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Some operational formulas of O. V. Viskov 
involving Laguerre polynomials 

H. M. SRIVASTAVA 

1. Introduction. For the classical Laguerre polynomials 

o) ^«-¿Cid-^-tr) 
a standard operational representation is provided by the Rodrigues formula: 

(2) £ ? > ( * ) = I T { x r + * e - % D = 

Among various other known operational representations for the Laguerre polyno-
mials, we first recall the following formula of O. V . VISKOV [5]: 

(3) £<«>(*) = [xD*+(a+1 )D]»{e-*}. 

For a=0, Viskov's formula (3) reduces to an operational representation for the 
simple Laguerre polynomials, which was given earlier by L. B . REDEI [2] . In fact, as 
already observed by us.elsewhere [3], Redei's formula is a rather natural consequence 
of (2) with a=0 , since 

(xD2+D)n = (DxDf = Dnx"Dn (/J = 0 , L , 2 , . . . ) . 

It may be of interest to remark in passing that, since 

(4) D»{e-x} = ( - i y e - x (n = 0 , 1 , 2 , . . . ) , 

the general result (3) can be proven directly (and simply) by comparing the first part 
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of the definition (1) with the operator identity (cf., e.g., [1]): 

<5, ( x D > + ! J > r = 

for A=a + 1. 
More recently, VISKOV [6] gave another interesting operational representation 

for the Laguerre polynomials: 

(6) = a + l)x]"{e-*}. 

The object of this note is to present two independent proofs of Viskov's formula (6). 
Each of our proofs of (6) is markedly different from the proof given by VISKOV [6]. 

2. First proof. Many recent developments in the theory of special functions are 
based upon some remarkable applications of the differential operator (see, for 
example, [4, p. 368]): 

(7) T; = x(X+xD), X a constant, 

which evidently has the property that [loc. cit.] 

(8) 7?{*"} = (» = 0 , 1 , 2 , . . . ) 

for arbitrary parameters X and /i. 
Observe first that the operator involved in (6) is precisely the differential operator 

Ta+1. Denoting, for convenience, the right-hand side of (6) by £2, and expanding e~x 

in powers of x, we find from (8) that 

(9) Q = J ^ £ S ^ T Z + 1 { x k } = e*(n + a)1Fl(n+z+l; a + 1 ; - x ) . 

Now the confluent hypergeometric ^ ^ function, occurring in (9), can be trans-
formed by appealing to Kummer's theorem [4, p. 37] 

(10) i^iia; c; 4 = e z i f l ( c - a ; c; - z ) , 

and we thus have 

(11) fl = ( " J a ) 1 F 1 ( - » ; a + 1; x) = L™(x), 

by virtue of the second part of the definition (1). 
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3. Second proof. Yet another interesting proof of Viskov's formula (6) would 
make use of the operator identity (cf., e.g., [1]) 

for A=a+1. Indeed, in view of (4), the right-hand side of (6) becomes 

" n! t f 0 U J r ( a + /c+l) 1 ' ¿An-k) kl Ln W> 

where we have employed the first part of the definition (1). 
We should like to conclude by observing that, since 

(13) !? = *• jj(xD.+X+j-l), 
j=i 

which is easily verified by induction on n, Viskov's formula (6) may be rewritten in 
its equivalent form: 

' (14) L^(x) = n (xD + <x+j){e-*). n[ i 

On the other hand, Viskov's formula (3) can immediately be put in the alternative 
form: 

(15) Lf\x)= (x-xD^+1D)"{e-x}, 

which incidentally can be proven fairly easily by induction on n, using certain well-
known derivative and recursion formulas for Laguerre polynomials. 

It may be of interest to remark that, in view of the easily verifiable identity [cf. 
equation (7)]: 

№/(*)} = **T;+1{f(x)}, 

the operational formula (6) can also be deduced directly from the familiar result: 

£<«>(*) = JLL!£l( xiD+x)n{^e-x}. 
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