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The accuracy of the normal approximation for 
{/-statistics with a random summation index 

converging to a random variable 

M. AERTS and H. CALLAERT 

Introduction 

The exact order of the normal approximation has been obtained in [2] for U-
statistics with a random summation index L„ where L „ / « — T with z a constant. 
In this paper it is shown that the same order bounds can be obtained in the situation 
that the random index L„ satisfies LJn—T where now z is a positive random variable. 
Moreover, a sharpening of the moment condition on the kernel is included. The 
results are valid for t/-statistics with kernel of general degree r but in order to avoid 
a cumbersome notation, the proofs of the main theorems are given for the case that 
r=2. Tools for passing from r = 2 to an arbitrary degree r are given in the prelimi-
nary lemmas which are formulated and proved for general r. For further information 
we refer to the Ph. D. thesis of one of the authors [1]. 

The results obtained in this paper are an extension of earlier results for random 
sums of i.i.d. random variables, proved in [6] and [3]. The proofs of these results 
use some methods which heavily rely on the i.i.d. structure. However, if one makes 
use of the structure of a ¿/-statistic together with some technical fine-tuning, it is 
possible to obtain order bounds which are as sharp as in the i.i.d. case without 
imposing any additional condition. We also note that an asymptotic normality 
result contained in Theorem 1 below could in principle be obtained from Theorem 1 
of [4]. However, this derivation would require some extra assumptions on the kernel 
function and no information on the rate of convergence could be gained. 
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Preliminary lemmas 

In order to create some flexibility in the renormalization of the statistics under 
consideration we formulate some general lemmas, special cases of which will be 
needed in the proof of our main theorem. The proof of Lemma 1 is elementary and 
is left to the reader. Throughout the paper we use the convention [x]=min 
xsk}. 

Lemma 1. Let (Q, si, P) be a probability space and X„ and Y„ two sequences 
of random variables defined on Q. Let C be a positive constant and d„ a sequence of 
nonnegative real numbers. If for some k^O and some a=-l, Sk

n'a denotes the set on 
which y„>&a/(a— 1), then 

Si fn{ X.-k 
Y„—k - 1 aCd, ' j c i ' n j h . 

Y„ 1 Cd„}. 

Lemma 2. Let (Q, si, P) be a probability space and X„ and Y„ two sequences 
of positive random variables defined on Q. If there exist positive constants cx and c2 
and a sequence of positive numbers e„ with £„->-0 for n^- such that 

(1) 

and 
V) P ( Y n < c ^ * ) = 0[ten), n 0 < * • 

then, for every integer fcsO,. there exists a constant Mk .such that 

(3) VlYn] - i ) . •(Xn-k) 
YT„ k k k , ] - - i ) . 

-1 >Mk]/En\ 

.Proof. The proof is by induction. For k=0, (3) follows by taking . 
Assume that (3) holds true when. k=r— 1 for some r6N0. Putting 

z = Vra xn(x„-\).:.(xn-r+\) • 

for the induction hypothesis yields that P(\Z„ — l l>M r_ 1 Ye„) = 0(^en), n-* 
some constant Mr_x. Now choose Mr such that Mr s max (3Mr_1, 6cx) and then 
take n so large that 

(4) e„ < min {1, (cJ2r)\ 9/(Mr
2)} 

is satisfied. Since (4) implies that..[cze~y*]>2rt one has, iKing ;the. Poijiferroni ine-
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quality and (2) 

P(|Z„ -¡^r-11 > MT f ^ j s P(Yn. < + 

It is easy to see, using the choice of Mr, the induction hypothesis, (1), (4), and Lemma 
1 with C=MJ6, a=2, d„=Ye„ and k=r, that the second and third terms here 
are But by (4) the fourth term is not greater than 

p [ | ( Z „ - [ Y n ] > 2 r , | Z n - l | s l ] + P ( | Z B - l | > l ) ^ 

and the lemma follows. 

The next lemma, which states the rate of convergence to normality for non-
stochastically indexed ¡[/-statistics, plays a crucial role in the proof of the main 
theorem. It determines, together with the asymptotic behaviour of the random 
index Ln, the final approximation order for random ¿/-statistics. 

Lemma 3. Let (Q,si,P) be a probability space and X1, X2, ... iJ.d. random 
variables defined on Q. Let 12Cn,r) h(Xti, ..., Xi) be a U-statistic with 
Eh(Xlt ...,Xr)=6 and put g(X1)=E(h(X1,...,Xr)-6\X1). Assume that <r2= 
=Var g(Xt) is strictly positive, and that for some 8, 0<c5sl, one has that 
E\g(Xi)|2+*< °° and E \h(Xx,..., Zr)|(4+^3< Then, one has: 

* I I ra ) = 0(n~'l2), h-oo. 

Proof. The proof is essentially based on an improvement of a Berry—Esseen 
bound for more general non-parametric statistics (see [5]). For details of the proof 
we refer to [1], where it is also shown that the result of Lemma 3 is valid for statistics 

p . -
with structure ^ as used in the proof of our mjain theorem. 
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Main result 

Theorem 1. Let (Q, si, P) be a probability space and X1, X2, ... i.i.d. random 

variables defined on Q. Let Un=\~| 2 h{X¡,X,) be a U-statistic with 
W lSKJSa 

Eh(X1,X2)=9 and put g(X1)=E(h(X1, X2)-B\X^. Assume that or2=Var ̂ №) is 
strictly positive, and that for some 8, 0<<5^ 1, one has that E\g(X^)\2+>< and 
£'|/I(Z1,Z2)|(4+,)/3<OO. Further, let e„ be a sequence of positive numbers tending to 
zero and such that, for n large, n~s^s„. Let L„: i2—{2, 3, 4, . . .} and t : £2—(0, 
be random variables satisfying, for some constants c l 5 c 2 > 0 : 

(6) „-CO 

(7) r is independent of Xk, k = 1, 2, ... 
then, one has: 

(i) * ] - * ( * ) « — 

(ii) s u p \ p { % - ( U ^ - Q ) s *)-<P(*)| = 0(Y7„), n - co 

aw/, i / ff2 = Var £/„ exists: 

(iii) sup ¡P^iu^-e) ^ *)-<P(*) | = 0{i7n), n - c o . 

Proof . W.l.g. we assume that 0=0. The following notation will be used: 

N , = { 2 , 3 , 4 , . . . } 

/„** = i:*(co) = 

= 0'€Nj|[«T(CO)](1 -cxe„) S / S L„(co) or Ln(co) [mt((U)](1 -c l £ n)}, 

/„* = I*(m) = {ygNxl;^ [ « ( « J K l - c ^ } , 

J* = J*(a>) = O ' C N J ^ C ^ K l - c ^ J s j s [«T(co)](l +c l£n)}, 

A = { y ' ^ l f c O - c i e j S j S ¿(1 +cl£n)}, 

1 if [MT(CO)](1 — CJO ^ Ln(fii), 
otherwise. 8B = 5„(«>) = { J 
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Proof оf (i). We first prove (/) with m replaced by [ит]. Choose n large enough 
so that e„< c\ and, using (6), remark that 

(8) P([m] < [c2e-^]) < = О ( f a ) . 

Hence 

sup 

s sup 

-Ф(х)Р([т] s [с2в"^])|+0(1/еп). 

Putting \l/(Xi,Xj)=h(Xi,Xj)—g(Xi)—g(Xj), the following decomposition holds 
on the set where [m]^[c2E~vs]\ 

1!{m\ f[«T])-
2a P J T ^ W . ^ -

o-ytnx] i=i o-y [«TJ([«T]-1) ja* ¡=i 

U«T] — 1 ; a ]/[HT] i=1 <7V[HT]([«T] —1) j-e/** ¡=1 

= I + I I + I I I + I V . 

Using a Slutsky argument and the Bonferroni inequality, it suffices to prove that 

(i.A) 

sup | I > ( I + I I S x, [m] S [c2e^s))-<P(x)P([m] s [c2£-^])| = 0(l/7„), n 

(i.B) P ( | I I I | > [nr] S foe-1"]) = 0(f£), n 

(i.C) i>(|IV| > [HT] S [c2£n-1/3]) = n 

Proof of (i.A) 
(9) sup |P(I+II => x, [HT] &[CA-^-tf(x)P([NT] s [c2£"^])| S 

S 2 *<[»*] = *)sup \P(2gm+Yk =S bk(x)\[m] = *)-i»(x)| 
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_ . 1 j-i 
with bk(x)=xa У к and Yk=-r У. 2 ФС^и Xj). On the summands in the 

к — 1 ¡=1 
r.h.s. of (9) we use the following inequality: 

(10) sup \P(2 g(Xi)+Yk s bk(x)\lm] =к)-Ф(х) x i=l 

^ sup | p ( i g(X,)+Yk =s Ьк(х))-Ф(х)\ + ; 

+ sup | P t Z g W + Y , bk(x), LntJk\[m] = k)-P(Zg(Xd+Yk Ш bk(x))\ + 

+Р{ЬЛШт] = к). 
Putting 

rk(x) = P(Zg(Xd+Yk ^ bk(x), Lnak\[m] = k), 
j=I 

**(*) = P(¿g(Xi)+Yk s bk(x)), 

m 
Ak(x) = {со max Z g(*i)+Yk Ш bk(x)}, , 

Bk(x) = {co\min Z g(Xd+Yk S bk(x)}, 

one has that P(Ak(x))^sk(x)sP(Bk(x)) and P(Ak(x), Ln£Jk\[m]=k)^rk(x)TS 
^P(Bk(x)), where we have used (7) to obtain the last inequality. Since P(Ak(x)) = 
=P(Ak(x), Lnak\[nx\=k)+P(Ak{x), ЬпШ[т]=к) it follows that | rk(x)-s t( ; t ) |S 
SP(Bk(x))-p(Ak(x))+P(Ak(x), Ln$Jki[nr]=k) and hence that : , ; 

(11) sup |r4(x)-J f t(x)| ^ sup(P(5 t (x) ) -P(AW))+P(L n i J J [«x] = к). 

An application of Lemma 3 yields that there exists a constant G Such that 

(12) sup \P(Z g{X,)+Yk Ш Ьк(х))-Ф(х)\ S Скг'Ъ 
X 1=1 Î I • I . 

Applying (11) and (12) on the r.h.s. of (10) and using the obtained inequality in (9) 
leads to: . I; v . - !'••' . • ¡v ; ' : i\ 

sup |P(I+II ^ X, [ит] s [с2е-1'>])-Ф(хуР([т] ш [с2г^\)\ S 

^ Z Mит] p k)sup (P(Bk(x)).- P{Ak(x))}+ 

+2; . J Р(ЬЛЛ1М = к)РЦт] = т с . . Zi, . k-"2P(l>n] — к). 
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Now, remark that • ' •'•• 

(13) J . k-WP([nX) - k) k C^ fa P{[nx] S [c2£-^]) = 0(Y7H) 

and thati using (5), 

(14) i P(LA Jk\[nr] = k)P([nx] = *) == P(LAJfi = 0(\Q. 

Hence, it suffices to show that 

(15) 2 P([m] = k) sup (P(Bk(x))-P(Ak(x))) = 0(YTn). 

Putting p=minJk, q=maxJk> r = m a x / t and remarking that r=p—1, it follows 
from Lemma 2 in [2] that 

p{Bk{xj)~p{Ak(xj) S =5 ^ M - n , i g № ) s fc*(*)-r*)+ 
i = l ¡ = 1 

+P{2 g(Xi) s bk(x)-Yk, 2 g(*i) s 
¡ = 1 ¡ = 1 

for some constant c. We now use Lemma 3 from [2] with X replaced by 

2 g(Xi)+Yk-, Y by 2 g № ) ; b by aYh d by Ck-"z and t by bk(x). 
i = l i = p + l 

We then obtain that for constants K and L: 

sup (P(Bk(x))-P(Ak(x))) S Kk-"*+Lk-^E\ 2 g(Xi)\^Kk-i'2+<TL]f^P 

* i=p+1 r * 

where the last inequality follows from E 
1 i 

2 g(*i) ~ u by the moment 
Yq—p 

inequality and the independence of the Xt's together with Eg(X^)=0. Inserting 

this result into the l.h.s. of (15), after remarking that j / ^ ^ s „ , and using 

(13), one arrives at the desired order bound 0(Ye„), completing the proof of (i.A). 

Proof of (i.B). From (8) and (14) it follows that 

( 1 6 ) P ( | I I I | > [m] S [ C 2 8 - ^ ] ] S 0{Yen)+ . ' 
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Using (7) and the fact that max \m—k^kc^, one obtains: 

' ( l - T ^ r - i l l l ^ l - ^ - . i m = * ) . ? ; . 

- ' ( ¡ S S № l | > s ' ( ¡ S . H « * * . ' • 

Since 2g(Xi) , m = 1,2,..., forms a martingale, the Kolmogorov inequality 
«'=1 

yields that 

i n s . > s -

= 4clqkeJ(k-iy = 

showing that the r.h.s. of (16) is of the order 0(fen). 

Proof of (i.C). Using the same reasoning as in the proof of (i.B) and remem-
bering that <5„ = 1 if [WT](1 — CiB^^Ln, one has: 

I > ( | I V | [BT] S [ C 2 8 - ^ ] ) S 

- 2 p fmax | 2 2 Xj)\ > < T ^ E " ( f c - 1 ) ) P([nT] = k)+o(iVn). 

m j— 1 
Further, it is well-known that Vm— 2 2 Xj)> P + U • and also 

J-p ¿=1 K 
Wk = 2 ^Wi, XJ), k=\, 2,..., j— 1 are martingales. An application of the Kol-

i = l 
( 4 + 5 ) mogorov inequality and a theorem in [8] lead to I denote —-— by si 

Pfmax \ 2 J2MXi, Xj)\ > < 7 ^ ( f e ~ 1 ) ) S 2s<J-s{k-\)-°(ken)-^E\Vq\* ^ \pSmS9 'j=p f=i I ) 

^K(k-l)-°(kenrsl2 iElWj-A'^K'ik-iy'iksJ-^iq-p + Uq 
J=p . . . 

where K and K' are constants. A short computation, using q—p^2kclE„ and 
q ^ k ( l +c1e„), yields the desired order bound 0(/e„). To complete the proof of 
(i), we have to show that [m] can be replaced by m. An application of Lemma 1 of 
[7] yields that it is sufficient to prove that for some constant C 
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That (17) holds follows from Lemma 2 with Xn=Y„=m and k= 1, checking by 
(6) that (1) and (2) are satisfied. 

Proof of (ii). As above, it can be shown that [WT] may also be replaced by 
Ln. We take X„=Ln, Yn=m and k—\ in Lemma 2.Since (1) and (2) then coincide 
with (5) and (6), the proof of (ii) is complete. 

Proof of (iii). We first show that 

4or2 - 1 e s . ) = o ( / ï ) with 
J CnO 

Using that n&%=4a*+ 
« - 1 

Eij/2(X1, X2), this follows from condition (6) after 

easy manipulation. Since 

2a - 1 Y 4<72 - 1 C 2 e„)=0( / £ n ) 

a lemma of [7] makes it possible to go from (ii) to (iii). This finishes the proof of 
the theorem. 

We close with a result concerning the case when the indices are independent 
of the basic sequence. The details of the proof are of course simpler than in the 
general case (for instance, there is no need for the decomposition of U„) and there-
fore are not given here. 

Theorem 2. Let the assumptions of Theorem 1 be fulfilled with (5) deleted and 
(7) replaced by: Ln, T and Xk, k = 1, 2, ... are independent for each « = 1,2, .... 
Then 

(a) if / ¡ ¡ j =0(Y7„), the results (i), (ii) and (iii) of Theo-

rem 1 hold; 
[HT] 

L 
(b) if P [——< 1 — a)=0(/e„) for some constant a< 1, the results (ii) and (iii) 

^ [HT] ) 
of Theorem 1 hold. 
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