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The distance to operators with a fixed index 

RICHARD BOULDIN 

1. Introduction. Let H be a fixed complex separable Hilbert space. For any 
(bounded linear) operator T on /7 we define the nullity and deficiency, denoted nul T 
and def 71, to be the dimensions of the kernels of T and T*, respectively. Of course, 
the index of T, denoted ind T, is defined to be (nul T—def T), with «> — understood 
to be 0. We denote the operator norm of T by ||7*||. 

In [2] the basic properties of the minimum modulus and the essential minimum 
modulus were developed; the distances from an arbitrary operator to the invertible 
operators, denoted G, and to the Fredholm operators were determined using the 
essential minimum modulus. In [1] the methods of [2] were extended to compute the 
distance from T to the semi-Fredholm operators with index n. In [3] the conclusions 
and some methods from [2] were used to compute the distance from T to the Fred-
holm operators with index n, which we denote F„. Unfortunately the false assertion 
that (SnS*wG)~ = G in the proof given in [3] leaves a gap in the argument. In this 
note we give a rather brief proof that establishes the results of [3] plus some new 
conclusions. Part of the method is a refinement of a device in [3]. Other papers that 
continue the research in [2] are [4] and [5]. 

2. Preliminaries. Let Jn denote the set of operators on H with index equal to 
the integer n. Let I„ denote all operators T in Jn with a finite value for either nul T 
or def T. Note that J„z>I„z> F„ and J0Z>I0~>F0Z3G. It is immediate from Theorem 3 
of [2] that 7 0 c S and, consequently, 

J o — h = Fo = G-

We use notation like PG for {PB:BiG}. 
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Lemma 1. Let S be a unilateral shift on H with multiplicity n (an integer) and 
let P denote the orthogonal projection SS*. If PB=B then 

(i) dist (B, G) = dist (B, PG) 

(ii) dist (B, F„) = dist (B, FonPF0) 

(iii) dist (B, /„) = dist (B, I0nPI0). 

Proof . For C(G define Cx to be PC+XQC where Q=I-P and ¿6(0, 1]. 
For any vector f£H we have 

II (B-Cx)fV = \\(B-PC)f\\2+P\\QCf\\2. 
It follows that 

( l l ^ - P . C l l H ^ l i e C I I ^ S I ^ - C J ^ 1 5 - P C f l . • 
Thus, 

; ;- inf{| | i?-cj: o < i s i} = \\B-PC\\. 

It is routine to see that Ck is one-to-one and onto; so C^fG. This argument shows 
that 

dist (B, G) = dist (B, PG). 

Now we prove parts (ii) and (iii). It is readily verified that PG<zF0 and the 
containment PGaPFg is obvious. Thus, we have PG<zF0C\PF0 and 

dist (B, PG) S dist (B, F0 n PF0) s dist (B, F0). 

Since F0=G we know that 

dist (B, G) = dist (B, F0). 
Now it follows that 

dist (B, F0f]PF0) = dist (B, F0). 

The proof of part (iii) is identical to the proof of part (ii). 
The next lemma will provide the remaining facts necessary to implement our 

method of proof for the main result. 

Lemma 2. Let S be a unilateral shift on H with multiplicity n (an integer) 
and let P denote the orthogonal projection SS*. Then 

(i) SIn = / 0 n / Y 0 , and 

(ii) SFn = F0C\PF0. 

Proof . Because S maps H isometrically onto PH the deficiency of SA, for 
A(H„, is (n+def A) while nul 5 ^ = n u l A. Thus, SA belongs to /„ and since 
PSA=SA we see that SA belongs to PI0. Thus, 

S/„ c I0C[PI0. . 
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If the range of A is closed then the range of SA is closed and 

SF„ c F0C)PF0. 

Take B£l0f)PI0 and let A = S*B. Since PB=B, def B and nul B are not less 
than n. Because S* maps PH isometrically onto H, it follows that 

def = def (S*B) = def B-n. 

Since S is an isometry, we get 

nul A = nul (SA) = nul (SS*B) = nul B 
and so 

, ind A = n or A£In. 

Clearly SA=B and we have proved that 

SI„ = I0DPI0. 
The argument in the preceding paragraph shows that if B£F0f)PF0 then A£Fn 

and consequently 

SFn=F0nPF0. 

3. Main results. 

Theo rem 3. Let A be an operator on H and let n represent an integer. If A$In 

then 

(i) dist (A, /„) = max {me(A), me(A*)} 

(ii) dist (A, F„) = max {me(A), me(A*)} 

(iii) dist (A, /„) = max {me(A), me(A*)}. 

Proof of (i). Let n be a positive integer and let S be a unilateral shift on H 
with multiplicity of n. Let A be an operator belonging to /m for m^n and define 
B by B=SA. If 7i projects the ring of operators into the Calkin algebra then n(S) 
is unitary. Regarding the Calkin algebra as an algebra of operators (as in Theorem 2 
of [2]), we have 

me(A) = m(n(Aj) = m{n(B)) = me(B) 

me(A*) = m(n(A*j) = m(n(B*)) = me(B*). 

For C£/n we have 

I B - s e l l = № - c ) | | = M-CI I 

and so by Lemma 2 we get 

dist (B, 70DPI0) = dist (A, /„). 
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According to Lemma 1 it follows that 

dist (A, /„) = dist (B, /„). 

Since I0=G we know that 

dist (A, /„) = dist (£, G) = max {me(B), me(B*)} = max {me(A), me(A*)}. 

In the formula for dist (B, G) we used Theorem 3 of [2]. We should note that ind 5 = 0 
is not possible since A£lm for m^n and the multiplicity of S is n. 

Another way that A$I„ can occur is for precisely one of the quantities 
nul A or def A to be infinite. In that case precisely one of the quantities nul B or 
def B is infinite and, consequently, ind B is not zero. The only remaining possibility 
for the occurrence of A$In is that both nul A and def A are infinite. In this case it 
follows from Theorem 2 of [2] that me(A)=0=me(A*). Since A belongs to J0 and 
the closures of JQ and I0 coincide, we know that 

dist (A, I0) = dist (A, J0)= 0 = max {me(A), me(A*)}. 

Recall that n is a positive integer. Let { / i , / 2 , ...} be an orthonormal basis for 
ker A*=(AH)± and let the union of {¿ft,..., gn} and e2, ...} be an orthonormal 
basis for ker A. Define C to coincide with A on (ker A)L, to be zero on ...,£„}, 
and to send e} to e/} for 7 = 1 , 2 Clearly nul C=n, d e f C = 0 and C£l„. Since 
| | /4 -C | |=e we see that 

dist (A, /„) = 0 = max (me(A), me(A*)}. 

We have now considered all instances of A§In for n a positive integer. 

If n=0 then the desired conclusion follows from the fact that I0=G and the 
formula in Theorem 3 of [2] provided ind A^O. Our hypothesis that A$I0 

implies that either ind /MO or both nul A and def A are infinite. In the latter case 
the preceding paragraph showed that 

dist (A, /„) = dist (A, /„) - 0 = max (me(A), me(A*)}. 

Thus, we have considered all instances of A$I0. 
For negative n we apply the preceding result to A* and I*_n={C* : C£ /_„}=/„. 

P r o o f of (ii). For A£lm with m?±n and n a positive integer the differences in 
the proof are modest. We choose C€F„ rather than C£ln, we use part (ii) of Lemma 
2 rather than part (i), we use part (ii) of Lemma 1 rather than part (iii), and we note 
that F0=G. Again if precisely one of the quantities nul A and def A are infinite then 
the same is true for B and ind B^O. 

The case of nul A=°° =def A is more complicated. In view of the construction 
given in the second paragraph of the proof of (i) the following will suffice. For any 
operator C such that def C = 0 and nul C=n where n is a positive integer, we have 
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dist (C, F„)=0. Let C = UR be the usual polar factorization for C and let E( ) be 
the spectral measure for R. Define R(e) to coincide with R on F([e, °°])H and let it 
agree with el on F([0, e))H. It is routine to see that R(e) is invertible and the kernel of 
UR(e) is F({0})H=ker R=ker C. (Recall that U sends (RH)~ isometrically onto 
(CH)~ and ker U=(RH)L =ker R.) Clearly 

. \\C — UR(e)\\ S \\R-R(e)\\ == 2e 

and (UR(ej)£Fn. We conclude that dist(C, F„)=0 and it follows that dist (A, F„)= 
= 0 = m a x {me(A), me(A*)}. 

If n=0 then the desired conclusion follows from the fact that I0=F0 and the 
formula has already been proved for dist (A, /„). 

P r o o f of (iii). Since /„=/„ for n?±0, this part follows from part (i) provided 
rt^ 0. Because the closures of J0 and I0 coincide we know that 

dist (A, J0) = dist (A, /„) = max {m e(A), me(A*)}. 

The following corollary is immediate from Theorem 3. 

C o r o l l a r y . For n an integer we have 

J„ = I„ = F„. 

Unfortunately this method does not help in computing the distance to the semi-
Fredholm operators with indices °° or -«>. Indeed, for any isometry S we have 

S f m n / o = 0, 

in sharp contrast to part (i) of Lemma 2. 
The author is grateful to the referee who found an error in the original manu-

script. 
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