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The accuracy of the normal approximation for
U-statistics with a random summation index
converging to a random variable

M. AERTS and H. CALLAERT

Introduction

The exact order of the normal approximation has been obtained in [2] for U-
statistics with a random summation index L, where L,/n—~t with 7 a constant.
In this paper it is shown that the same order bounds can be obtained in the situation
that the random index L, satisfies L,/n-~t where now 7 is a positive random variable.
Moreover, a sharpening of the moment condition on the kernel is included. The
results are valid for U-statistics with kernel of general degree r but in order to avoid
a cumbersome notation, the proofs of the main theorems are given for the case that
r=2. Tools for passing from r=2 to an arbitrary degree r are given in the prelimi-
nary lemmas which are formulated and proved for general r. For further information
we refer to the Ph. D. thesis of one of the authors [1].

The results obtained in this paper are an extension of carlier results for random
sums of ii.d. random variables, proved in [6] and [3]. The proofs of these results
use some methods which heavily rely on the i.i.d. structure. However, if one makes
use of the structure of a U-statistic together with some technical fine-tuning, it is
possible to obtain order bounds which are as sharp as in the ii.d. case without
imposing any additional condition. We also note that an asymptotic normality
result contained in Theorem 1 below could in principle be obtained from Theorem 1
of [4]. However, this denvatlon would require some extra assumptions on the kernel
function and no information on the rate of convergence could be gamed
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Preliminary lemmas

In order to create some flexibility in the renormalization of the statistics under
consideration we formulate some general lemmas, special cases of which will be
needed in the proof of our main theorem. The proof of Lemma 1 is elementary and
is left to the reader Throughout the paper we use the convention [x] min {k€N,
x=k}.

Lemma 1. Let (R, &, P) be a probability space and X, and Y, two sequences
of random variables defined on Q. Let C be a positive constant and d, a sequence of
nonnegative real numbers. If for some k=0 and some a=1, S* denotes the set on
which Y,>kaf(a—1), then

spenf| 2

E [ aca) e spon

;‘: 1‘ >Cd,,}.

n

Y,—

Lemma 2. Let (Q, d P) be a probabllzty space and X and ¥, " two sequences
of posmve randomi variables defined on Q. If there exist positive constants ¢, and c,
and a sequence of positive numbers g, with g, —»0 Jor n—eo, such that

(11)_"" - P(lay %, " - e = O(V—)
and - . : s
:(2)‘ ‘ P(Y < gy 1/") = (}/3—) n oo, 0‘<-51.-'sf1" .

then, for every znteger k>0 there exists a constant Mk such that

V[Y] X(X 1).. (X &)
AR AlCAR I G ART N

> M, l/s ] O(Vs ) n—»oo

ca P[

Proof The proof 1s by 1nduct10n For k= 0 (3) follows by takmg Mo—]/c1
Assume that (3) holds true When k—r—l for some rE N0 Puttmg _

V[Y] X(X 1) ... (X,—r+1) -
VX_ [Y]([Y] 1) ([Y]—r+1)

the 1nductlon hypothe51s ylelds that P(|Z,—1|>M, 1]/8) O(VS) n—, for

Z, =

some constant M,_,. Now choose M, such that M,=max (3M,_,, 6c,) and then
take n so large that
@ & < min {1, (co/2r)?, 9/(M?)}

is satisfied. Since (4) implies that.[c e, ¥%]>2r; .one has, using .the, Bonferroni ine-
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quality and (2)
Z,

7

u—l)([—l",'"];_Lr-1]+([;‘,’"]" 1)+(z,- 1|~ 1,77, [Y1>2r]

[?"]——1|>M V‘)s P, < c,e7Y%) +

A AT

SO(V_)+P[1Z—1| M, V"]+P[

(g 1]|>T'Vs‘,, [Y,]>2r].

It is easy to see, using the choice of M,, the induction hypothesis, (1), (4), and Lemma
1 with C=M,/6, a=2, d,=Ve, and k=r, that the second and third terms here
are O(E). But by (4) the fourth term is not greater than

+P

()= 2 v =2 -1 =1+ p0Z-1 - D =
tART 3
X,—r ll M

= p(| 1| - 2oy, wa ) p (2ot -2,

and the lemma follows.

The next lemma, which states the rate of convergence to normality for non-
stochastically indexed U-statistics, plays a crucial role in the proof of the main
theorem. It determines, together with the asymptotic behaviour of the random
index L,, the ﬁnal approximation order for random U-statistics.

Lemma 3 Let (Q, o, P) be a probabzlzty space and Xy, X;, ... i.i.d. random

vartables defined on Q. Let U, —(f] (X, ..., X;) be a U-statistic with

Eh(Xy, ... X)=0 and put’ g(X)=E(h(Xi,..., X,)—0|X;). Assume that o*=
=Var g(Xl) is strictly positive, and that for some 5, 0<d=1, one has that
E|g(X)?*0< o and E|h(Xy, ..., X,)|4+98< co, Then, one has: '
sup |p{‘_/"—([r];i—9)— = x}—cp(x)[ — O, 1w,
Proof. The proof is esseﬁtially based on an improvement of a’ Bérry—Esseen
bound for more general non-parametric statistics (see. [5D. For details of the proof
we refer to [1], where it is also shown that the result of Lemma 3 is valid for statistics

with structure > g(X))+Y; 4s used in the proof of our main theorem.
=1 Sa - .
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Main result

Theorem 1. Let (2, o/, P) be a pro’bébility space and X, X,, ... i.i.d. random
variables defined on Q. Let U, —[;]_1 2 hX,X;) be a U-statistic with

Eh(X;, Xz) =0 and put g(X,)=E(h(X,, Ajz)i%li’l) Assume that o®=Var g(X;) is
strictly positive, and that for some 5, 0<d8=1, one has that E|g(X)|*t°< and
Elh(Xy, Xp)|4+PP<co, Further, let ¢, be a.sequence of positive numbers tending to
zero and such that, for n large, n~%=¢,. Let L,: 2~{2,3,4,...} and ©: Q—(0, =)
be random variables satisfying, for some constants c¢,, c;>0:

L, —
(5) P[lm—ll > cls,,) =0(/e,), n-—e
6) P[1:< ‘W] O(Vs_,,), n —oo
D t is independent of ‘X, k=1,2, ...
then, one has:
-1 —_
@ suplP V;‘; ( ] (h(X;, X))— B)Sx] ®(x)| =0(e,), n—e
x 20 2 151<15L
} VL -
(i) sup P( o —-0)= x)—d5(x)| =0(Ve,), n-=
and, if 6:=VarU, exists:
(iii) sup |P(65}(UL,—6) = x)—(x)| = 0(Ve,), n-—>oo.
Proof. W.l.g. we assume that 8=0. The following notation will be used:
' N, =1{2,3,4,...}
I** I**(w)

= (N [Im @)1 —e8) = = L(@) or L) <j=<[m@)](l-cs),
Ir= 1*(w) (€M) < [me(@](1 —exe),
= [jEN I = k(1=¢8,)},
THw) = {feNlum(w)J(l—clen) = j = [m@I(L+aa),
Jo = {jeNilk(I—cie) = j = k(1+6,8)},

1 if [nt(w)](l cle,.)SL(w),A o
1 ‘otherwise. = k

I*

il

-0, = O(w) = {
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Proof of (i). We first prove (i) with nt replaced by [n7]. Choose n large enough
so that &,<c} and, using (6), remark that

® P(lre] < ety ) = P < 2 67%) = 0(/3).

Hence

[VW [nT]) > h(X,.,Xj)éx]—<P(x)'§

1si<j=L,

sup | P
x

= sup (X, X) = x, [ = [czs-""l]

[ Vil [[m]

151<1§L
— &(x) P([n7] = [co2; V)| + O (V).

Putting ¥ (X;, X;)=h(X;, X;)—g(X)—g(X}), the following decomposition holds
on the set where [nt]=[c,¢;]: .

]/[nr] [[m] h X, X)) =
s,<j
1 j=1
o‘l/[m] Z'g( )+ oV[nd(n—1) ,-521;' ié; v (X, X))+
L,—1 ' 5,
(=)o Zses oVmd (]~ 1) ,e%é'“x"xf)“

= [+I1+TL+1V.
Using a Slutsky argument and the Bonferroni inequality, it suffices to prove that
(.A) '
sup [PA+11 = x, [n1] = [ca67 ) — S (X) P((n] = [cae; )| = O(Ve,), 1 —eo

(i.B) P[IIIII > -%‘, [ni) = [cge,,-‘/"]) =0(/e,), n—e
i.C) P[IIVI Ve" , [n1) E[cas,,“”“']]: O(Vg), N -roo,
Proof of (i.A) ' | | ‘
9) sup |P(+IL= x; [m] é[cas:”f])—ﬂx)P([m] = [css;"‘])l =
= Z‘ P([nfl k) sup IP( 2' g(X)+Y, = by(x)|[m] vk):-'-sb(x)l“

k=[ege]?
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. ol e e . L
with b,(x)=xc}/k and Y,=: Z > 2 lﬁ(X,, X). On the summands in the

_1 61k =1
r.h.s. of (9) we use the following inequality:

oL L, ' P L
(10) sup IP(%' g(X)+Y, = by(x)|[m] = k)—2(x)| =
= sup |p(i§"1 gX)+Y, = bk(ic))f-;li(x)|+ _';

Lu
+sup lP(g; g(X)+ Y = bu(x), Lacylln] = k) P(Z’ g(Xa)+Yk be(x))|+

+P(L U;I[m] )
Putting

- n(x) = P(Z’ gX)+¥, = bi(x), L€ [[ne] = k)
5i(x) = P(Z’ g(X.)+Yk = bk(X))

A (x) = {wlmax 2 g(Xi)+Yk = bk(x)},

Bi(x) = {wlmm Zg(Xs)HG = bk(x)}

one has that P(A,,(x))<sk(x)SP(Bk(x)) and P(Ak(x), L EJkl[m] ky=sr(x)=
=P(B,(x)), where we have used (7) to, obtain the last inequality. Since P(4,(x))=
=P(4,(%), L€ \[nt]=k)+P(4,(x), L.éJlInt]= k) it follows that [rk(x) —5. (%)=
=P(B(x)) =~ P{A(x))+ P(4i(x), L,¢J;|[nt]=k) and hence that..

(1) suplr()—s,()] = sup (P(B,,(x))—P(Ak(x)))+P(Ln¢1,,1[m] b.
An applicatféﬁ" of Lemma 3. yields that there exists a constant € such that
(12) sup IP(Z sX) R = bi(x))— cb(x)l = Ck=o0

Applying (11) and (12) on the r.hs. of (10) and using the obtamed mequahty in (9)
leads to: ‘ STeror el
sup IP(I+II =x, [m] 2[czs,.“"’]) cli(x)P([m] 2[csw,.“"’])l =
2’ P([m'] : k) sup (P(B(x))—~ P4 (x)));+

k=[cgc

Z' P(L..ﬁfkl[m] k)P([m] k)+C Zh k"””P([nf] k).

k=[c3a N k [c,a
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Now, remark that " : ‘ - _

0 3 kR = K) = Y PO = e ) = O(e)

and that using (5), . i |

(14) k=[;§ lP(L..UkI[m] k)Pf[nr] - k)= P(L &) = o(/z).

Hence, it suffices to show that | . | o

(15 i g P([nt] = k) sup (PFBk(x))—P(Ak(x))) = o_(;/;).'. .

Putting p=min J;, g=maxJ,, r=max I, and remarking that r=p—1, it follows

from Lemma 2 in [2] that

P(By(x))—P(4x(x)) = C{P(Z' g(X) = bk(x) =Y, _Z’g(X) = b(x)- %)+

+P(Z' gX) = bk(x) Yes Z'g(Xa) = b(x)- %)}

for some constant c. We now use Lemma 3 from [2] with X replaced by

3 e(X)+%; ¥ by 3 g(X); b by oVk; d by Ck™** and by by(3).
i=1

i=p+1

We then obtain that for constants K and L: :
q -
sup (P(By(x))~P(4,(x)) = Kk~ +Lk—E| > g(X))|= Kk‘-".2+aL]'/ -‘I—kL
* ; ) i=p+1

— Z’ 2(X) =0 by the moment
g—p i=pi1
inequality and- the independence of the X’s together with Eg(Xl) 0 Insertmg

this result mto the l.h.s. of (15), after remarking that I/ qT§V2c1 &,, and using

where the last ioequality follows from El

(13), one amves at the desued order bound O(Vz-: ), completmg the proof of (1 A)
- Proof of (. B) From (8) and (14) it follows that

a _P(IIII|>‘V2" , [n‘r]E_[cgs;_‘/".]]éoﬂ(}/a_")-}-_:

v 5 #([et o) B eon] = B2 st = k) i = b

keleest )
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Using (7) and the fact that max |m—k|=kec,¢,, one obtains:
mCJy

. . L, - . . L
p(| =] “’|,.§1g(‘“)|> e Ledlim=k)=
ke, m gooelk—=1)) -
SP[%’.& || el - )= rlpag| 3 el = $522).

Since Z'g(X ) m=1,2, ..., forms a martingale, the Kolmogorov' inequality
yields that : '

[prsn,s;(q |2g(X)I 2c }/E
1 n

= 4cigke,(k—1)* = O(Ve,)
showing that the r.h.s. of (16) is of the order O(V—)

Proof of (i.C). Using the same reasoning as in the proof of (i.B) and remem-
bering that 8,=1 if [#7](1—c,¢,)=L,, one has:

P[IM ~ VTe (] = [eae; ) =

o(k—1) 4cike, 2 _
] = ot (k—1) E(Z g(X))

= 2” [max[ > z.p( X,)|>i@—%k—l)—)l’([m] k)+0(Ve,).

k=[cz 18 M€k j=pi=1
Further, it is well-known that V, Zm' Z_' y(X;, X;), m=p, p+1, ..., q, and also
Jj=p i=1

W{:Z’l//(X,-,X ) k=12, .., ]fl are martingales. An application of the Kol-
i=1 - .

‘ d
mogorov inequality and a theorem in [§] lead to (denote by s]
P( max, |2 2 v, xp) > THEEED. Kol ) ) < 2r-s(—1)-=(ke) 1 EW =
p=m=

= K(k— 1) (ke,)™" ZEIW " = K (k=1 (kz)” */2(q p+l)g

where K and K’ are constants. A short computation, usmg q p52kcls and
g=k(1+cys,), yields the desired order bound- O(Ve) To complete the proof of
(1), we have to show that [n7] can be replaced by nz. An application of Lemma 1 of
[7] yields that it is sufficient to prove that for some constant C - -

frm=l) - Y| <o)

w0 P EEEEL
O T
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That (17) holds follows from Lemma 2 with X,=Y,=nt and k=1, checking by
(6) that ( 1) and (2) are satlsﬁed

Proof of (u) As above, it can be shown that [nr] may also be replaced by
L,.We take X,=L,, Y,=nt and k=1 in Lemma2 Smce (1) and (2) then commde
with (5) and (6), the proof of (ii) is complete. .

Proof of (iii). We ﬁrst show that

-

Using that no®=40%+ _
n

L aL,,

2E¢2(X1, Xz)
- 4¢? —_—

’ c262

—1l>c2 ] o(Vs) with C? =

0 E¢2(X1,X2),_ this follows from _condltlon (6) after
easy marnipulation. Since ’ - ‘ S

R I O M R

a lemma of [7] makes it possible to go from (ii) to (iii). This ﬁmshes ‘the proof of
the theorem. :

We close with a result concerning the case when the 1nd1ces are 1ndependent
of the basic sequence. The details of the proof are of course simpler than in the
general case (for instance, there is no need for the decomposition of U,) and there-
fore are not given here.

Theorem 2. Let the assumptions of Theorem 1 be fulfilled with (5) deleted and
(7) replaced by: L,, T and X, k=1,2,... are independent for each n=1,2, ....
Then

(@) if P( L]—l >c Ve) =0(Ve,), the results (i), (i) and (iii) oj Theo-

[ne

rem 1 hold;
() if P[
of Theorem 1 hoId

) O(Va) for some constant a<1, the results (ii) and (iii)
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