On the joint Weyl spectrum. II

MUNEO CHŌ

Dedicated to Professor Satoshi Kotō in token of gratitude

1. Introduction

In [3], we studied the joint Weyl spectrum for a commuting pair. In this paper we shall show that the Weyl theorem holds for a commuting pair of normal operators.

Let *H* be a complex Hilbert space with the scalar product (,) and the norm $\|\cdot\|$. Let B(H) be the algebra of all bounded linear operators on *H* and C(H) the algebra of all compact operators in B(H).

Definition 1. Let $T=(T_1, T_2)\subset B(H)$ be a commuting pair. Taylor joint spectrum $\sigma(T)$ of T is defined by $\sigma(T)=\{z=(z_1, z_2)\in \mathbb{C}^2: \alpha(T-z) \text{ is not invertible on } H\oplus H\}$, where

$$\alpha(T-z) = \begin{pmatrix} T_1 - z_1 & T_2 - z_2 \\ -(T_2 - z_2)^* & (T_1 - z_1)^* \end{pmatrix}.$$

Definition 2. Let $T = (T_1, T_2) \subset B(H)$ be a commuting pair. The joint Weyl spectrum $\omega(T)$ of T is defined by

 $\omega(T) = \bigcap \{ \sigma(T+C) \colon C = (C_1, C_2) \subset C(H) \text{ and } T+C = (T_1+C_1, T_2+C_2) \}$

is a commuting pair}.

 $z=(z_1, z_2)$ in C² is said to be joint eigenvalue of $T=(T_1, T_2)$ if there exists a non-zero vector x such that

$$T_i x = z_i x$$
 $(i = 1, 2).$

 $\sigma_p(T)$ is the set of joint eigenvalues of T.

Received November 10, 1986 and in revised form August 26, 1987.

M. Chō

 $z=(z_1, z_2)$ in C² is said to be joint residual eigenvalue of $T=(T_1, T_2)$ if there exists a non-zero vector x such that

$$T_i^* x = \bar{z}_i x$$
 $(i = 1, 2).$

 $\sigma_r(T)$ is the set of joint residual eigenvalues of T.

For a commuting pair $T = (T_1, T_2)$, $\sigma_{pf}(T)$ is the set of joint eigenvalues of finite multiplicity, $\sigma_{rf}(T)$ is the set of joint residual eigenvalues of finite multiplicity, $\sigma_{pfi}(T)$ is the set of isolated points in $\sigma(T)$ which are joint eigenvalues of finite multiplicity and $\sigma_{rfi}(T)$ is the set of isolated points in $\sigma(T)$ which are joint residual eigenvalues of finite multiplicity.

For any operator S on H, we denote by N(S) the null space of S.

2. Theorem

Theorem A (VASILESCU [6]). For a commutating pair $T=(T_1, T_2)$, $\alpha(T)$ is invertible if and only if

$$\beta(T) = \begin{pmatrix} T_1 & -T_2^* \\ T_2 & T_1^* \end{pmatrix}$$

is invertible on $H \oplus H$.

Theorem B (Chō and TAKAGUCHI [3]). For a commuting pair $T=(T_1, T_2)$,

 $\sigma(T) - \omega(T) \subset \sigma_p(T) \cup \sigma_r(T).$

Lemma 1. Let $T=(T_1, T_2)$ be a commuting pair. Then

 $\sigma(T) - \sigma_{pf}(T) \cup \sigma_{rf}(T) \subset \omega(T).$

Proof. Let $z=(z_1, z_2)$ be a joint eigenvalue of infinite multiplicity. Let $C==(C_1, C_2)$ be in C(H) such that $T+C=(T_1+C_1, T_2+C_2)$ is a commuting pair. For a infinite orthonormal sequence $\{x_n\}$ in $\{x: T_ix=z_ix \ (i=1, 2)\}$, we may assume that there exist vectors y_1 and y_2 such that $\lim C_i x_n = y_i \ (i=1, 2)$. If

$$\beta(T+C-z) = \begin{pmatrix} T_1 + C_1 - z_1 & -(T_2 + C_2 - z_2)^* \\ T_2 + C_2 - z_2 & (T_1 + C_1 - z_1)^* \end{pmatrix}$$

is invertible, then

 $\lim (x_n \oplus 0) = \beta (T + C - z)^{-1} (y_1 \oplus y_2).$

It is a contradiction to the choice of $\{x_n\}$. So it follows, by Theorem A, that $z \in \omega(T)$.

Let $z=(z_1, z_2)$ be a joint residual eigenvalue of infinite multiplicity. Then for an infinite orthonormal sequence $\{x_n\}$ in

$$\{x: T_i^* x = \bar{z}_i x \ (i = 1, 2)\},\$$

we may assume that there exist vectors y_1 and y_2 such that

 $\lim C_i^* x_n = y_i \quad (i = 1, 2).$

If $\beta(T+C-z)$ is invertible, then

that is the

$$\lim (0 \oplus x_n) = \beta (T + C - z)^{-1} (-y_2 \oplus y_1).$$

It is a contradiction. So it follows that $z \in \omega(T)$.

So the proof is complete by Theorem B.

Next following Baxley we consider the following condition \mathscr{C}_1 : If $\{z_n\}$ is an infinite sequence of distinct points in $\sigma_{pf}(T) \cup \sigma_{rf}(T)$ and $\{x_n\}$ is any sequence of corresponding normalized joint eigenvectors, then the sequence $\{x_n\}$ does not converge.

Lemma 2. If a commuting pair $T = (T_1, T_2)$ satisfies \mathscr{C}_1 , then $\sigma(T) - (\sigma_{pfi}(T) \cup \sigma_{rfi}(T)) \subset \omega(T).$

Proof. We have the identity

$$\sigma(T) - \left(\sigma_{pfi}(T) \cup \sigma_{rfi}(T)\right) = \\ \left(\sigma(T) - \left(\sigma_{pf}(T) \cup \sigma_{rf}(T)\right)\right) \cup \left(\left(\sigma_{pf}(T) \cup \sigma_{rfi}(T)\right) - \left(\sigma_{pfi}(T) \cup \sigma_{rfi}(T)\right)\right).$$

So, by the above lemma, it will be sufficient to prove that $z=(z_1, z_2)$ is in $(\sigma_{pf}(T)\cup\sigma_{rf}(T))-(\sigma_{pfi}(T)\cup\sigma_{rfi}(T))$ and not in the closure of $(\sigma(T)-(\sigma_{pf}(T)\cup\sigma_{rf}(T)))$, then z is in $\sigma(T+C)$ for every $C=(C_1, C_2)$ such that $T+C=(T_1+C_1, T_2+C_2)$ is a commuting pair.

Assume that z is in $(\sigma_{pf}(T)\cup\sigma_{rf}(T))-(\sigma_{pfi}(T)\cup\sigma_{rfi}(T))$. Then there exist $z_n=(z_1^n, z_2^n)$ (n=1, 2, ...) in $\sigma_{pf}(T)$ or in $\sigma_{rf}(T)$ such that $z_n \neq z_m$ $(n \neq m)$ and $\lim z_n = z$. Suppose that the z'_n 's are in $\sigma_{pf}(T)$, then we can consider a sequence $\{x_n\}$ of unit vectors such that $T_i x_n = z_i^n x_n$ (i=1, 2) for every *n*. Of course, we can suppose, without loss of generality, that there exist vectors y_1 and y_2 such that $\lim C_i x_n = y_i$ (i=1, 2). If, for $T+C-z=(T_1+C_1-z_1, T_2+C_2-z_2)$, $\beta(T+C-z)$ is invertible, then

$$\lim (x_n \oplus 0) = \beta (T + C - z)^{-1} (y_1 \oplus y_2).$$

It is a contradiction to the condition \mathscr{C}_1 . So it follows that $z \in \omega(T)$.

When $\{z_n\}$ is in $\sigma_{rf}(T)$, then we can prove that z belongs to $\omega(T)$ in a similar way (see the proof of the lemma above).

So the proof is complete.

Next we shall show that the Weyl theorem holds for a commuting pair of normal operators. We need the following theorem. An easy computation shows that the theorem holds:

Theorem C. Let $T = (T_1, T_2)$ be a commuting pair of normal operators. Then $\alpha(T)$ is invertible if and only if $T_1^*T_1 + T_2^*T_2$ is invertible.

12

1.

Theorem. Let $T = (T_1, T_2)$ be a commuting pair of normal operators. Then the Weyl theorem holds, that is,

$$\sigma(T) - \sigma_{pfi}(T) = \omega(T).$$

Proof. Since $T = (T_1, T_2)$ is a commuting pair of normal operators, T satisfies the condition \mathscr{C}_1 . So, by Lemma 2, it suffices to prove that

$$\sigma(T) - \sigma_{pfi}(T) \supset \omega(T).$$

Let us consider a point in $\sigma_{pfi}(T)$. We may assume without loss of generality that this is (0, 0). We define $N = N(T_1^*T_1 + T_2^*T_2)$, then dim $(N) < \infty$. Let P denote the orthogonal projection of H onto N. Then P is a compact operator and $T_iP = = PT_i = 0$ (i=1, 2). Hence

$$T+Q = (T_1 + (1/\sqrt{2})P, T_2 + (1/\sqrt{2})P)$$

is a commuting pair of normal operators. Since (0, 0) is an isolated point of $\sigma(T)$, so using Theorem C for $T_1 - z_1$ and $T_2 - z_2$ in place of T_1 and T_2 , respectively, by continuity arguments we obtain that 0 is an isolated point in the spectrum of $T_1^*T_1 + T_2^*T_2$. It follows that

$$(T_1 + (1/\sqrt{2})P)^* (T_1 + (1/\sqrt{2})P) + (T_2 + (1/\sqrt{2})P)^* (T_2 + (1/\sqrt{2})P) = T_1^* T_1 + T_2^* T_2 + P$$

is invertible. So, by Theorem C, $(0, 0) \notin \sigma(T+Q)$ and thus $(0, 0) \notin \omega(T)$.

So the proof is complete.

Acknowledgment. We would like to express our cordial thanks to the referee and Professor T. HURUYA for their kind advice.

References

- J. BAXLEY, Some general conditions implying Weyl's theorem, Rev. Roum. Math. Pures Appl., 16 (1971), 1163—1166.
- [2] J. BAXLEY, On the Weyl spectrum of a Hilbert space operators, Proc. Amer. Math. Soc., 34 (1972), 447-452.
- [3] M. CHO and M. TAKAGUCHI, On the joint Weyl spectrum, Sci. Rep. Hirosaki Univ., 27 (1980), 47-49.
- [4] M. CHŌ and M. TAKAGUCHI, Boundary of Taylor's joint spectrum for two commuting operators, Rev. Roum. Math. Pures Appl., 27 (1982), 863-866.
- [5] V. ISTRATESCU, Introduction to linear operator theory, Dekker (New York, 1981).
- [6] F.-H. VASILESCU, On pairs of commuting operators, Studia Math. 62 (1978), 203-207.

DEPARTMENT OF MATHEMATICS JOETSU UNIVERSITY OF EDUCATION JOETSU, 943, JAPAN