Èrrâtủm to "On a geömetric problem concerning discs"

A. P. BOSZNAY and B. M. GARAY

As Professor Shlomo Reisner (Haifa) has kindly pointed out to us, the equality in our paper [1, lines 8-9 on page 327] is incorrect. Unfortunately, this computational error requires that - keeping the idea of the original argumentation unchanged the second part of the verification of formula (1) in [1] should be rewritten.

In particular, lines $23-24$ on p. 326 and lines $1-20$ on p. 327 are to be replaced by the following:
"Given $w \in \mathbf{R}^{n}$ arbitrarily, there is a uniquely deffined onto projection \dot{P}_{w} : $\mathbf{R}^{n} \oplus \mathbf{R} \rightarrow \mathbf{R}^{n}$ with Ker $\dot{P}_{w}=\{\lambda(w, 1) \mid \lambda \in \mathbf{R}\}$. Define

$$
\begin{gathered}
\Gamma^{\prime}(w)=\inf \left\{\gamma>0 \mid\|(x, \gamma)\|=1,\left\|P_{w}(x, \gamma)\right\| \geqq 1+\delta_{0}\right\}, \\
\Gamma_{0}=\inf \{\Gamma(w)| | w \mid \leqq 1\} .
\end{gathered}
$$

By elementary compactness arguments, $\Gamma_{0}>0$. Similarily, there exists a constant $K>0$ such that $\left\|\dot{P}_{w}(x, \gamma)\right\| \leqq K$ whenever $\|(x, \gamma)\|=1$, $|w| \leqq 1$.

Suppose now that $\alpha<\Gamma_{0} / K$ and choose $y \in \mathbf{R}^{n},|y| \leqq \alpha$ arbitrarily.
For brevity, we write $\hat{P}=\dot{P}_{y / \alpha}$. By (c), there exist a '(not necessarily uniquiuely determined) $x=\dot{x}^{\prime}(y) \in \mathbf{R}^{n}$ and a (not necessarily uniquely determined) $c=c(y) \in \mathbf{R}$, $c>0$ such that

$$
\begin{equation*}
\left\|^{\prime}(x, \alpha c)^{\prime}\right\|=1 \quad \text { and }\left\|P^{\prime}(x, \alpha c)\right\| \geqq 1+\delta_{0} . \tag{2}
\end{equation*}
$$

Clearly we have $P(x, \alpha c)^{\prime}\left(x-c y^{\prime}, 0\right)$, so

$$
\begin{equation*}
' K \geqq\|(x-c y, 0)\|=|x-c y| \geqq 1+\delta_{0} . \tag{3}
\end{equation*}
$$

Since $\dot{\alpha}_{c} \geqq F_{0}$ and $\alpha<\Gamma_{0} / K$, there holds

$$
\begin{equation*}
c>\dot{K} . \tag{4}
\end{equation*}
$$

For $z=-\frac{x-c y}{|x-c y|}$ we have that $|z|=1$ ahd that

$$
\begin{gathered}
d_{\alpha}(z, y)=\left\|h_{\alpha}(z)-h_{\alpha}^{\prime}(y)\right\|=\left\|\left(-\frac{x-c \dot{y}}{|x-c y|}, 0\right)-(y, \alpha)\right\|= \\
\left.=\left\|-\frac{1}{c}(x, \alpha c)+\frac{c-|\dot{x}-c y|}{c}\left(-\frac{x-c y}{|x-c \dot{y}|}, 0\right)\right\|\left|\leqq c^{-1}+\varepsilon^{-1}\right| c-|\dot{x}-c y| \right\rvert\, .
\end{gathered}
$$

In virtue of (3) and (4), we obtain that

$$
\begin{gathered}
c^{-1}+c^{-1}|c-|x-c y||=c^{-1}+c^{-1}(c-|x-c y|)= \\
=1-c^{-1}(|x-c y|-1) \leqq 1-c^{-1} \delta_{0}
\end{gathered}
$$

so

$$
\begin{equation*}
d_{a}(z, y)<1 \text { provided that } \alpha<\Gamma_{v} / K . \tag{5}
\end{equation*}
$$

Since $|z|=1$, (1) is a trivial consequence of (5)".
Since the error in lines 8-9 on p. 327 has no effect on other parts of our original paper, it means that (to the best of our knowledge) all statements and examples of [1] are correct.

Further, lines $2-3$ on p. 329 are to be replaced by the following "Given $\varepsilon>0$ arbitrarily, (as a simple consequence of [2, Cor. 1]) there exist examples d with

$$
\sup _{y \in B_{x}(0,1)} \inf _{x \in S_{x}(0,1)} d(y, x)<\varepsilon, "
$$

We apologize for the mistakes.

References

[1] A. P. Bosznay and B. M. Garay, On a geometric problem concerning discs, Acta Sci. Math., 52 (1988), 325-329.
[2]. W. H. Cutler, Negligible subsets of infinite-dimensional Fréchet manifolds, Proc. Amer. Math. Soc., 23 (1969), 668-675.

