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Contraction representations of semigroups in finite
von Neumann algebras

ISTVAN KOVACS and WILLIAM R. McMILLEN

Let $. be a complex Hilbert space, and let £($) be the algebra of all bounded
linear operators of $. Furthermore, let &/ c@(ﬁ) be a-von Neumann algebra. By a
contraction representation of a semigroup S in & we mean a homomorphism
n: S—~of;, where &, denotes the multiplicative. semigroup of the unit ball of .

In connection with a previous result of the first author [4], Shigeru Itoh has
recently suggested studying contraction representations of right reversible semigroups
in finite von Neumann algebras [5]. A semigroup S is called right reversible if for
any s, €S, the set SsMSt is not empty. If, in such a semigroup S, we define “="
by tz=s if and only if t=s or ?€Ss, then S becomes a directed set which will be
denoted by the same letter S.

Here we intend to study contraction representations of right reversible semi-
groups S under-the condition that for each #€S, the orbit {#"},.y is cofinal in the
directed set S [6]. Under this condition S will be called archimedean. The additive
semigroup of the positive cone R, of the n-dimensional euclidean space R" is an
example of a right reversible archimedean semigroup. The study of contraction
representations of right reversible archimedean semigroups in finite von Neumann
algebras (cf. [1]) will eventually lead us, as shown below, to generalize considerations
carried out in [3] for a single contraction.

Before formulating our first result, let us agree to call an element 7 of a
von Neumann algebra & partially unitary if there is an orthogonal projection F in &/
such that T*T=TT*=E [3]. Furthermore, a contraction representation = of an
archimedéan semigroup 'S in & is called partially unitary (resp. completely non-unit-
ary) if each element of z(S) is a partially unitary (resp, completely non-umtary [2))
element of /.

We now have
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Theorem 1 (Cf. [3], Th. 2 and Prop. 1). Let S be a right reversible archimedean
semigroup, and let n be a contraction representation of S in a finite von Neumann
algebra oA B(9). Then, there is a unique orthogonal projection Pcf reducing n
fo a partially unitary representation n, of S in . The orthognal projection E=I—P,
in turn, reduces n to a completely non-unitary representation m, of S in & so that we
have

(1) n=mptn,,
@ mMOTO=rOn(s)=0 (s,5€5),
(3) [me(9)]"+0 strongly as n—< for every s€S.

Proof. It is based upon methods used in [3] with the natural modifications.
Consider the nets P,=n*(¢)n(t) and . R,=n(t)n*(¢) .(¢€S) [6]. Evidently,
P, and ‘R, are in the positive cone &/ *.of «7. Moreover, the nets P, and R, are
downward directed. Let us prove-this statement just for P, since similar argument
applies to R,. Let t, s€S be given arbitrarily. Then there.is a° z€S such that z=¢
and zZ=s (2€SsNSt for'instance). Thus, in. partlcular, z= slt with an approprlate
Now, for every x€9, we have :

(B x]x) = (n*(slt)n(slt)xlx) = ||7r(s1t)x|l2 llﬂ(sl)fr(t)xll2 =
= =] = (n*(t)n(t)xlx) — (Pxl);
hence P,=P,.. Observing th‘at' z can be also written'as zﬁszs with some 5,€S,
a similar reasoning shows P, SP

. Therefore; the nets P, and R, convefge to. elements P and R of dlﬂd
spectlvely, in the- strong’ topology {1}. In: symbols

(C) I hmP = llm n* (t)n(t) = P llmR = hm rc(t)n*(t) =
. We c1a1m that o
(5) T *(s)Pn(s) P and n(s)Rn*(s) = R for every sES

We W111 prove the ﬁrst statement The second one can be proved 51m11arly

. As. P-hm n*(t)n(t) it is’ natural to..consider the net:

z* () 7* (D)7 (s) = ((On()) n()n(s) = n*(ts)n(ts),
where s is fixed and ¢ runs over S. As long as we can prove that

Q(ts) = n*(ts)n(ts) (t€S)



Contraction representations of semigroups 135

is a subnet of P,, the first half of (5) will be proven. To do this, we prove

>(i) t1§t2511s§12s -(isotonY);_
(i) (#5),¢s 1is cofinal in S. -

Ad (i). #,=t, means that £,¢St,, ie. f,=s1, with some ¢S, then, f,5=.
=s'tys, thus t,5€St,s implying (i).

Ad (ii). Let #,£S be arbitrary, and consider an element from St,NS#,s. This
element can be written as &'2,5=s"t,. Let s't,=t,;, then f,s=5"1,€S1, ie., 1,=1s,
whence (ii).

Now, as in [3], by virtue of (4), one may prove that for every finite normal trace
¢ on &, we have '

lim ¢ ((z* () ()~ R)*(n*()n ()~ R)) = 0,
from which we conclude that ‘

(6) . P= lign_n* On@) =limz()=z*@E) =R

and that P=R is an orthogonal projection of &. The details aré omitted. Also, it
follows from (6) that. .

(7) (I-P)$ = {x¢$H: lim n()x = 0} = {x€$H: limn*()x = O}.

In fact, x€(I—P)9 is equivalent to Px=Rx=0. Then the conclusion is drawn from
(4). In addition, for every s€S, the operators n(s) and =*(s) transform (I—P)$
into itself. To show this, we follow the arguments carried out to prove (5). Details
are again.omitted. Therefore, I— P, and thus P ‘‘reduces”.each .n(s) (s€8S), i.e., we
have

(). : ' Pr(s) = n(s)P  (s€S).
Using the techhiqueé of [3], we may prbvé“-thét
© (2 () PY* () P) = (n(s) P)(n(s)P)* = P, |
ie., each n(s)P (s€8S) is a partially unitary element of &. For every se€S, let
(10) o 7(5) = Pr(s). |
Now, if we let

1 mo(s) = (I-P)n(s) (s€8), - -



136 I. Kovacs, W. R. McMillen

then we evidently have (1). In fact, mo(s)+n,(8)=I—P)n(s)+ Pr(s)=n(s). By
virtue of (8), it is evident that 7, and n, are representations of S in &/. Now, if we
prove (3), we will surely know that each m,(s) -(s€S) is completely non-umtary
To do this, let I—P=F and fix a 7(s) arbitrarily. Then (3) can be equivalently
formulated as follows: for every x€E$ we have

(12) [r(®Ix -0 as n —oo,

Now, since_ [rn(s)]"=n(s"), consider the function. g:N-S deﬁned as g(n)=s"
(nEN) Then, by assumption, g(N) is ‘cofinal in S. Furthermore, gis also isotone;

=n, (n, n,EN) implies g(n)=g(ny). In fact, it is enough to prove g(n)s
Sg(n—}-l) ie., s"=s"t1. But this is evident since s"*'=ss"; thus s"*'€Ss", hence
s"=s"*1, So, (nog)(n)=n(s") is a subnet of n(s), a fact from which (12) follows on
account of (7). Moreover, the uniqueness of P follows from the observation that P
(or E=I- P) simultaneously decomposes each contraction n(s) (s€S) into a com-
pletely non-unitary and a unitary part, and the decomposition of this kind of contrac-
tions is canonical. Finally, (2) is an immediate consequence of the fact that the ele-
ments of ny(S) and =,(S) mutuvally operate on subspaces  orthocomplement one to
another. The proof is complete.

Theorem 2 (Cf. [3], Prop. 2). Let S be a right reversible archimedean semigroup,
and let s—~n"W(s) (resp. s—~n®(s)) be a contraction representation of S in a finite
von Neumann algebra stV B(HD) (resp. AP B(HY)). Let X be a bounded
linear transformation of $® into HV such that 7V (s)X= Xn‘2)(s) Jor each s€S.
Now, if E® and E® are the orthogonal projections corresponding to E I—P in
Theorem 1, then we also have EMX=XE®.

. Although the proof is similar to that of Prop. 2 in [3], we mclude it here for
completeness.

Proof. First we prove that EMXE®=XE®. Indeed, if x, E®H,, ie.,
x,=E®x, (on the orthocomplement of E®$, the sides of the proposed equahty
are zero), then A .

[2 ()] Xty = 1D () Xx, = Xa® () E®x, = X[nf(O)'xy ~ 0 (n—oo).

This means that Xx,=XE®x,c EO§, implyihg EOXE® x,=XE® x,, whence
the assertion. A similar argument proves E®X*EW=X*E,, from which

XE® = EOXE® = (E®X*EW)* = (X*EW)* = EO)

follows. The proof is complete.
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