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State extensions in transformation 'group C*-algebras

SHINZO KAWAMURA, HIDEO TAKEMOTO and- JUN TOMIYAMA

Introduction. Let X be a compact (Hausdorff) space and G a discrete group
acting on X as homeomorphisms: x-#(x), (x€X, t€G). Throughout this paper we
denote by A the C*-crossed product associated with the topological dynamics (G, X).
Our purpose is to study state extensions in A. Since G is discrete, the algebra C(X)
of all continuous functions on X is regarded as a C*-subalgebra of 4 and the restric-
tion of a state of A is a state of C(X) again. We are interested in the correspondence
of the family of states of C(X) with that of 4. So we study how to extend a state
pof C(X) to a state or a tracial state of 4. Of course p is identified with a probability
measure (throughout this paper, a measure means a Borel measure, which is always
regular on the compact space X). Ultimately we get an equivalent condition for a
probability measure and a G-invariant probability measure on X to be uniquely ex-
tended to a state and a tracial state of ‘4 respectively.. '

In Section 1, we prove that a probability measure ¢ on X has a unique state
extension if and only if the measure p(¢(-)) is singular with repect to  for all ¢in G
except z=e. In Section 2, we prove that a G-invariant probability measure u on X
has a unique tracial state extension if and only if u(X*)=0 for all ¢ in G except
t=e, where X' is the set of fixed points of X for ¢. In the theory of C*-algebras, the
unique tracial state plays an important rdle (cf. [6], [7]). Hence it seems to be inter-
esting to consider the condition on (G - X) under which A has a unique tracial state.
Those conditions are given as an application of our second result.

Notation. For a topological dynamics (G, X), we use s, t,u,m n,e (=the
identity) and x, y as elements of G and X respectively. We denote by G, the isotropy
group for x and X* the set of fixed points for ¢, ie., G,={1€G: t(x)=x} and X*=
={x€X: t(x)=x}. The algebra C(X)is the abelian C*-algebra with supremum norm
and *-operation: f*(x) =f_(_x), " where the bar means complex conjugate. We denote
by a, the canonical *-automorphim of C(X) induced by the action of ¢ in G, i.e.,
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a,(F)X)=f(t"1(x)) for fin C(X). Let K(G, C(X)) be the set of those functions of
G into C(X) which vanish outside finitely many elements. For ¢ in G and fin C (X)),
/3, means the function in K(G, C(X)) defined by (f3)(¢)=/f and (f3)(s)=0 for
s#t. Then every function @ in K(G, C(X))is of the form: ¢= 'GZ'F f.6,, where Fis

a finite subset of G. We consider K(G, C(X)) as a dense *-subalgebra of 4 by defining
*-operation and multiplication as follows; (3 £,6)*= 3 «,..(f)8,., and
: : teF teF

(2 .fl(st)(z gsas)= 2 2 f;at(gs)(sls'
tEFy s€Fg teFyseFy .

For a measure u on X the topological support S(u) of u means the smallest
closed subset such that u(f)=0 for fin C(X) with supp (/)cX—-S(u). Given a
family {u},c¢ of measures, we denote by Y= u, the linear functional on

teG

K(G,C(X)) defined by
l//(’é' ﬁ(st) = 'é w(fo)-

Since G is discrete, if  is positive definite then it is transform bounded on K(G, C(X))
in the sense of [3]. Hence  can be extended to a state of 4, which is denoted by
again. V '

The action of G on X determines, addition to {«,}, a canonical transformation
group on the state space of C(X). Those are denoted by B.(u) for astate u on C(X),
ie., B(w)()=p(a,-1(f)) for fin C(X), which is regarded as a measure on X defined
by B(u)(E)=pu(t~(E)) for each Borel set E in X.

1. State extensions. Let i be a state of 4. For each element ¢ in G, let g, denote
the bounded linear functional of C(X) defined by u,(f)=y¥(f8,) for fin C(X).
Then it follows that Y=@ p,.
teG

Proposition 1.1. Let y= & p, be a state of A. Then {u} has the following
teG

Dproperties:
(1) p, is a probability measure on X,
2) p, is absolutely continuous with respect to u, and B,(n.), and S(u)cS(u)N

1(S(uo),
(3) #:-l(f)=llr(a:(f))-

Proof. (1) is trivial.
(2) By the Cauchy—Schwarz inequality, we have, for f in C(X),

@) (NP = W31 = ¥ (8:-:18)¥ (fS. f0.) = u. (117

and
) (NP = WS = [ (Sia-1(f) 8} = ¥ (o-1(No-1()8) ¥ (S.) =
= g, (-2 (N)P?).
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By inequality (a) and the regularity of u and p,, we have that g, is absolutely conti-
nuous with respect to u, and S(u)cS(u,). For f in C(X) with supp (/)cX—
—1(S(n.)), it follows that supp (o,-.(f))=t"(supp (f))<=t~*(X—t(supp (u.)=
=X—supp (¢,). By inequality (b), we have that g, is absolutely continuous with
respect to B,(u) and S(u)c#(S(w.)). C
(3) Let &= ZF’fté, be in K(G,C(X)), where F={t,,...,t,}). Then
t .
V(D)= ZE'F u,_,s(fx,_l( f:/))=0. Given each set of complex numbers {A}’_,,
t,s

setting 2, f; in place of f,, we have

Z #li ’tj(at‘ l(ﬁ,ﬁj)))-ll] =0.

i,j=1 .
This means that the nXn matrix (g, (o (f f; )))l ; 1s positive. Hence
Ho-35(0ty 1 (Fe f)) =t (2,1 (Ff)). Putting s=e and f,=1, fe=a,(f), we have
”t’l(f) /‘t(ax(f)) ‘

' Let u be a probability measure on X and e the conditional expectation of 4 onto
C(X). Let fi(=poe) denote the canonical state extension of u. In order to find a
condition under which ji is the unique state extension, we consider the possibility of
existence of another extension of u.

Given a measure u on X and a characteristic function yz of a Borel set £ in X,
we define a measure ypu on X by

xen(f) = [fdu for f in CX) (=p(tsf).
E

Then we have

1B N = [ S dn (= rt-smn-()),
=)
and it is easy to see that S(xzB.(w))=EN#(S(w)), where E is the closure of E in X
For t in G, let B,(p)=pB.(1),+ B, (1), be the Lebesgue decomposition of the
positive measure B,(u) with respect to u. Namely there exists a measurable subset C,
of X satisfying the condition: u(X—C,)=0 and, for each Borel set E in X with
EcC€,,

BAW(E) = B(wu(E) = [ ke(x)du, -

where k, is the Radon—Nikodym derivative of B,(u), with respect to u. Let D,=
={x€C,: k(x)=0), E={x€C,: k(x)=1} and F,={xcC,: k(x)=1}). Since
k,.1(x)=1/k,(t(x)) for x in D,, it follows that z=Y(D)=D,.., t~Y(E)=F,.,
and r~1(F)=E,.,. Using those facts we prove the following proposition, and
applying it we show a characterization for u to have a unique state extension.
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Proposition 1.2. Let p be a positive measure on X. For a fixed t in G, let {i1,};cq
be the family of measures on X defined as follows:

(1) In case 1#172, let p.=p, p=xeuf2, P-s=xp,-1B-x(Wf2 and p,=0
Jor sgfe 1,172},

(2 In case t=t", let p=p, p=reu+1rBW)f2 and u,=0 for
s¢{e, 1}.
Then Y= @ p, is positive definite.

3€G

Proof. It is sufficient to prove the statement only in the case of (1). Let &=
= 2 fudn be in K(G,C(X)). Then we have
m¢F .

2@9) = 20 3 turs a1 Z twesUnf D) +tirs( St

The second term of the right hand side = f f,,,(m(x)) fo(m(x)) dp.

E, m=-In=¢

- The third term = 2’ XF s Be-2 (1) (O -1 (T f) =

m-Ip=t-1

= [ 3 ttmalufddi= [ 5 anf)de =

HFy-1) m=ln=g-1 m-tn=¢-

= f A T (@) fui(n(x)) du = f 2 Jo(m @) fu(m(x)) dp.
E, m=in=1" E, m-in=t
If m—*n=t, since k,.,(x)=1 for x in F,_,, we have

f ts(Lf)dwE  [oas(Fufdk-rdp = [ aps(Ffo) dBi-s (), =

Fia Fi1 Fia

= [ s dBa(w) = f % (@n-2(Fo f) dpe = f -1 S dp =

Fe-2 t(Fg-1)

= [tnsGifddn= [ 7.(mG)f(m(x)) du.
E, E,

.Hence, the first terfn > » [ f -1 (Fn o) A+ f 0t - 1(],,f;,)dll]

Fy-a1

o= f 2 _(fm(m(x))fm _(m(x))+f..(m(x))ﬁ.(m(x)))d#-
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Therefore it follows that
@0z [ 3 (fulm()fu(m)+fu(m@)f(m())+
E. m~in=t

+/a (m(x))fm(m(x)) +£(m)fo(m(x))) du =
= [ 3 (fumC)HAmE))(fulm(x))+1,(m(x))dp = 0.
E, min=t

Theorem 1.3. Let p be a probability measure on X. Then p has a unique state
extension if and only if ﬁ,(u) is singular with respect to u for all t in G except t=e.

Proof. Let y=& u, be a state extension of u. By (2) of Proposition 1.1, each
tcG E _

1, 1s absolutely continuous with respect to p,=p and f,(u). Hence the assumption
on {ﬁ,(,u)},éG implies that pu,=0 for all t+e.

Next suppose that f,(u) is not singular with respect to u for some fe. Set
Y=, +¥,-.)/2, where {, and y,_, are the states constructed in the above propo-
sition corresponding to ¢ and ¢~ respectively. If u(E)=0, then u(F,)>=0, whereas
we have

p(E-) = u(t" (B)) = B W (F) = [ k(x)du > 0.

Hence ¥ is a state extension of u, which is different from ji=poe.
In the following, we give an example of a state of C(X) which has a unique state
extension and whose topological support is the full space X.

Example 1.4. Let R, be an irrational rotation on the unit circle [0, 1). Let
{r.}o>, be the set of all rational numbers in [0, 1). We define a probability measure
Ko ON [0 1) by po(E)= Z 1/2" for Ec[0,1). Then {B,(ug)},cz are mutually

singular and S(ﬂ,,(yQ)) [0 1) for all nin Z. Namely p, has a unique state exten-
sion but S(B,(1g)) is the full space.

The theorem mentioned above gives a characterization for the pure state iy,
of C(X) to have a unique pure state extension. Namely we have the following.

Corollary 1.4. Let p,, be the Dirac measure on a point x of X. Then p,, has a
unique (pure) state extension if and only if G,={e}.

Here we note that this result can be derived by Lemmas 4.19, 4.22 and 4.25 of
[3]. (Though the second countability on G and X was assumed in (3], the proofs of
these lemmas are still available here.)

Moreover ANDERSON [1] has given an equivalent condition for a pure state to
have a unique pure state extension in a more general case. He proved that for any C*-
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subalgebra D of a C*-algebra C, a pure state u of D has a unique-pure state extension
to C if and only if C is D-compressible modulo g, i.e.,

inf {|dcd—e|: déD,0 = d = 1, p(d) = 1, e€D} ~0

for each c in C. Of course, in our case, this condition on yuy,, is equivalent to G,={e}.
In the case of state extension, Example 1.4 shows that the condition mentioned above
is merely a sufficient condition for u to have a unique state extension. In fact, since
the identity is the only element in C(X) with pp(d)=1, 0=d=l, we have [[dcd—el|=
=llc—ef =dist (¢, C(X))=>0 for c¢C(X).

As a matter of course, it is interesting to study representations of A assoc1ated
with states extended from p,,. Those are discussed in [4].

2. Tracial state extensions. Let u be a G-invariant probability‘measure on X
and Y= EB 4, an extension of u. We show a necessary and sufficient condmon for p

to have a umque tracial state extension. First we consider the condmon on Y= @ T
under -which ¥ is a tracial state.
Proposition 2.1. Let Y= @ u, be a state extension of a probability measure
teG

pon X. Then s is a tracial state of A if and only if {i},cc satisfies the following two
conditions:

1) S(u)cX* for all t in G, .
(2) B(u)=p,,-1 for all s and t in G.

Proof. Suppose that { is a tracial state. Then for fand g in C (X ), we have

(%) /‘st(f'-"C (g)) lﬁ(fd (g)‘ssr) t//(fésgé,) = n//(gé,fés) _'lll(gat(f)ats) ﬂts(gat(f))

Puttmg s=e in (%), we have u,(f2)=p,(go, (). If x¢ X', then there exists a
neighbourhood U of x such that UN¢~1(U)=0. For any non-negative real-valued

contirwous function f on X with supp(f)cU, we have u(N)=i(VfVf)=
=u,(Vf % (Vf))=0. Thus S(u)cX’'. Next, put t=us~! and g=1 in (*) Then
we have

Bas-1(f) = uu(a.,s-«f» = uff(su‘"(x)) dp, = f f(s(x)) dp, =
= ”u(as"(f)) = ﬂs(ﬂu)(f)'

Conversely we suppose that {u},cq satisfies the conditions. Then we have
R 1l F2a(®) = Brr G (@) = e (Nou@) =
f f (t—l(x))g ((’S) 1(x)) d,u,, f f (¢~ l(x))g (x)) dy,, = l‘u(“t(f )g)
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This 1mp11es that ( fésgé,) 21 (g0, f(Ss) By the hnear]ty and the contmmty of W,
(P -¥)=y(¥-P) for every & and ¥ in A.

Given a state Y= EB His in many cases it is easy to check whether the family
{tehica satisfies or. not the conditions. of: the-above proposition. However, given a
family {y,};cc of measures on X, it is not easy to see whether Y= @ pu, is positive

teG
definite or not. Here we give a systematic construction of a (tracial) state extension.
We denote by H(G) the family of subgroups of G. Let J be a map of. X into H(G).
We put Xj={x€X: J(x)—~1} and denote by y, the characteristic function of X*.

When X} is a measurable set, y,p 1s the measure on on X deﬁned by xu(f)=
= j fdi= J Judu for fin COX).

Proposnlon 2.2. Let J be a map of X into H(G) with the properties: (1) X}
is a Borel set for all t in G, and (2) J(x)CG, for all x in X. Let u be a probability
measure on X and p,=y,u for each t in G. Then Y= EB U, is positive definite. In

addition, if u is G-znuarlant and (3) J(t(x))=tJ(x)1~! for all tinG, then l,h isa tra-
cial state.

Proof. Let ¢= 2/’,5, be in K(G,C(X)), where F is a finite subset of G.
teF .

In case t~1s is in J(x)CG,, s(x)=1(x). Thus we have

V(@) =§( 2 b fifi8) = V(3 0-1(fif)0i-1) =

> SR A1) te-15(x) dp =
t,s¢F x

= [ 2 F)ls()zo1.00) di
X uLs ‘

For x in X, let F=F,U...UF, be the disjoint partition of F corresponding to the
equivalent relation determined by the subgroup J(x) of G, i.e., ¢ and s belong to the
‘same F; if and only if 7~1s¢J(x). Then we have

Z f;(’(x))fs(s(x))lt 15(x) = Z L) f(s()) =

- §1 I'EZF’f,(t(x))lé =0,

Hence Y (P*®) is the integral of the non-negative function on X, so it follows that
Y(9*P)=0.
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Next we assume the additional condition. Then we have s(X)=X"" for all s
and ¢ in G. By the G-invariance of u, we get the following; for fin C(X),

B (f) = m(oe-1(f)) = ff(s(x)) di= [ fO)dk = porr(f)
xsu

Since S(p,)cX* by Condition (2), Proposition 2.1 implies that.y is a tracial state.
In the following, we show several examples of J, u and ¢ treated in Proposition
2.2.

Example 2.3. Let J(x)={e} for all x in X. Then X=X and X;=0 for all
t#e. Hence Yy=ji for each positive measure u on X,

Example 2.4. Let x be a point of X and p=p,,. LetJ(x)=G, and J(y)={e}

for y#x. Then Xj={x} for #(#€)¢G, and Xj=0 for t§G,. Then Y= D p,
. 1€6,

is a pure state extension of p,, (cf. Section 1).

Example 2.5. Let X consist of a single point {x} and J(x)=H for a (resp.
normal) subgroup H of G. Then X;=X for t¢H and Xj=0 for t{H. Since 4
is regarded as the group C*-algebra C*(G), ¥ becomes a (resp. tracial) state of
C*(G) with the property ¥ (®)= Z’H &(t) for d€IY(G)cC*(G). In the case
H={e}, ¥ is the conditional expec‘tGation . On the other hand, when H=G, ¥
is a multiplicative linear functional of 4, i.e., it is the trivial representation of C*(G).

Example 2.5 gives two typical tracial states of C*(G). However, in contrast to
C*(G), the reduced C*-algebra C}(G)-does not necessarily have two tracial states.
In fact, Powers [10] has shown that the conditional expectation is the unique tracial
state of C}(F,) by using his result that C}(F,) is simple.

Example 2.6. Let J(x)=G, for each x in X. Then we have X;=X"*. Thus, if
 is a probability measure then Y= @ x,.n is a state extension of p. In addition,
teEG .

if pis G-invariant then B, (xy:#)=yxxss-1p. Hence, by Proposition 2.1,  is a tracial
state.
We get the following theorem by Proposition 2.1 and Example 2.6.

Theorem 2.7. Let u be a G-invariant probability measure on X. Then p has a
unique tracial state extension if and only if p(X)=0 for all t except t=e.

Corollary 2.8. The C*-crossed product A has a unique tracial state if and only if
there exists exactly one G-invariant probability measure on X and u(X ‘) -0 for all ¢
except t=e.
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The standard theory of topological dynamics (cf. Chapter II of [2]) shows that
the two conditions on (G, X) in Corollary 2.8 are independent. Now, in the théory of
C*-algebras, faithful tracial states such as the unique tracial state of C*(F,) have
played an especially important réle. Thus we consider faithfulness of tracial state
extensions. In general, Y= EB %4 in Proposition 2.2 is not necessarily faithful. In

fact the canonical homomorph:sm of C*(G) (cf. Example 2.5) is not faithful. Here let
us assume that G is amenable. Let u be a G-invariant faithful measure on X. Then
the tracial state extension ji=poe is faithful because the GNS representation of A
by ji is nothing but the C*-reduced crossed product on the Hilbert space [2(G)Q®
L2(X, p), which is isomorphic to A4 (Theorem 7.7.7 of [5]). For ¢=t§96 i, and

l=w=>0, let Yy ,=owjit+(l-~w)y. Then ¥, is a tracial state extension of u and
ofi=y,. Therefore Y, is faithful on 4. Then we get the following.

Corollary 2.9. Suppose that G is amenable. Then A has a faithful unique tracial
state if and only if there is exactly one G-invariant measure yu on X, which satisfies
the properties: (1) S(u)=X and (2) u(X*)=0 for all t except t=e.

If the support of the unique G-invariant measure is X, then (G, X) is minimal
(cf. Chapter II (Exercise 7) of [2]). In addition, if G is abelian, X'=0 since X" is
G-invariant. Then we have the following.

Corollary 2.10. Suppose that G is abelian. Then A has a faithful unique tracial
state if and only if there is exactly one G-invariant measure on X with S(p)=X.

We note that the unique tracial state of the rotation C*-algebra is a prototype of
Corollary 2.10 and a motivation of our discussion.
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