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State extensions in transformation group C*-algebras 

SHINZÓ KAWAMURA, HIDEO TAKEMOTO and JUN TOMIYAMA 

Introduction. Let X be a compact (Hausdorff) space and G a discrete group 
acting on X as homeomorphisms: x-+t(x), (x£X, t£G). Throughout this paper we 
denote by A the C*-crossed product associated with the topological dynamics (G, X). 
Our purpose is to study state extensions in A. Since G is discrete, the algebra C(X) 
of all continuous functions on Xis regarded as a C*-subalgebra of A and the restric-
tion of a state of A is a state of C(X) again. We are interested in the correspondence 
of the family of states of C(X) with that of A. So we study how to extend a state 
/i ofC(A-) to a state or a tracial state of A. Of course n is identified with a probability 
measure (throughout this paper, a measure means a Borel measure, which is always 
regular on the compact space X). Ultimately we get an equivalent condition for a 
probability measure and a G-invariant probability measure on X to be uniquely ex-
tended to a state and a tracial state of A respectively. 

In Section 1, we prove that a probability measure n on X has a unique state 
extension if and only if the measure fi(t( •)) is singular with repect to /i for all t in G 
except t=e. In Section 2, we prove that a G-invariant probability measure fi on X 
has a unique tracial state extension if and only if n(X')=0 for all t in G except 
t=e, where X' is the set of fixed points of X for t. In the theory of C*-algebras, the 
unique tracial state plays an important role (cf. [6], [7]). Hence it seems to be inter-
esting to consider the condition on (G • X) under which A has a unique tracial state. 
Those conditions are given as an application of our second result. 

Notation. For a topological dynamics (G,X), we use s,t,u,m,n,e (= the 
identity) and x, y as elements of G and X respectively. We denote by Gx the isotropy 
group for x and X' the set of fixed points for t, i.e., Gx={t£G: /(*)=*} and X'= 

?(*)=*}. The algebra C(X) is the abelian C*-algebra with supremum norm 
and *-operation: f*(x) =f(x), where the bar means complex conjugate. We denote 
by a, the canonical *-automorphim of C(X) induced by the action of t in G, i.e., 
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a,if)(x)=f{t~1(x)) f o r / i n C(X). Let K(G, C(X)) be the set of those functions of 
G into C(X) which vanish outside finitely many elements. For t in G and / in C(X), 

Jbt means the function in K(G,C(X)) defined by ( /5 , ) ( / )=/ and (fS,)(s)=0 for 
s ^ t . Then every function <P in K(G, C(X)) is of the form: <P = 2ft&n where F is 

a finite subset of G. We consider K(G, C(X)) as a dense *-suba!gebra of A by defining 
^-operation and multiplication as follows; ( 2 /,5,)*= 2 a

(-«(/)^<-i and 

(Z fA)( 2 &«.)= 2 2 Mgs)s,s-
For a measure no n X the topological support S(fi) of n means the smallest 

closed subset such that n ( f ) =0 f o r / i n C(X) with supp (f)aX-S(ji). Given a 
family e c measures, we denote by iA=© jU, the linear functional on 

K{G, C(X)) defined by 
H2fA)= 2 Mf,)-

tiF r € F 

Since G is discrete, if i¡/ is positive definite then it is transform bounded on K(G, C(X)) 
in the sense of [3]. Hence ip can be extended to a state of A, which is denoted by \j/ 
again. 

The action of G on X determines, addition to {a,}, a canonical transformation 
group on the state space of C(X). Those are denoted by for a state fi on C(X), 
i.e., P,(fi)(f)=fi(<xt-i(f)) f o r / i n C(X), which is regarded as a measure on Xdefined 
by P,(fi)(E)=fi(t-i(E)) for each Borel set E in X. 

1. State extensions. Let ip be a state of A. For each element t in G, let fi, denote 
the bounded linear functional of C(X) defined by ,) f o r / i n C(X). 
Then it follows that ^ = © fit. 

t£G 

Propos i t ion 1.1. Let ij/= © p, be a state of A. Then has the following 

properties: 
(1) ¡xe is a probability measure on X, 
(2) n, is absolutely continuous with respect to pe and P,(fie), and S(n,)(zS(ne)r\ 

t(S(fie)), 

<3) l iMf )=H<HJ) ) -
Proof . (1) is trivial. 
(2) By the Cauchy—Schwarz inequality, we have, for / in C(X), 

(a) l/U/)|2 = I WW* S iA(<5(-i<5,)iA(/<5e/<5J = ne(\f\2) 
and 

(b) k ( / ) l 2 = l>KA)l2 = ^(¿t«,-i(/)<5e)|2 S ^(a,-.(/M-i(/)<5e)«K<5e) = 



State extensions 193 

By inequality (a) and the regularity of ¿u and n,, we have that fi, is absolutely conti-
nuous with respect to fie and S(fx,)czS(ne). For / in C(X) with s u p p ( f ) < z X — 
-t(S(ne)), it follows that supp (a, . i(/)) = i-1(supp ( / ) )c : / - 1 ( ; r - r ( supp (A,e))= 
= X—supp (fte). By inequality (b), we have that fx, is absolutely continuous with 
respect to and S(p,)czt(S(fxc)). 

(3) Let <P= £ f,d, be in K(G,C(X)), where F={t1, Q. Then 
t £ F 

ijj(&*$)= 2 f*t-'s(at-l(ftfs))—Given each set of complex numbers {A,}"=1, 
t , s£F 

setting X,ft in place of ft., we have 

i,j = 1 
This means that the nXn matrix (/¿,-t¡fat,-1 (Jt/t)))ij i s positive. Hence 
fit- ,s(ce,-i(I,/J)=(Is/,))- Putting and ft=1, fe=at{f), we have 

Let ¡J. be a probability measure on X and e the conditional expectation of A onto 
C(X). Let ju(=/ioe) denote the canonical state extension of ¡i. In order to find a 
condition under which p. is the unique state extension, we consider the possibility of 
existence of another extension of 

Given a measure ¡ion X and a characteristic function /_E of a Borel set E in X, 
we define a measure y_En on X by 

XEH(J) = f / d f i for / in C(X) (= n(y.Ef)).~ 
E 

Then we have 

xEpt(n)(f)= f f{t(x))dn (= M(z.-.(£>«t-iC/))), 
t-HE) 

and it is easy to see that S(xEP,(n))=Ef)t(S(n)), where E is the closure of ¿J in X. 
For / in G, let P,(p)=P,(iJ.)a+Pt(fi)s be the Lebesgue decomposition of the 

positive measure P,(p.) with respect to fi. Namely there exists a measurable subset C, 
of X satisfying the condition: n(X—C,)=0 and, for each Borel set E in X with 
EcC„ 

P,(li)(E) = P,(n).(E) = Jk,(x)dfi, 
E 

where k, is the Radon—Nikodym derivative of P ,((*)„ with respect to \i. Let £>,= 
= {xeC,: k,(x)>0}, E,={x£Ct\ k,(x)^ 1} and F,={x£C,\ Since 
A;(.1(A-)=l/fc((?(x)) for x in D„ it follows that t~1(Dt)=Dt.1, i " 1 (£ ' ( )=F t . l 

and t~1(F,)=Et.l. Using those facts we prove the following proposition, and 
applying it we show a characterization for fi to have a unique state extension. 

13 



194 S. Kawamura,.H. Takemoto, J. Tomiyaraa 

P r o p o s i t i o n 1.2. Let ¡i be apositive measure on X. For a fixed t in G, let {/¿3}j€G 

be the family of measures on X defined as follows: 

(1) In case let pe=n, (i,=XEtpfc and p,=0 

for s${e,t, r1}, 

(2 ) /« case <=r\ let ne=n, ^ = + ^ for 

si {e, t}. 

Then (& is positive definite. 
a£G 

Proof . It is sufficient to prove the statement only in the case of (1). Let 4>= 
= 2 fmK be in K(G, C ( 4 Then we have 

mtF 

= 2Ai(2«--(/-/-))+ft( 2 *m-i(Lf„))+>!,A 2 «„-,(/„/„)). 
m€F m~1n=t m-1n=t~1 

The second term of the right hand side = f 2 /m (>"(*))/• (>«(*)) dp. 
£t m->n=t 

The third term = 2 («*-.(/,,/,)) = 

= / 2 *,*m-ALfn)dii= f 2 <*n-i(Lfn)dn = 
1) m - 1 " = < - 1 E t 

= f 2 fm{n{x))fn{n(x))^ = / 2 fn{m(x))fm{m(x))dp. 
E m-'n=t~I

 F m~'n—t E, m "=• E, 

If m~1n=t, since for JC in F t_,, we have 

f *n-i{JJn)dn ^ f «„-,(/Jn)kt-, dp = J «„-,(/„ftdp^ilt). = 
F,-. F,-i 

= /«*->(/,,/„)<%->(/*)= / «,(«n-*(Lfn))dp= f ztn-.{Jn/„)dp = 
rt-1 f(F,-i) £, 

= J fn{m(x))fn(m(x))dp. 
E, E, 

Hence, the first term s 2 ( f«n,-^LfJdfi+ f <*„-,(Jnf„)dp) s 

E m~'n=t. 
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Therefore it follows that 

2il/(4>*4>) ^ f % (fm{m(x))fm(m(x)) +fm(m(x))fn{m(x))+ 
B~ m-'n=i 

= f 2 (fJm(x))+fn(>n(x)Wm(™(x))+f„(m(x)))dti ^ 0. 
¿j m~1n=t 

Theorem 1.3. Let p be a probability measure on X. Then p has a unique state 
extension if and only if P,(n) is singular with respect to p. for all t in G except t=e. 

Proof . Let \]/= © /1, be a state extension of fi. By (2) of Proposition 1.1, each 
<€G 

PI, is absolutely continuous with respect to FIE=FI and P,(N). Hence the assumption 
on {/?,(aO}Kc implies that fi,=0 for all t^e. 

Next suppose that /?,(/i) is not singular with respect to ft for some t^e. Set 
ij/=(\j/,+\l/t.l)/2, where ip, and ipt-i are the states constructed in the above propo-
sition corresponding to / and i - 1 respectively. If n(E,)=0, then /¿(F,)>0, whereas 
we have 

/'№-.) = n(rl(F<)) = AG0.(>?) = f k,(x) dp > 0. 

Hence ^ is a state extension of fi, which is different from fi=pos. 
In the following, we give an example of a state of C(X) which has a unique state 

extension and whose topological support is the full space X. 

Example 1.4. Let Re be an irrational rotation on the unit circle [0,1). Let 
WnLi be ^ e set of all rational numbers in [0,1). We define a probability measure 
PQ on [0, 1) by HQ(E)= 2 1/2" for E<Z[0,1). Then {P„(FIQ)UZ are mutually 

singular and S(P„(fiQ))=[0,1) for all n in Z. Namely pQ has a unique state exten-
sion but S(P„(fiQ)) is the full space. 

The theorem mentioned above gives a characterization for the pure state p{x) 

of C(X) to have a unique pure state extension. Namely we have the following. 

Coro l la ry 1.4. Let be the Dirac measure on a point x of X. Then ft{xj has a 
unique (pure) state extension if and only if Gx={e). 

Here we note that this result can be derived by Lemmas 4.19, 4.22 and 4.25 of 
[3]. (Though the second countability on G and X was assumed in [3], the proofs of 
these lemmas are still available here.) 

Moreover ANDERSON [1] has given an equivalent condition for a pure state to 
have a unique pure state extension in a more general case. He proved that for any C*-
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subalgebra D of a C*-algebra C, a pure state pofD has a unique pure state extension 
to C if and only if C is £>-compressible modulo n, i.e., 

M{ycd-e\\\ d£D,Ó S d^ 1, p(d) = 1, e£D) = 0 

for each c in C. Of course, in our case, this condition on p(xi is equivalent to Gx={e). 
In the case of state extension, Example 1.4 shows that the condition mentioned above 
is merely a sufficient condition for p to have a unique state extension. In fact, since 
the identity is the only element in C(X) with pQ(d)=1, O s d s l , we have \\dcd—e\\ = 
= | | c - e | | s d i s t ( c , C ( * ) ) > 0 for c$C(X). 

As a matter of course, it is interesting to study representations of A associated 
with states extended from //{x}. Those are discussed in [4]. 

2. Tracial state extensions. Let p be a G-invariant probability measure on X 
and [¡/ = 0 n¡ an extension of p.. We show a necessary and sufficient condition for p 

FGG 
to have a unique tracial state extension. First we consider the condition on 4>= (¡B p, 

tiG 
under which \J/ is a tracial state. 

P ropos i t i on 2.1. Let p, be a state extension of a probability measure 
T€G 

p on X. Then \J/ is a tracial state of A if and only if 6G satisfies the following two 
conditions: 

(1) S(,pt)aX' for all t in G, 

(2) f°r al1 s and t in G. 

Proof . Suppose that ^ is a tracial state. Then f o r / a n d g in C(X), we have 

(*) ^(fas(g)) = Hf«s(g)Sst) = = MgStf$s) = t(gxt(f)Sts) = pts(ga,(f)) 
Putting s=e in (*) , we have p,(fg)=pt(gat(f))- If x$Xt, then there exists a 
neighbourhood U of x such that UC\t~1(U)=Q. For any non-negative real-valued 
continuous function / on X with s u p p ( f ) a U , we have /* , ( / )= /* , ( ! / / / / )= 
=/¿ , ( | / /a ( ( / / ) )=() . Thus S(pt)czX'. Next, put t=us~1 and g= 1 in (* ) . Then 
we have 

/W>(/) = -•(/)) = ff(su~l(x)) dpu = Jf(s(x))dpu = 

xu x" 

= = &<>„)(/)• 

Conversely we suppose that {^(}l€G satisfies the conditions. Then we have 

= ¡}t->Mf*s(g)) = PtsW)«,Ag)) ="\ 

= ff{r1(x))g((tsri(x))d^= ff(t-1(x))g(x))dpts = pts(a,(f)g). X" 
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This implies that \p (fSsgS,)=\j/ (gS,fSs). By the linearity and the continuity of \j/, 
<?)=,/,(«?.<*>) for every $ and !P in A. 

Given a state \p= © p„ in many cases it is easy to check whether the family 
<ec . 

{//,},eG satisfies or not the conditions of the above proposition. However, given a 
family {/i,},ec of measures on X, it is not easy to see whether </ '=©// , is positive (gG 
definite or not. Here we give a systematic construction of a (tracial) state extension. 
We denote by H(G) the family of subgroups of G. Let J be a map of X into H(G). 
We put X'j = {x£X: 7(x)—/} and denote by yt the characteristic function of Xj. 
When X'j is a measurable set, is the measure on on X defined by y,n(f) = 
= J fdn= J fXtdn for / in C(X). 

X'j X 

Propos i t i on 2.2. Let J be a map of X into H(G) with the properties: (1) XJ 
is a Borel set for all t in G, and (2) J{x)czGx for all x in X. Let fi be a probability 
measure on X and //,=/,/! for each t in G. Then i]/= © p, is positive definite. In 

tiG 
addition, if p is G-invariant and (3) J(t(x))=tJ(x)t~1 for all t in G, then \]/ is a tra-
cial state. 

Proof . Let <£= 2 f A be in K(G, C(X)), where F is a finite subset of G. 
tiF 

In case t~*s is in J(x)czGx, s(x)=t(x). Thus we have 

= *l>(2 <5,-//A) = H 2 = 
t,s(F t,s£F 

= 2 fMi(x))fs(t(x))x,-H(x)dfi = 
UsiF £ 

= f 2 f,(t(x))f(s(x))z,-is(x)dn- > 
X t,s£F 

For x in X, let F=F 1 U. . .UF„ be the disjoint partition of Fcorresponding to the 
equivalent relation determined by the subgroup J(x) of G, i.e., t and s belong to the 
same F, if and only if t~1s£j(x). Then we have 

2 f,{t(x))fs(s(x))x,-.(*) = 2 2 /<(<(*))fs{Hx)) = 

s,(€F i=l s,t(zFt 

i = l I £Ft 

Hence is the integral of the non-negative function on X, so it follows that 
\1/(<P*<P)^ 0. 
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Next we assume the additional condition. Then we have s(XJ)=X}"~' for all j 
and / in G. By the G-invariance of n, we get the following; f o r / i n C(X), 

P.QhKf) = /i,(«s-(/)) = f/(s(x)) dp = f f ( y ) dn = 
XJ XS}'-1 

Since S(p,)czX' by Condition (2), Proposition 2.1 implies that \J/ is a tracial state. 
In the following, we show several examples of J, ¡i and ^ treated in Proposition 

2.2. 

Example 2.3. Let J(x)={e) for all x in X. Then XJ=X and XJ=0 for aU 
t^e. Hence i]/=ji for each positive measure n on X. 

Example 2.4. Let x be a point of Xaadp=p{xi. Let J(x)=Gx and J(y) = {e} 
for y^x. Then * j={x} for t(^e)£Gx and XJ=0 for t$Gx. Then ij/= © fi, 

t€Gx 

is a pure state extension of (cf. Section 1). 

Example 2.5. Let X consist of a single point {x} and / ( x ) = / / for a (resp. 
normal) subgroup H of G. Then X*=X for t£H and * J = 0 for t^H. Since A 
is regarded as the group C*-algebra C*(G), i¡/ becomes a (resp. tracial) state of 
C*(G) with the property iA($)= 2 f o r ^l1(G)cC*(G). In the case 

<€H 
H={e), i¡/ is the conditional expectation e. On the other hand, when H=G, \j/ 
is a multiplicative linear functional of A, i.e., it is the trivial representation of C*(G). 

Example 2.5 gives two typical tracial states of C*(G). However, in contrast to 
C*(G), the reduced C*-algebra C*(G) does not necessarily have two tracial states. 
In fact, Powers [10] has shown that the conditional expectation is the unique tracial 
state of C*(F2) by using his result that C*(F2) is simple. 

Example 2.6. Let J(x)=Gx for each x in X. Then we have XJ—X'. Thus, if 
p is a probability measure then © %xtp is a state extension of p. In addition, 

»€G 
if p. is G-invariant then Hence, by Proposition 2.1, ^ is a tracial 
state. 

We get the following theorem by Proposition 2.1 and Example 2.6. 

Theo rem 2.7. Let p be a G-invariant probability measure on X. Then n has a 
unique tracial state extension if and only if p(X')=0 for all t except t=e. 

Coro l l a ry 2.8. The C *-crossed product A has a unique tracial state if and only if 
there exists exactly one G-invariant probability measure on X and p(Xty—Q for all t 
except t=e. 
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The standard theory of topological dynamics (cf. Chapter II of [2]) shows that 
the two conditions on (G, X) in Corollary 2.8 are independent. Now, in the theory of 
C*-algebras, faithful tracial states such as the unique tracial state of C*(F^ have 
played an especially important role. Thus we consider faithfulness of tracial state 
extensions. In general, = © in Proposition 2.2 is not necessarily faithful. In 

»ec 
fact the canonical homomorphism of C*(G) (cf. Example 2.5) is not faithful. Here let 
us assume that G is amenable. Let n be a CP-invariant faithful measure on X. Then 
the tracial state extension fi=(ioe is faithful because the GNS representation of A 
by p. is nothing but the C*-reduced crossed product on the Hilbert space /2(G)<g> 
L2(X,fi), which is isomorphic to A (Theorem 7.7.7 of [5]). For p, and 

tZG 
l>co>0, let {¡/a=ojp.+(l —co)\l/. Then i]/m is a tracial state extension of p and 
aji^ip,,. Therefore i¡/a is faithful on A. Then we get the following. 

Coro l l a ry 2.9. Suppose that G is amenable. Then A has a faithful unique tracial 
state if and only if there is exactly one G-invariant measure p on X, which satisfies 
the properties: (I) S(p)=X and (2) p(X')=0 for all t except t=e. 

If the support of the unique G-invariant measure is X, then (G, X) is minimal 
(cf. Chapter II (Exercise 7) of [2]). In addition, if G is abelian, X'=0 since X' is 
G-invariant. Then we have the following. 

Coro l l a ry 2.10. Suppose that G is abelian. Then A has a faithful unique tracial 
state if and only if there is exactly one G-invariant measure on X with S(p) = X. 

We note that the unique tracial state of the rotation C*-algebra is a prototype of 
Corollary 2.10 and a motivation of our discussion. 
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