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A characterization of o-distributive semilattices

J. RACHUNEK

The notion of a distributive ordered set which generalizes the notion of a dis-
tributive lattice is introduced in [3], where there are shown some properties of such
ordered sets. In [2] there are described ordered sets having a similar importance
for distributive ordered sets as the pentagon and the diamond have for distributive
lattices, i.e. on certain conditions they are not included in a distributive ordered set
(e.g. as its strong subset) and each non-distributive ordered set contains at least
one of those sets as an LU-subset. (For the definitions of an LU-subset and a strong
subset see below.) :

The aim of this paper is to describe the semilattices which are distributive
ordered sets.

Let A=(A, =) be an ordered set. If B& A4, then we denote

L,(B) = {xcA4; x = b, for all b¢B},
U,(B) = {ycd4; y=b, for all beB}.

If it is not a danger of misunderstanding, we write also L(B) and U(B) instead of
L,(B) and U,(B). For B={a,, ...,a,} we use also the forms L(B)=L(ay, ..., a,)
and U(B)=Ul(a, ..., a,).

Definition 1. An ordered set A4 is called distributive if°
L(U(L(a, c), L(b,c))) =L({U(a,b),c) for all a,b, ccA.

Remark 1. Itisclear that in any ordered set A4 it holds L(U(L(a, c), L(b, c)))S
‘;L(U (a, b), c) for all a, b,ccA. Hence for the distributivity of an ordered set
it suffices to verify only the identity with the opposite inclusion.

Remark 2. A lattice 4 is distributive if and only if it is a distributive ordered
set. (See [3].) ‘

Received May 20, 1988 and in revised form June 27, 1989.



242 . J. Rachiinek

Recall that a semilattice A=(4, =, V) is called distributive (see [1, p. 135])
if for any a, b, xc¢ A it holds the following condition:

If x=aVb, then there exist a,, b;€ A4, a,=a, b;=b such that x=a,Vb,.

To distinguish two notions of distributivity, a semilattice which is simulta-
neously a distributive ordered set will be called an o-distributive semilattice.

We will show a connection between these notions.

Proposition 1. Every distributive semilattice is o-distributive.

Proof. If A=(4, V) is a semilattice, a, b, c€ 4, then L(U(a, b), c)=L(aVb, c).
Let A be a distributive semilattice, a, b, ¢, x€ A, x=c¢, x=aVb. Then there exist
a,, b€ A, ay=a, by=b such that x=a,Vb,. Let yeU(L(a,c), L(b,c)). Then
a,=y, by=y, hence x=a,Vb,=yp, and therefore L(aVbh, c)SL(U(L(a,c), L(b, c))).
Remark 3. The converse implication is not true. For example, the semi-
lattice A={a, b, c}, where a<c, b<c (see Fig. 1), is o-distributive but it is not

distributive.
c

Fig. 1
Definition 2. a) A subset M of an ordered set A4 is said to be an LU-subset
of A, if for each a, beM:
() Ly(a,b)=¢ ifand only if L,(a,b)=0;
(i) Uyfa,b)=¢@ if and only if U,(a,b)=¢.

b) A subsemilattice M of a semilattice A=(A4, V) which is an LU-subset
of A (i.e. M satisfies the condition (i)) is called an LU-subsemilattice of 4.

Theorem 2. Let a semilattice A=(A,\') do not be o-distributive. Then it
contains an LU-subsemilattice isomorphic to one of the ordered sets M,, My, N3, N,.
(See Fig. 2.)

d d d d
) A\
b c b 2 ¢ ?; -a b c
a
Mp ¢ g My N3 e Ng

Fig. 2



o-distributive semilattices 243

Proof. If a semilattice 4 is not o-distributive, then there exist a,b, c€A
such that

L(U(L(a, ¢), L(b, c))) < L(aVb, c).

I. Let a<c. Then L(U(L(a,c), L(b,c)))=L(U(a, L(b,c))), and thus
L(U(a, L(b, ¢)))cL(aVb,c). Clearly allb, b|c.

_ (a) Firstly let us suppose L(b,c)=¢. Then there exists x€L(aVb,c) such
that x=£a.

(¢) Let x>a. Then aVb=bVx, a\Vb=>b, b|x. From that we also have aVb=>x.
Therefore the set T, ={a, b, x, aV b} is a subsemilattice of A. Furthermore L(a,b)&
SL(b,x)SL(b,c)=, hence T; is an LU-subsemilattice of A isomorphic to M,.

(B) Let x|la. Let us denote T,={a,b, aVx, aVb}. We have aVx=aVb
and a<aVx. Furthermore aVbzx=c. In the case c¢<aVb, we obtain aVb=
=aVx, in the case cllaVh, we have aVx<c, aVx<aVb. Therefore it always
holds aVx<aVb. In addition, we have b<aVb. Let us show that bjaVx. In
fact, if aVx=b, then a-<b, a contradiction, and if b<aVx, then aVb=aVx,
a contradiction, too. .

Therefore T, is a subsemilattice of 4, and because L(a,b)SL(b,aVx)C
CL(b,c)=@, T,is an LU-subsemilattice of 4 isomorphic to M,.

(b) Let now L(b, ¢)> @ and let v€ L(b, ¢). Since L(U(a, L(b, c)))cL(aVb,c),
there exist x€L(aVb, c), yeU(a, L(b, ¢)) such that xz%y.

(@) Let x>y. Let us denote T;={b,x,y,v, aVb}. Then from a<x we
obtain aVb=xVb, and since evidently xVb=aVb, we have yVb=aVb. Further
it is clear that v<b and v<y. Since c||b, we have x<aVb. If b=x, then b=a,
and if b=x, then x=aVbh, hence it must hold b||x. Analogously we can prove
b|ly. But this means that T; is an LU-subsemilattice of 4 isomorphic to M,.

(B) Let x||y. Let us denote T,={b, aVv, xVaVv, v, aVb}. Since v<b,
x=aVb and a<b, we have xVaVv=aVbh. Let us suppose xVaVv=aVb.
Then xVaVv=b, hence cVxVaVv=bVe. But cVxVaVv=c, therefore c=b,
a contradiction. Thus it must be xVaVv<aVb.

Since x||y, we obtain x%xaVv, hence xVaVv=aVv, and so aVv<xVaVv.
Further it is evident that v<aVv, v<b, b<aVb. At the same time, if b=aVv,
then bz=ga, and if b=aVv, then b=c, a contradiction. Thus bjjaVv. Similarly
xVaV|b.

Therefore T, is an LU-subsemilattice of 4 isomorphic to M,.

II. Now, we shall observe the case allc. It is evident that then afjb and c¢£b.
We can suppose b|c, otherwise we would obtain the same results as for the case I.

(a) First let us suppose aVb<aVbVe, aVe<aVbVc, bVe<a\VbVec.

(«) Let L(a,b)=L(a,c)=L(b,c)=g. Then L(U(L(a,c), L(b, c)))=@, but
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L(aVbh,c)#@. Let xcL(aVb,c). Then R,={x,aVb,aVe,bVc,aVbVc} is an
LU-subsemilattice of 4 isomorphic to Nj.

B) If eg. L(a,b)# @, deL(a,b), then R,={d,aVb,aVe,bVc,aVbVc} is
an LU-subsemilattice of A4 isomorphic to N,.

(b) Let aVb=aVbVc, aVc<aVb, bNc=<aVb.

(@) Let L(a,b)=L(a,c)=L(b,c)=@. If L(aVe,b)=g, then R;={a,b,
aVec, aVb}is an LU-subsemilattice of 4 isomorphic to M,.

If L(aVe,b)= g, deL(aVe,b), then R,={d,b,aVc,bVc,aVb} is an LU-
subsemilattice of 4 isomorphic to M,.

B) If L(a,b)= @, ecL(a,b), then R;={e, b,aVc, bV, aVb} is an LU-sub-
semilattice of 4 isomorphic to M,.

(y) If e.g. L(a,0)# @, feL(a,c), then Ry={f,a,aVc,bVc,aVb} is an LU-
subsemilattice of A isomorphic to M.

-(¢) Let us suppose aVb=aVc=aVbVc, bVc<aVb.

() Let L{a,b)=L(a,c)=L(b,0)=g. If L{a,bVc)=¢, then R,={a,b,
bVe, aVb}is an LU-subsemilattice of A4 isomorphic to Af,.

Let L(a,bVc)=@, gcL(a,bVc). Then L(b,g)=L(c,g)=@. If bVg=
=cVg=bVec, then Ry={b,g,c, bVc} is an LU-subsemilattice of 4 isomorphic
to N;. If bVg<bVe, then R,={g,bVg, bVc,aVb,a} is an LU-subsemilattice
of A isomorphic to M,.

(B) Let L(a,b)»=@, heéL(a,b). Then Ry,,=4{h,b,bVc,ayb,a} is an LU-
subsemilattice of A isomorphic to M,. (Similarly for L(a,c)#= &)

(v) Let L(a,b)=L(a,c)=@, L(b,c)#g. If L(a,bVc)=g, then R, is an
LU-subsemilattice of A. Suppose L(a,bVec)s= &, g€L(b,c), heL(a,bVc). We
have hVg#£b, hVg=xc, hNg=bVe. Let b<hVg. If hVg<bVc, then Ry, =
={h, hVg, bVc, aVb, a} is an LU subsemilattice of 4 isomorphic to M,. If hVg=
=bVe, then Ry,={g, h,b,bVc} is an LU-subsemilattice of A4 isomorphic to A,.
(For c¢<hVg, we can prove similarly.)

Let bl|lhVg, cl|hVg. If bVRVg=bVc and c¢VhVg=bVc, then R, ;=
={h, b, hN g, ¢, bV ¢} is an LU-subsemilattice of A isomorphic to N,. If bVAVg<
<bVe or ¢VhVg<bVe, respectively, then Ry,={h, c,b, bVhVg, bVc} or Ry;=
={h,b,c,cVhVg,bVec}, respectively, is an LU-subsemilattice of A isomorphic
to M,.

(d) The case aVe=bVc=aVbVe, aVb<aVc can be proved analogously as
the case (c). '

(e) Let us suppose aVb=aVc=bVc=aVbVc.

(o) ¥ L(a,b)=L(a,c)=L(b,c)=@, then Ry={a,b,c,aVbVc} is an LU-
subsemilattice of 4 isomorphic to Nj.

(B) Let e.g. L(a,b)= @, deL(a,b). If dVc<aVbVe, then Ry,={d,a,b,dVc,
aVbVc}is an LU-subsemilattice of 4 isomorphic to Nj.
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Let dVe=aVbVe and let L(b,c)=@ or L(a,c)=, respectively. Then
Ryg={d, b,c,aVbVc} or Ryy={d,a,c,aVbVc}, respectively, is an LU-subsemi-
lattice of A4 isomorphic to M.

Finally, let us observe the case L(a,b)=@, L(a,c)=J, L(b,c)=@. Let
deL(a, b), ecL(a, c), feL(b,c). If eg. L(e,f)#Q, gcL(e, f), then Ry,={g, a,
b, ¢, aVbVc} is an LU-subsemilattice of 4 isomorphic to N,. Hence, let L(d, &)=
Ld,f)=L(e,f)=¢. Since L(aVh,c)=L(c), it exists (by the assumption) an
element x€U(L(a, ¢), L(b, ¢)) such that c¢=%x. For x we have x=e, x=f, thus
it must be ¢>eVf. If now aVf>c, then Ry={e,a,eVf, c,aVf} is an LU-sub-
semilattice of 4 isomorphic to M,.

Let aVflle. If aVf>a, then Ry, ={e,a,aVf,c,aVbVc} is an LU-subsemi-
lattice of A4 isomorphic to M,. If aVf=a, then Ryp={f,a,b,c,aVbVc} is an
LU-subsemilattice of 4 isomorphic to N,.

All remaining possibilities of the connections among a, b, ¢ would lead to
some variants of the preceding cases only.

Remark 4. In[2]itis proved for any ordered set A4 that if 4 is non-distributive,
then it contains an LU-subset isomorphic to some of ordered sets M;, M,, M,,
My, M;, Mg, Ny, Ny, N3, Ny, N;. (See Fig. 2 and 3.)

But for the case of semilattices, the constructions of respective LU-subsets
from [2] do not lead to subsemilattices.
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Definition 3. A subset M of an ordered set A4 is called strong if for any
a,bc M it holds:

() LA(UM(aa b)) = LA(UA(a: b));
(i) Us(Ly(a, b)) = U, (Ly(a, b)).

In [2] it is shown that if M is a strong subset of 4 such that U,(a, b)> {1}
and L,(a, b)>{0} (where 1 or 0 denotes the greatest or the least element of A,
respectively — if they exist), then M is an LU-subset of 4. Furthermore, any strong
subset of an ordered set 4 which is a semilattice with respect to the mduced order,
is a subsemilattice of A4.

Therefore, the following theorem is similar to the converse of Theorem 2.

Theorem 3. If a semilattice A=(A, V) contains an LU-subsemilattice iso-
morphic to M, or to N,, respectively, or if it contains a strong subsemilattice iso-
morphic to M, or to Nd, respectively, then A is non-o-distributive (and so non-dis-
tributive, too). :

Proof. The assertion follows from [2, Theorems 4 and 7]. It is clear that the
non-distributivity of 4 for the cases of the strong subsemilattices M, and M, also
directly follows from the fact that A is not (in those cases) lower directed.
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