned as follows

h

o(f, 8),= sup. ( f | f(x+h)—f(x)|"dx)1" O=5=b-a).
If feLP[zn] then let
er . .
o(f,8),= sup ([ Ifte+m)~fGFdx)” @ =0).
=h= 0
A nondecreasihg continuous function @ on [0, 1} is called a modulus of con-

tinuity if A .

Q0) =0, 2(5,+6,) = QF)+8Q(5,) (0=26, =08, =5,+5,=1).
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For a modulus of continuity Q2 and 1=p< let
HP = HP®:= {feL?: o(f,8) = c(f)Q(), 6 >0}

here and later c(x, ...) denotes a constant depending only on x, ..., furthermore
¢ will denote an absolute constant (not necessarily the same in different formulae).
Let F={ f,,};°=o be an orthonormal system on (a, b). Define for n=0, 1, ...

m,(F):={p, = Z",' Jifu: A are real numbers, k =0, 1, ...}.
k=0

If for some 1=p<o, FCL? then let

E(Eyi=, inf  1f-pily (FEL% n=0,1,..)

For a given decreasing sequence of real numbers tending to zero a=(«,)=(x,}0), let

E(F,a,p):= {feL?: E,(F,f),=c(f)a,, n=0,1, ...}

Many authors have studied the so-called imbedding problems: What are suffi-
cient conditions and what are necessary conditions (regarding Q) for

) H}cC A,

where A is a given set of functions. A similar problem is to find sufficient conditions
and necessary conditions (regarding «) for

@ E(F,a,p) < B,

where B denotes some given set of functions. For example UL’ JANOV [10] considered
these Vproblems in the case A=B=L2r] (1=p<g<-<) and if F is the trigonometric
system. TIMAN [9]- answering one of Ul'’janov’s questions proved that a certain
sufficient condition due to Ul'janov is also necessary for imbedding (2) with
B=L2n]. L. Leindler generalized these results for A=B=¢(L)y(L) (see e.g.
[4], [5]). Some analogous results on the infinite interval due to J. NEMETH [8].

Let 2>0. The orthonormal system F is called (by the present author) a {N, A}
system if the inequality

(3) ) "pn“q §_cnl((l[p)-—(1/q)) n pn"p

holds for every p,€I,(F), n=1,2,... and 1§p<q<oo. In the case A=1, in-
equahty (3) is called Nikol’skii- 1nequa11ty

The following statement is true, its proof is similar to that of TiMAN [9]. Let
F be a {N, i}-system and let fE€L? (1=p<<o). If for some 1=p<g<eo

oo

@ g:= > n*@P-D-1EY(F, f), <o
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then feL? and | fl,=c{lf II‘I’,-I-s}l/". Consequently, for a {N, i}-system, the
condition

) Z°'° nﬁ-(qlp—l)—lag < oo
n=1

is sufficient for imbedding (2) with B=L% We can ask if this is also necessary.

On the other hand, many results of the approximation theory show that for a
given system F there exist new moduli of continuity for which the analogues of
Jackson and Bernstein theorems are true. Therefore the following problem seems
to be natural: What can we say about imbedding (1) in the case if w is also a modulus
of continuity?

In this paper we give an answer to the first question in the case of the generalized
Hermite functions and we consider the second problem for the modulus of con-
tinuity to be defined later on. Some results will be proved for (L)Y (L) as well,

1. The main results

Let
wx) = (L+[x])/Pe™ M2 (o <x <o), uz=2 =0

and let {h,} be the system of the orthonormal polynomials with respect to the weight
w? Then the system F, ,={f,w} is orthonormal on (—ee, e). If u=2, v=0
then F, , is the system of the orthonormal Hermite functions. The weight w was
introduced by FREUD [2] for all real » and u=2. In this paper, when no additional
condition is required, we always assume that »=0, u=2.

We define the modulus of continuity of a function f€L?(— e, =) as follows

(6) w*(fa 6)p = wj,B(.f’ 5)p = wj,B(us v, .f’ 6)p =

= supa{ [ G+ B —f,(x)[P wP (x) dx} P+

0sh=

+ Slip {flfp(x_h) _fp(x)‘pwp(x) dx}llp (5 =0, —oc <=4 =<B=<e),
A

O0<h=4

where

Lri=wTP L

The modulus of this type was introduced in [3].
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For a given sequence of real numbers (¢,) and 1=p, g<o, let

[x]
©)] O(x) = @pa(9) = 3 kAaip~D-1¢

In the case A=1 this function was introduced by LEINDLER [6].
Further on we simply write @(L)Y(L) for @(L)Y(L)(-w,os)-
The following theorems are true:

Theorem 1. Let 1=p=g<ec and let a=(x,}0), (¢,) be given nonnegative
monotonic sequences satisfying

®) no, =cma,, for 1=n<m

and @e=c@y, and if q=p then let ((p,,) be decrea&ing. Let &=, ,, be the func-
tion defined in (7) with A=1—1Ju. Then a necessary condition for
® E(, ., p) C L1+0-100-4P g (L)
Is ’
(10) f n1-1w)(g/p-n-1 Q0 < oo,
n=1 .

Theorem 2. Let 1=p<g<<o and let a=(a,}0) be a sequence having the
properties required in Theorem 1. Let v,=0. A necessary and sufficient condition for

(1) E(F,,.,> o, p) < L2
is o

(12) S p0-10G/p-D-148 < oo,

n=1

Theorem 3. Let Q be a modulus of continuity, 1=p=g<o and let (p,)
be a sequence having the properties required in Theorem 1. Let ¢=®,, , with
A=1—1/u. A necessary condition for

(13) H2 e La+0-ya-a/n p(L)

15

(14) 5 nA-Yuajp-D-14 QI(n~1-1) < oo,
a=1

Theorem 4. Let 1=p<qg<<- and let wj=w, 5, v, f, 5),,. with vy=0.
A necessary and sufficient condition for g

(15) H®® c L
T is

(16) . 2; nt—1/)a/p~1)-1 Qq(n—(l—l.'u)) < oo,
n=
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2. Lemmas

Lemma 1 ([6], Lemma 5). Let p=0 and let (%,10) be a sequence satisfying
(8). Let (p,) be a nonnegative monotonic sequence having the property that for a cer-
tain o

oo

Pk maoy, ’
(17) k=21'n k=+p =c ma+“7
and
(18) Z(pkk-aa,’: = oo,
k=1

Then there exists a sequence {B} such that

(19) B0, B, = o, Zm' k*-*Bp = c(A, pym*?a?, forany A>0
k=1

and
(20) S @k Bf = co.
k=1

This lemma differs from Lemma 5 of [6] in the rate of A, since the last inequality
in (19) is true for any A=0 (in [6] this inequality was proved for A=1). Indeed,
the sequence {B,} defined in [6] has property (19). The proof of this fact is similar
to that of the last inequality in (2.4) of [6]..

We have similar remark concerning the inequality (25) in the following lemma.

Lemma 2 ({61, Lemma 6). Let p=1, a<1 and let (oz,,{O)_ be a seéuence sat-
isfying (8). If for the positive increasing sequence (©,),

(¢2) N Zw k™72 = c@,m=*P
: k=m

and

(22) Z' P p ] = oo

n=1

hold, then there exist a sequence {B,} and a sequence of integers {n,} such that

(23) ‘Bﬂlo’ B" é a"
(24 My =2, and B, = —;—B,,k k=1
(25) Zm' n*-1BI = c(g, A) m“’oc‘,’,, for any q,2>0

(26) SemB = and 3 ¢, nB, =
n=1 N k=1
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and

@7 S 9 209 (By— By 1)P = .
k=1

Lemma 3. Let 1=p=qg<eo, A=1/2 and let (a,), (9,) be.sequences hav;'ng
the properties requiréd in Theorem 1. If

@8) 3 niatr=b-lg, o = oo
n=1

then there exists a function fo€ LP[0, 1] having the following properties:

(29 fox) =0, x€[274 1]
h
(30) S fe@Pdx=cap, (0 <h=27%49, k=1,2,..)
0
(31) o(fp, 27%), = cage, k=1,2, ...
and
(32) | Jo§ LA+30-0D (L),

where =&, , , is defined by (7). -

Proof. First we remark that in the case A=1 this lemma was proved in
[6], [7]. Here we use a similar method for the construction of f,.

If g=p then the conditions of Lemma 1 with a=1 are satisfied, so there
exists a sequence {B,} satisfying (19) and (20) with a=1. 4

If ¢=p then the conditions of Lemma 2 are satisfied with a=1—2 (i—l]

. V4

and the exponent p appearing in Lemma 2 is chosen to be g. Therefore there exist
{ﬁ,‘} and {n,} satisfying (23)—(27).

Now we can define

gn if x = 32-H0+)
. . _Jo i x€[2-4 1], x =27
(33) f;;(X) - linear on [2-—).(n+1)’ 3}.2—1(n+2)],
[3*2-30+D) -] n=1,2, ..,
where :

(34 Qni= 20+VAP(BL— BL)P (n=1,2,..)
with '
(B, if p=
B, if p<gq.
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Let
(35) - o= sz—’l
and let
(36) . he(o2-4k+3) g2 —4k+D) | =2,

Then it is easy to see that

0<(@—1)h<1—h.
We have

1—h T @A-Dh 1—h

[ G+ —f@Prdi= [+ [ =L+
0 ) 0 '

‘(4" —1h

By (19) and (23) we get
4*h 9= Ak a-An

L= [ 1fePdc= [ fi0Pd= 3 [ 1hGrdx =

0 n=k g.-2(ns1)

=(1-27) Z2-400gr = (1-2-) 3 (B] ~Bf) =

= c(2) BS = c(A)ade.

To estimate I, we notice that by (35) and (36) we have for every t=2-" l=pn=

=k+1
t+h = 2-4-D,

Therefore for those values of ¢

|.f;)(t+h)_/l.)(t)| = (Qn+Qn—1) = Ch21("+2)(gn+gn—l)'
Now, using (19), (23) and (25) we have

1—h 2-4
L= [ fRG+h-fi0rd=s [ fG+—f0Pd =
(42._1);, 2-Alk+2)
k+1 2 k+1
=23 [ fG+h—-fi@)Frdi =c 3 27" [h2"0+D(g, 4o, )P =
n=1 g-i(n+1) n=1
k+1 k+1
= chP 2 thp—l)n(gn+gn__l)p = ch? 2' zl(p—l)ng'l; =
. n=1 ~ n=0

k41 k+1 .
= ch? 3 2%"(BY—Bli) = ch? 3 2VMBh. =
n=0 n=0

ok+1
=ch? 3 i*P-1BP = ch?(2*+1)YPufusr = col.
i=1 ,
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So Ii+I,=caf., from which (31) follows. (29) follows from the definition of f;.
We obtain (30) by the estimate of 7.

Now let us prove (32). If g=p then the function &, ,; and the sequence
{B,} do not depend on 4, therefore we can use the estimates on p. 61 of [6]. Ac-
cording to this, for N=1, 2, ..., there exists u depending on N such that

(37) (pkk le =c 2 ¢(2")(B2n—B2N+l)+C =

"Mz

n
= D d(2M)gp2-tntD ¢,
k=1

Since by our assumption and (20) the first sum in inequality (37) tends to 1nﬁn1ty
~as N—co, therefore

D(2) 27" ~ oot (o). -

Mu

(38)

it
-

n

On the other hand, by the assumption ¢,.=c¢, we have ®(u)=cP(u). Con-
sequently, since i=1/2 we get :

S D(2") = cd(2™).
Hence by (38) we have

(39) S 0@ g2 = o,
However, B
1 : . g2-An
6[ ILx)Pe (%] dx = ng‘;z-m_[u'lﬁ,l(x)l"d{%] dx =
= S o™ f lfo(0)IP dx = ¢ 2 P27 gr 2,
n=0 a~Aln+1) -
So by (39) .
(40) J iolre (1) dx =

This together with the property ¢(u2)<c<15(u) implies by Lemma 13 of [10] that
Sfo§ LP &(L)y, 45, which proves (32) for g=p.
Let now ¢=>p. Using the assumption - (pkgfcq),‘ ‘we have

[x] Ix)
- Alg/p—1)— : A
&(x) = ’g;k lafp-1-10, Zk %;ﬂk (a/p=1)— 1¢ = cx‘(‘l/P V.
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Therefore

(41) [ 1@+ -2 o(f()) dx = ¢ [ LI e(1fo(x)) dx,

where
0 if x¢[0, 1]
o(x) =19, if x=n
linear on [n,n+1], n=12,..

Using Lemma 2 with a=1-—2A(g/p—1) we have

o

(42) 3 2D (B —Bpi)t =co.

On the other hand

jlfo(x)l"(l’ ( 1) g —_7' . o)l (—)1?] dx =

= c(d) §¢(2"‘)932"" =c(d) ,_Z’1¢2ne,.2"" =

= ¢(h) g (@0 2¥@IP=D (BE, _ BE...JIP = ¢(2) 2': Qan 2M@UP=D (B _ Bon ),

Hence by (42) we get .
J 1 (5] dx =

Therefore again using Lemma 13 of [10] ‘we haye

S 1@l o) dx ==

so, by (41)
fob L3+4(1~q/p) d(L).

This completes the proof of Lemma 3.

Lemma 4 ([7], Theorem 3.1). Let vo—O u=2, n= 1 2, e . Then for ény '
P (F, , ) and 1=p<g<-ec we have

(43) 1 2allg. = entt-¥0CP=2Dp |
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Lemma 5 ([1], Lemma 3.6 and [2] Lemma 4.7). Let 1=p<o.. Suppose that
a function g is absolutely continuous on every finite interval and f:=wg, wg’€ LP, then

C ’
(49) E(Foos )p = i vg’l, (n=1,2,..).

Lemma 6. Let 1=p<c. For any fEL? and —oo<A<B<e we have

(45) E(F,., ), Sc(4, Bk s(f, n~ ), (n=1,2,..)
where w* is defined in (5).

Proof: The existence of w* indeed follows from the following inequalities

w(x) =c(B,d)w(x+h) (—oo<x§‘B)
(46) {w(x) =c(4,0)wlx—h) (4A=x <) (6>0,0<h=0)
Let now

Joi=n~O7MO f = RS

By Minkowskii-inequality we have
B
(f

i, B
=270 [ { [ 1S+ D~ (x=DIPwP(x)dx}P dt = c(4, B 5(f, M),

ife A

241 f UG+ —f(x—1) dt|" dx}‘“’ =
Aql2

Hence, it follows that there exists an A=x,=B such that

ldn| = C.(A, B)w:,B(.f) ’)‘n)p

with
j"l
dy=27 [ U0 +D~f,(x,—D]dr.
a2
Let
< Ay .
;1 [ f,e4ndt if x=x,
. A,/
@a(x) = ot _
2;0 [ fe—ndi+d, if x=>x,.
a2

- Then it is easy to see that 4
n(f;—‘l’n)W"p = C(Ar B)wi.ﬂ(f; A'n)p

lpawl; = (4, B)oi 5(f, ), A7t

and
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Since @, is absolutely continuous on every finite interval, by the last two inequaliti¢s,
using Lemma 6 we get

En(El,v’f)p = 1|(fp—(pn)w"p+En(El,v: (P,,W) =
= ¢(d4, B) 0}, 5(f; L), +c(4, B)4, |lopwl, =

= C(A, B) w:,B(.f’ )‘n)pa
which proves (45).

4. Proofs of the theorems

Proof of Theorem 1. Suppose that
(47) g n(t—-1/u)g/p-1)-1 O, az = oo,

Then by Lemma 3 there exists a function f,€L”[0, 1] satisfying (29)—(32) with

A= 1——(_ 2]

We define

e ) _{dfo(x) wP(x) if x€[0,1] with d = e

if x¢[0, 1),

1
and estimate o 5(f,d), with 4=2, B=3. By A:=1—— we have for 1-h=2-*
T
3 .
L= [1f,Gc+h)—f,(x)IPwP(x)dx =

h 1—h
=c [ Ifi@Pdx+c [ 1fiGx+B) AP dx.

Hence by (30), (31) we get
L(h) =caf if h=2"%k+2 k=12 ...
Therefore by the definition of w* we have
0fs(f,27%),=cox (k=1,2,..),
from which it follows by (45) that

EZ"(EJ.v9f)p = Clgk (k = 1’ 2’ “‘)‘
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Since na,=cma,, for 1=n<m, we obtain"
En(El,u’f)p =ca, n= 1, 2, ),

too. This proves that f¢E(F, ,, a, p).
On'the other hand, since f(x)=f,(x) (x€[0, 1]), by (32) we have

feLqH(l—qlp) &(L).
The proof of Theorem 1 is completed.

Remark-:1. In the proof of Theorem 1 the chosen values of constants 4 and
B in »* indeed are not essential. For any —co<A<B<c by similar method we
can construct a function f such that f¢ L1**(~9P) (L) and

ofs(f,27%), =cagp (k=1,2,..).
Proof of Theorem 2. If ¢,=1.(n=0, 1, ...) then
La+*Q-alp) P, q,;.(L) = ]4,

Therefore the necessary part in Theorem 2 follows from Theorem 1. The sufficient
part is a consequence of the statement summarized in the introduction, since by

1
@)F, isa {N, (1 —_)} _system.
" ”

Proof of Theorem 3. Assume that series (14) is divergent. Then by virtue
of Remark 1, with «,:=Q(n~®~"9), we can construct a function f¢L? such that
fé Lq+l(1—q/p)¢( L) and

o4, 8(fs 2""1’"”"),, = QR0 (k=1,2,..).
Hence by the properties. of the-modulus of 'contint;ity it follows that
o} 3(f,8), = Q) (6=>0).
So, we have feHY ", '

Proof of Theorem 4. The necessary part of Theorem 4 is a consequence
of Theorem 3. The sufficient part follows from Theorem 2 and Lemma 6.

Finally the author would like to thank Professor L. Leindler for pointing
out the problems considered in this paper. I am grateful to Professor J. Szabados
“for his information about the paper of H. N. MHASKAR and E. B. ‘SAFF [7].
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