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Generalized congruences and products of lattice varieties 

E. FRIED and G. GRATZER*) 

1. Introduction. If V and W are lattice varieties, their product VoW consists 
of all lattices L for which there is a congruence relation 0 satisfying: (i) all 0-classes 
of L are in V; (ii) L/0 is in W. In general, VoW is not a variety; however, 
H(VoW) (the class of all homomorphic images of members of VoW) always is, 
see G . GRATZER and D. KELLY [4] and [5] for related results (e.g., DoD is a variety). 

If L is in VoW (established by <9), then L/<P, where <t> is a congruence relation 
on L, is a typical member of H(VoW). On L/4>, 0/<P is a tolerance relation (a 
reflexive and symmetric binary relation with the substitution property, see e.g. 
G. CZEDLI [1]). R. N . McKenzie conjectured that a lattice K belongs to the variety 
generated by VoW iff there is a tolerance relation T on K satisfying (i) all /"-blocks 
(maximal /-connected subsets) of L are in V; (ii) £/7" (the lattice of /-blocks with the 
natural ordering) is in W. 

In the paper [2] we disproved this conjecture. 
In this paper we introduce a generalization of the concept of congruence relation, 

called generalized congruence (Definition 1). With this new concept, the analogue of 
McKenzie's conjecture can be proved. 

A congruence relation or a tolerance relation is a special type of generalized 
congruence; each can be viewed in two ways: as a binary relation on a lattice or as 
a set of subsets of a lattice. A generalized congruence is introduced as a family of 
subsets of a lattice; this family is not, in general, derivable from a binary relation on 
the lattice. 

While congruence relations and tolerance relations are sets of subsets, generali-
zed congruences are families of subsets, that is, a subset may occur more than once. 
In a slim generalized congruence repetition of a subset is not allowed. The main result 
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of this paper (Theorem 8) shows that slim generalized congruences do not, in general, 
describe the members of H(VoW). 

For the basic concepts and unexplained notations, the reader is referred to [3]. 
The authors would like to express their appreciation to the referee; his incisive, 

yet generous, comments greatly contributed to a better final version. 

2. Generalized congruences. We start with the basic definition: 

D e f i n i t i o n 1. Let L be a lattice. A generalized congruence 0 is a lattice defined 
on a subset of P(L)Xl, where lis a nonempty set — called the index-set — and P(L) 
is the set of all subsets of L, with the following properties: 

(GQ) For (A, i)£&, the first component A is a nonempty subset of L (called 
a ©-class) and the second component i is an element of / . 

(GCJ The union of all 0-classes is L; moreover, every i£l occurs in an 
(A, i)£0. 

(GC3) For (A,i), (B,j>, (C, k)£G, if (A, i)A(B,j)=(C, k) in 0 , and 
a£A, b£B, then a/\b£C; and dually. 

Note that in (GC3), the A in (A, i)A(BJ) is the meet in 0 , while the A in 
aAb is the meet in L. 

Let us start with some examples. Obviously, every congruence relation 0 can 
be regarded as a generalized congruence: /={1}, and we identify the congruence 
class A with (A, 1). It is obvious that 0 is a lattice (the quotient lattice L/0) and 
(GC3) holds. Similarly, every tolerance relation 0 is a generalized congruence with 
/={1}; the 0-classes are the blocks (maximal 0-connected subsets). In the first 
example, the 0-blocks are pairwise disjoint, in the second they are not, but a 0-block 
cannot be contained in another 0-block. 

Let L and K be arbitrary lattices. Let us define 0 on £ as follows: the elements 
of 0 are (L, k) for all kdK; we define 

(L, fc1)A<L, k2) — (L, kxAk2), 

and dually. Obviously, 0 as a lattice is isomorphic to K. This shows that by allowing 
a 0-class to be paired with more that one member of K, we loosened the bond be-
tween the lattice L and the lattice 0 . In particular, 0 does not have to belong to the 
variety generated by L. 

Figure 1 shows another example of a generalized congruence: C is the three-
element chain and 0 is M3, the five-element modular, nondistributive lattice. 

In the above examples, 0-classes are always convex sublattices. This is true in 
general: 

C o r o l l a r y 2. Let L be a lattice, and let 0 be a generalized congruence on L. 
Then every 0-class is a convex sublattice. 
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P r o o f . Let A be a 0-class. Then (A, / ' )£0 for some /£/. Since 0 is a lattice, 
{A,i)A{A,i)={A,i). By (GC3), this implies that A is a sublattice. Now let 
a,b,c£A, a<b, and c£[a, b]. By (GCa), there is a (C, j ) in 0 with cgC. Since© 
is a lattice, 

((A, i)A(C,j))V(A, i) = (A, i>, 

hence by (GC3), c=(b/\c)Va£A, finishing the proof. 
Next we introduce a simple method of constructing generalized congruences: 

D e f i n i t i o n 3. Let L be a lattice, and let 0 and be congruence relations on L. 
The generalized congruence 0/<P on L/<£ is defined as follows : 

The index set is I=L/0, that is, the 0-classes. For every 0-class A, define the 
pair: (A/<P, A), where A/<P is the set of all ^-classes not disjoint to A. The gene-
ralized congruence 0/<2> on is defined as the set of all such pairs; for two such 
pairs, (A/4>, A), (B/<P, B> we define the meet by: 

(A/<P, A)A(B/4>, B) = ((A/\B)I4>, AAB) 

(where AAB is the meet of A and B in L/0), and dually for the join. 

It is easy to verify that this defines a generalized congruence on L/<£. Indeed, 
(GCj) is obvious. Let A be an element of L/4>, that is, A is a $-class on L. Let a£A, 
and let B be a 0-class containing a. Then A£B/$, and (B/<P, B)^0/4>, hence the 
first clause of (GCy holds. The second clause of (GC2) and (GC3) are clear. 

Now we prove the converse: 
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Lemma 4. Let K be a lattice, and let W be a generalized congruence on K. Then 
there exists a lattice L, and congruences 0 and <P on L, such that K is isomorphic to 
L/&, and under this isomorphism the W-classes of K correspond to the 0 ¡^-classes of 
Ll$. In fact, L can be chosen as a subdirect product of K and the lattice f . 

Proo f . Let L be the set of all pairs (a, (A, /)), where a£A and (A, />£ f . 
Since a f-block is nonempty and since satisfies (GC2), it is easy to see that £ is a 
subset of the direct product of A^and V, and the projection maps are onto. By (GC3), 
L is a subdirect product. Let $ be the kernel of the projection of L onto K, and let 0 
be the kernel of the projection of L onto W. An easy computation shows that the 
©/^-classes on L/<f are the same as the ^-classes on K. 

One could easily define formally when two generalized congruences on the lattice 
L are the "same"; basically, they must select the same convex sublattices, each the 
same number of times. 

Now we use generalized congruences to describe members of the variety gene-
rated by the product of two varieties: 

Theorem 5. Let V and W be lattice varieties. Then the lattice K belongs to the 
variety generated by VoW i f f there is a generalized congruence W on K such that the 
¥-blocks are in V and ¥ as a lattice is in W. 

P roof . By Definition 3 and Lemma 4. 

Observe the following trivial, but useful, sharpening of Theorem 5. If K belongs 
to the variety generated by VoW, then there is a lattice L in VoW, and there are 
congruences 0 and i> on L such that 0 establishes that L belongs to VoW, K is 
(isomorphic to) and QA<P=co. In other words, the 5P of Theorem 5 can al-
ways be chosen to be in the form 0/<P with 0A 4>=a>. 

3. Slim generalized congruences. The use of the index set is the most funda-
mental difference between congruence relations and tolerance relations on the one 
hand and generalized congruences on the other. If every subset can occur only once 
in a generalized congruence, then we get a concept much closer to those of congruence 
relations and tolerance relations. 

Another difference is the way the meet (and the join) of two classes is found. For 
congruences, if A and B are two classes, a£A and b£B, then we take the unique 
class C containing aAb, and C is AAB. For tolerances, the situation is somewhat 
more complicated. aAb may be contained in more than one block. However, it was 
pointed out in [1] and [6], that 

{aAb | a£A, b£B} 

is always contained in a unique block, namely, in AAB. 
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This suggests that one could define two special types of generalized congruences: 

D e f i n i t i o n 6. Let L be a lattice and let 0 be a generalized congruence on L. 
We call 0 slim iff the index set is a singleton. We call 0 conservative iff for 0-blocks 
A and B, the set {a/\b | a£A, b£B} uniquely defines the (C, />£0 where C contains 
this set, and dually. 

By (GC3), if the generalized congruence 0 is conservative, then the lattice 
operations on L are uniquely defined on (preserved by) 0 . 

Coro l l a ry 7. A conservative generalized congruence is slim. 

Proof . Let 0 be a conservative generalized congruence on L. If 0 is not slim 
then there is a 0-class A, and there are z',y£/, such that (A, i) and (A,j)£0. Now 
observe that {aAb\a€A, b£A}=A is contained by the 0-class in both (A, i) and 
(A,j), a contradiction. 

It would be highly desirable to prove Theorem 5 for slim generalized congruences. 
The main result of this paper shows that this cannot be done: 

Theorem 8. There are lattice varieties V and W and there is a lattice K in the 
variety generated by V oW such that there is no slim generalized congruence ¥ on K 
with the properties: all ^-classes are in V and ¥ as a lattice is in W. 

For W, we can take D the variety of all distributive lattices. The variety V 
and the lattice K will be constructed in Section 4. The proof of Theorem 8 will be 
presented in Section 5. 

4. The variety V. The lattice variety V is generated by the lattice F of Figure 2 
and its dual. Note that F is a subdirectly irreducible lattice. The crucial property of 
this variety is stated in 

Lemma 9. The lattices M3 3 and Ns of Figure 3 are not in V. 

F 

Figure 2 
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N. M 3,3 

Figure 3 

Proo f . By B. Jónsson's Lemma (see, e.g. [3]), since F and its dual are finite, 
the subdirectly irreducible members of V are homomorphic images of sublattices of 
F or of its dual. If M3 is a homomorphic image of a finite lattice, then the largest 
inverse image of its zero is the pairwise meet of three pairwise incomparable ele-
ments. This easily implies both the statements of this lemma. 

Coro l l a ry 10. The dual of Ns is not in V. 

Proof . Indeed, V is selfdual. 

The rest of the paper deals with the lattice K of Figure 4. 
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Figure 4 

Lemma 11. K is a lattice. 

Proof . K has 97 elements. By inputting the elements and the covering relations 
into a computer program H. Lakser verified that K is a lattice. Alternatively, one 
can apply the following two lattice theoretic trivialities to build K up from smaller 
parts. 
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Figure 5 

Lemma 12. Let Lbe a partially ordered set made up of four pairwise disjoint 
convex sublattices: A, B0, B1, C arranged as in Figure 5. Let us assume that for each 
a£A and i=0, 1, there is a smallest upper bound of a in Bt, denoted by acpi, and for 
every b£B{ and i=0,1, there is a smallest upper bound of b in C, denoted by b\]/i; 
and dually. Finally, assume that for a£A, acp0\j/0=a(p1ip1, and dually. Then L is 
a lattice. 
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Figure 6 

Lemma 13. Let Lbe a partially ordered set made up of two disjoint lattices A 
and B as arranged in Figure 6. Let us assume that for each a£A that has an upper bound 
in B, there is a smallest upper bound of a in B, denoted by auB, and dually (the element 
denoted by adB), and for every b(:B there is a smallest upper bound buA in A, and 
dually (the element denoted by bdA). Then L is a lattice. 

Now to verify that AT is a lattice, look at K as depicted in Figure 7. 
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Figure 7 

Applying Lemma 12, we get that ODA1\J1A\JB1 is a lattice. Gluing this together 
with the lattice ^UDU-B1 , then with 1\JA1[J1A\JB1, we obtain the lattice A of 
Lemma 13. We then apply Lemma 13 with B=EX, and renaming the resulting 
lattice A, with B=^E, obtaining K. This shows that AT is a lattice. 
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T h e o r e m 14. K is a lattice in the variety generated by VoD. 

Proof . By Theorem 5, we have to find a generalized congruence ¥ such that ¥ 
is a distributive lattice and the ^-blocks are in V. 

First, we define 24 convex sublattices on K. Figure 7 defines 12 of them. Ax 

contains two more sublattices: A2 and As as shown in Figure 8; A2 is the sublattice 
over the lower dividing line, it has 10 elements, while A3 is the three-element chain. 
Similarly, A1, XA, and 1A contain two more sublattices each. Finally, B1 contains two 
more sublattices: XC and C l 5 as shown in Figure 9, and similarly, B1 contains *C 
and C\ 

Figure 9 

¥ is shown in Figure 10. For the index set we choose /={1, 2}. For a convex 
sublattice X of K, Figure 10 shows X for (X, 1). Only G occurs twice in ¥: (G, 1} 
and (G, 2). ¥ is not slim, but it is very close to being slim. 
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E E, 

Figure 10 

To show that T is a generalized congruence one has to check (GCJ, (GC2), 
and (GC3). (GQ) and (GC2) are trivial; (GC3) is tedious but easy. 

IP as a lattice is isomorphic to (C6)2; so it is in D. The IP-classes are all isomorphic 
to a sublattice of F or of its dual, so they are all in V. This completes the proof of 
Theorem 14. 

Theorem 14, combined with Lemma 4, gives us a lattice Lin VoD and congruence 
relations 0 and $ on L such that L/4> is isomorphic to K, L/0 is distributive and the 
•F-blocks on K agree with the 0/$-blocks on Lj(P. This lattice L has 191 elements. 

5. Generalized congruences on K. Now we come to the crucial part of this paper: 
we have to show that K is not a homomorphic image of some member of VoD, 
such that the resulting 0 / 0 is slim. We had a similar problem in [2]: how to show the 
nonexistence of a tolerance relation with some properties on a certain lattice. The 
problem in [2] was much easier. The tolerance relations on a lattice form a lattice; 
the elements of the tolerance lattice can be described. 

The generalized congruences on a lattice do not form a lattice. One cannot show 
the nonexistence of a generalized congruence by enumeration. Our proof will be 
presented in many steps, as a sequence of propositions. 

In this section the lattice K is the lattice of Figure 4, and Z is a slim generalized 
congruence on K with the properties that the Z-classes are in V and Z as a lattice is 
distributive. Since Z is slim, we can ignore the index set: the element (X, i> of Z will 
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be identified with the Z-class X. So Z is a distributive lattice of nonempty convex 
subsets of K; the union of these sublattices is K by (GC2); if AAB—C in Z, a£ A 
b£B, then a/\b£C, and dually, by (GC3). 

For a sublattice X of K, 0(X) and 1 (X) will denote the smallest and largest 
elements of X, respectively. 

P ropos i t i on 15. Let m and M be the lower and upper median polynomials. If 
a0, ax, a2£K, then there exists a Z-class X containing m(a0, ax, a^) and M(a0, ax, a.,). 

Proof . By (GQ), there are A £ Z such that a f i A j for / = 0 , 1 , 2 . Let 
m(A0, Ax, A2) = X. By the distributivity of Z, 

m(A0, A1, A2) = X = M(A0, Ax, A2), 

hence, by (GC3), m(a0, ay, a.2), M(a0, ax, ¿z2)dX, as claimed. 

Note that Proposition 15 claims that m(a0, ax, a,) and M(a0, ax, a2) are con-
tained in some Z-class ; other Z-classes may separate the two elements ; examples of 
this can be found in the lattice K. 

Let us call a Z-class maximal if there is no Z-class properly containing it. 

P r o p o s i t i o n 16. ^ is a Z-class, in fact, it is a maximal Z-class. 

Proof . Apply Proposition 15 to the three black-filled elements on the left of K 
in Figure 4. Then m and M give us O^is) and 1 (XE). Therefore, there is a Z-class 
X containing XE. If X properly contained XE, then it would contain Na or its dual 
as a sublattice, contradicting that the Z-classes are in V and Lemma 9. 

P ropos i t i on 17. E1 is a Z-class, in fact, it is a maximal Z-class. 

Proof . By symmetry. 

P ropos i t i on 18. There is no Z-class containing 0 and 0(XA). 

Proof . Let A' be a Z-class containing 0 and O ^ ) . Then XVEx properly con-
tains Ex; this contradicts Proposition 16. 

P ropos i t i on 19. There is no Z-class containing x, y with xÇ_Ex and y$.Ex. 

Proof . Let X be a Z-class containing x and y as in this proposition. Then 
Y=XVEx contains 1 (Ej) and its unique cover. Let U be any Z-class containing 
0(j A); then Y AU is a Z-class containing 0 and 0 (XA), contradicting Proposition 18. 

P ropos i t i on 20. There is no Z-class containing x, y with x£Bx\JD[JBl and 
yiBx\JD\JB\ 



34 E. Fried, G. Gratzer 

Proof . Let X be a Z-class containing x and y. By meeting or joining X with 
iE or Ex (depending on where y is), we get a contradiction with Proposition 19. 

P r o p o s i t i o n 21. Ax, A1, XA and lA are Z-classes, in fact, they are maximal 
Z-classes. 

P roo f . Take a black-filled element on the left and the two dot-filled elements 
on the right in Figure 4, and apply Proposition 15. We conclude that there is 
a Z-class X containing 0(/ix) and l(A^). If X properly contains Ax, we get a 
contradiction with Proposition 17 (if Proposition 18 (if y=0 or y£XA), 
or Proposition 20 (if yÇ.BxijD\JB1). The other cases are similar. 

P r o p o s i t i o n 22. 2?! and B1 are Z-classes, in fact, they are maximal Z-classes. 

Proof . XA\! Ax=X is a Z-class containing Bx. If A'has an element x not in Bx, 
then we obtain a contradiction: if x Ç ^ U o r x = 0 , this contradicts Proposition 
20; if xÇ^Uj i? , this contradicts Proposition 19; finally, if x is anywhere else, then 
by the convexity of X, we can assume that x£D, and we find in X a sublattice that 
has a homomorphism onto M 3 3 , contradicting X £ \ (see Lemma 9). Thus BX is a 
maximal Z-class. Similarly, B1 is a maximal Z-class. 

P r o p o s i t i o n 23. BxAEl=Ai, and similarly for XB and XE, etc. 

Proof . By (GC3), if BxAE^X, then 

O O B J A O ^ ) = 0 0 4 a ) € * 

similarly, 1 (AJÇX, hence X contains Ax. By Proposition 21, X=Ax. 

P r o p o s i t i o n 24. 0 and I are Z-classes, in fact, they are maximal Z-classes. 

Proo f . There is a Z-class containing O by (GCJ. This class must be O by 
Proposition 18. 

P r o p o s i t i o n 25. iEAE^O and 1£V£'1=/. 

P roo f . By Proposition 24. 

P r o p o s i t i o n 26. Dis a Z-class, in fact, it is a maximal Z-class. 

Proof . Apply Proposition 15 to the following elements in Figure 4: the leftmost 
black-filled element and the two elements with a right-slanted bar. We get that there is 
a Z-class X containing 0(D) and 1(D); thus A'contains D. If there is an x in Z b u t 
not in D, this would lead to a contradiction, just as in the proof of Proposition 25. 

P r o p o s i t i o n 27. DA1E=2A, DAE1=A2, and dually. 
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Proof . Since Z is distributive, m(xE, D, E1)=M(1E, D, EJ. Let X be this Z-
class. Compute: 

m ( 0 G £ ) , 0 (B) , 0(E1)) = 0(D) a n d M ( l ( 1 £ ) , 1 (D), 1 (£,)) = 1 (D). 

So X must contain D. By Proposition 26, X=D. Hence, 

D = (DA1E)V(DAE1)\/(E1A1E). 
Obviously, DAtE is XA or 2A, and DAEX is Ax or A2. If, say, DAEX=AX, then the 
last equation implies that 

O G ^ V O C ^ V O Ç A 

a contradiction. 

P ropos i t ion 28. 3A, A3, 3A, and A3 are Z-classes. 

Proof . 1EAA1=iA or 3A. But xEAAl=2A contradicts distributivity. 

P ropos i t i on 29. G—3A\!AX and G=3AAAK 

Proof . Let us assume that 3AVA1<3AAA1. Then XE, 3AVAX, and 3AAA1 

generate Ns, the five-element nonmodular lattice. Therefore, 3AVA1=3AAA1. 
Since 0 ( 3 A)yO(A x )=l ( 3 A)A\ (A 1 ) ^G, it follows that 3AVA1 includes G as a subset. 
Now (3AVAX)VE1=A3, 3AA(3AVAX)=3A, with their duals and symmetric counter-
parts yield by (GC3) that G is not a proper subset of 3A\I Ax=3A A A1. 

Propos i t i on 30. Z is not distributive. 

Proof . Using the distributivity of Z, compute: G—3A\/Ax=A3VXA. Hence 

G = (3A\JAX)A(A3\IXA) = (3AAA3)\l(3AA1A)\l(A1AA3)\J(AxAiA) = 

= OV xAV A-lMO = Bx, 
a contradiction. 

The proof of Theorem 8 is now complete. 

6. Concluding comments. It would be interesting to find the smallest lattice 
variety V for which Theorem 8 holds with W=D. We suspect that the variety gene-
rated by M3 would do ; we have even constructed the lattice that corresponds to K. 
However, we cannot prove that K works. 

One could conjecture that Theorem 8 holds for any pair of lattice varieties V 
and W, for which VoW is not a variety. The proof of this conjecture is well beyond 
the capabilities of the methods used in this paper. 

3' 
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