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Some problems and results on the local behaviour
of arithmetical functions

1. KATAI

1. Let s(n)=2 (n—p)~! where p runs over the set of primes less than n.
ErpOs and DE BrunN (see [1]) proved that

L)—12) . =g I #)<an o (N) Sd@=a (=12

hold with suitable positive constants ¢y, ¢;=0.
In [2] it was proved that

(1.3)—(1.4) ZI'V s*(n) = O(N), 2}; s*(p) = O(n(N))
N n-=< p<

hold for every fixed keN. The sums
E(N):= Z(S(n)—l)z, F(N) = Z' (s(p)—1)

have been considered in [3], [4], [5] under the unproved density hypothesis assumed
in the form

(1.5) , N(o,T) < cT**~(log T)?
where N(o, T) denotes the number of zeros ¢ of {(s) in the rectangle Re ¢=o,
Im o|=T.
In [5] we deduced from (1.5) that
‘ N(log log N)

(1.6)—(1.7) EN) < loNN (loglog N), F(N)

The proof was based on the inequality
4
J ITGRdy < Nlog M), 2= —+i,
-4
T(z) = 2 z7I'(g), 4 ={(logN)~’
e .
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due to Yu. V. LINNIK [6], [7]. We can prove that s(n)=1+o0(1) holds for almost all
n under the assumption

2X

(1.8) sup 7%[] > A(m)—h
X

X*=h<X y=ms=y+h

dy=:10x,+0 (X —+)

for every &=0. :
It is not known whether (1.8) is true, but it can be deduced from the density-
hypothesis '

(1.9) N(o,T) <, -9+ 1|2 =g =T.

Let a(m), meN, be any sequence of complex numbers,

AW):= 2 a(m), B(y)= 2 la(m),

(X, ) = X iZ';llA(y-{—h)—A(y)P, B(X, By = X~ jgw(yw)—s(y)p.

Assume that

alX, h)
1.10), Sup ————=10x,~0 as X oo
(110) X"éhg}( B(X, h) 0x,
holds for all &=0. Let
) - a(m)
(1.11) SH(n).—lémg_H o
(12 EX,H):= 3 |Sg(m2
- X=n<2X

We should like to give an upper-estimate for the sum (1.12) in terms of 8(x, -)
under assumption (1.10),. It is clear that

(1'13) [Sx/a(m)| = (4/3X)B(2X). '
Let 1/2>6>0 be fixed, H=H,=X’. Let the sequence H, be defined as follows:

) . H,=(1+8H,, k=1,2,.... k,,
where H, <X/4<(1+0)H,,, Hy.1=X/4, let

® (37} — a(m)
(1.14) S® (n) Hkén—%;ﬂkﬂ T
Then

(k = ko)_-

ko
Sy,(n) = xg; S® (n) +Sxpu(n).
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By the Cauchy—Schwarz inequality we get that

ko
(1.15) |Sg, (M| = (ko+2)(k§) IS® (m)i2+|Sx 0 (MI?).
Furthermore, we have
1 1

1
+EI(A(”—HI‘)_A(”_HI¢+1))I,
and hence ‘we get that
(1.16)

262
ISP (n)]2 = TIB('I Hy)—B(n—Hy )+ |A(n H)— A(n—H,)l%

Summing for n€[X, 2X], from (1.13), (1.15), (1.16) we deduce that

ko
(1L17) EQH) = (k0220 3 gm— 3 |B(n—Hy)=B(n—Hi )+

k=0 +1 X=n<2X ..

16(ko+2
$2004D 3o 3 |4 B) = A Hop+ 0D

=n-<2X 9X

Let us assufhe now that X is large enough. Then

B2(2X).

ke = log X 2
= Tog(1+0)

Furthermore X°=H,<X/3, Hk+1—Hk=5Hk§5X". So by (1.10),/, we get for every
large X, :

(1.18) E(X, Hy) = [46+ Ox/2, ¢s,2] (log X) - T+—
where

ko
(1.19) T=Xx Z Hi3(B(X — Hy 1), Hyp1— H)+BQ2(X — Hy 1), Hys— Hy).

log X.

64 logX
9% X

B(2X),

Assume that (1.9) i is satisfied. A theorem due to K. RAMACHANDRA [8] glves that

2X—-1 1
(1.20) S 3 Am)-h]?<hte ‘<‘°g")’°+xe

y=X y=m<y+h

2X~1 ' : e
(1.21) [ 3 AmP<he ™ xe,

¥ y=m<y+h . . e

=X
2X~-1 1
21w < ke 0 1 e

y=m<y-+h
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hold for all >0, uniformly as 1=h=X. The constant implied by «, may depend
on e Let a(m)=A(m)—1, and consider the function

Su= 3 2 _ G )+ Su ),

where
a(m) -.

b
1sn—m<H N—M

i/(n)=

and Sg(n) is defined by (1.11). Since in our case B(y+h)—B(y)=h, from (1.20)
we get immediately that (1.10), holds. Furthermore B(X)<X, and from- standard
sieve result we get that

'B(y+h)—:—B(y)J<< h+h log y/h.
So by (1.18), (1.19) we get easily that
(1.22) E(X, H)/X(log X)? -~ 0, H=X°.
Let us consider the éum | -

FX,H):= 3 Un.

X=n<2X
Since : 2 - ‘
=V p— =

U (n)+1§n—2m’<H n—m’ Vin) lén—2m'<ﬂ n—m’
we have
(1.23) | F(X, H) = 2R (X, H)+ X(log H+O(D)),
(1.24) | CRGCH) = 3 Vi)

B X=n<2X .

To estimate (1.24) we can use standard sieve result, namely that

> A(m)A(m+k)<<X1]'(1+i],
Xsm<2X pik p
squaring out V'?%(n), we get easily that

F (X, H)

(1.25) Tlogb X

= r(d),

where r(8)—~0 as 6-0. Hence and from (1.22) we get that
(1.26) . 2 Si(m)=o(Xlog?X).

X=n<23X
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After some obvious observation, hence we get that -

(1.27) ;’ (s(m—-12 =o0(x), s(n) = %: nip .
Let us consider now . _
. Si(n) = mg':; ,);(_m"), .
Let
Ry= > 2 y_x

n—-m<H H—MmM
Since R(n)=log H+0(1), from (1.21), (1.18), (1.19), we get that
- (1.28) 2 S2(n) = o(X log? X).

n=X

Similarly, we can deduce from (1.9) that

(1.29) Z}'{ Sﬁ('n) =o(Xlog2X), S,(m):= 3 p(m).

men B—m '
So we have proved the following

Theorem 1. Under the unproved hypothesis (1.9) the inequalities (1.27), (1.28),
(1.29) hold. '

From the unproved hypothesis (1.9) and the Main Theorem of RAMACHANDRA
{8], from (1.18), (1.19) we can deduce nontrivial estimate for some other functions
as well.. We shall state without proof

Theorem 2. Assume that (1.9) holds.
Let P, run over the integers having exactly k prime factors. Then for each fixed k,

k—11\2
2 (Sk(n)f(l_olt_z'li_o_g_l_';z!_) = o(X(loglog X)**-D)

n=X
where

Se(n):= P%(ﬂ-ﬂ)‘l-

Let z be any nonpositive complex number, |z|=R,

S.)i= 3 2

m=n B—M

Then
ZIS.(M2 = o(X(log X)*R) as X —oo,
n=X .
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Let 0=l<k, let &, be the set of integers n satisfying the condition w(n)=I(mod k).
Let
Spa(m= 2 (n—m™.

m<n
meR, ,;

n%: (Sk, h(") =S, 1 (n))2 = O(X (log X )2)

Then

2. Let e(m)=1 if m is a sum of two squares, and let e(m)=0 otherwise. Let us
consider the sum

- e(m)
2.1 f(n):= "é; o
A classical result of Landau gives that
(2.2) > e(m)~cx[ylogx

m-=<x

with a suitable constant. Hence one can deduce that

D f(m)= 3 e(m)log(x—m)~cxVlogx.

PR=EX m=x

The Dirichlet-series

= e(m
F(s) =
(s) mg; —
can be written as
1 1 1

F(s) = — _— = s)L(s, x) v(s),
( ) 1_1/2: p=1(mod 4) 1_1/1,; p=—1(mod4) 1’—1/1725 Vc( ) ( X) ( )
where L(s, x) is the Dirichlet L-function corresponding to the nonprincipal character

mod 4, v(s) is a function which has a Dirichlet-series expansion

U(S) = Z a,/r’,

that is absolute convergent in the halfplane Re s=>1/2.
Let N(o, T, x) denote the number of roots ¢ of L(s, x) in the domain Re gp=o,
IIm o|=T.

Theorem 3. Assume that (1.9) holds, and that

(2.3) - N(o, T, y) <, T?A-)+¢
holds for all &>0. Then
(2.4) > (f(m)—cVlog n)*=o(xlog x) (x —eo),

with the ¢ occuring in (2.2). -
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Proof. The Main Theorem [8] under the conditions (1.9), (2.3) guarantee the
fulfilment of the inequality (1.10), with a(m)=e(m)—C(log x)~V2 By using the
inequalities (1.18), (1.19) and some standard sieve results, namely that

2> e(m)e(m+k)<

. X=m<2X
(see Halberstam—Richert [10]), we get (2.4) easily.
As an example of further conditional results that can be deduced similarly, we
mention without proof the next

i (1+2

logx ik

Theorem 4. Let k€N be fixed and assume that
N(o, T, y) <, T*1=7% (a=1/2)

holds for all character y (mod k) for all €>0. Let L<l,<...<l, be distinct residues
mod k, (l;, k)=1 (j=1, ...,t). Let & denote the set of the integers n the prime fac-
tors p of which belong to the residue classes =I;(mod k) (j=1, ...,k). Let e(n)=1
if ne&, and e(n)=0 if n¢é&. Let

o= 3 S0
Then
;’ (f(m)—c(log ny’)? = o(x(log x)*), s:=t/p(k)

with a suitable constant c.

3. One can prove similar theorems for the sums

g(n) = 2 M.

1=h<n h

For example, from (1.9) we can deduce that

{3 -1 =0,

n<x \n<p<gn P—N
and so we have

Theorem 5. If (‘1..9) is true, then . '
P2 M) =0kx), = 2 (p~m7'- 3 (n-p)~t

n<x n<p-<2n p<n

Let us comsider now the function

Sm= 3 A(m)

m=n—2 (n_m) IOg (n_m) )
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One can get easily that
> S(n) = xloglog x+0(x).

n=x

Assuming that with some suitable gy, ex>0, gy—+0, gx—0,

ax
{3.1) sup TFIY f [ 2 A(m)—h]*dy =gy, loglogZy =exloglogX
X : ..

Zy=h=X y<m=y+h

holds, we can get that

(3.2 > (S(m)—loglog n)* = o(x(loglog x)?).
The inequality (3.1) holds if we assume somewhat more than (1.9), namely that
(3.3) N(o, T) =cT* - }og?T.

In [9] we proved that under the condition (3.3) the 1nequahty 3.1 holds with
Z,=(log x)"h(x), h(x)-~<. So we have

Theorem 6. If (3.3) is true then (3.2) holds.

At present we are unable to prove that

> [ms%'_z _AMm) )2 = o(x(log log x)?)

n<x (n—m) lOg (n_m)

even under the Riemann conjecture.
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