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On commutativity and spectral radius property of 
real generalized "-algebras 

ZOLTÁN MAGYAR 

Introduction. Let A denote a Banach algebra over the real field throughout this 
paper. Of course, a complex algebra is a real algebra as well, although the spectra 
will change (cf. [1], p. 70). Assume we have a linear operation a—a* on A with the 
properties 

(i) a**=a, 

(ii) (ab)*=b*a*. 

Then A is called a *-algebra. If we replace (ii) by 

(iiO (ab)*=a*b* 
then we call A an auto-*-algebra. We say A is a generalized *-algebra if A is either 
a *-algebra or an auto-*-algebra (cf. [4], [6]). In such an algebra let 

AB = {a£A; a = a*}, Aj = {a£A; a = -a*}, AN = {a£A; aa* = a*a}. 

We call the elements of AH, Aj and AN self-adjoint, skew-adjoint and normal, res-
pectively. 

In [6] A is called Hermitian if each self-adjoint element has purely real spectrum 
and A is called skew Hermitian if the spectra of the skew-adjoint elements do not 
contain any non-zero real number (the spectrum is defined as follows: a complex 
number z belongs to Sp (x) if and only if z-l—x is not invertible in Alt where Ax 
is the complexification, and unitization if necessary, of A, see [1], p. 70). None of 
these properties implies the other one as simple examples show. This is a marked 
difference from the complex case. 

We shall retain the above definition of skew Hermitianness but we shall call A 
Hermitian if both properties are satisfied. 

Our main results then: 
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Theorem 1. If A is an Hermitian Banach auto-* -algebra then A/rad A is com-
mutative. 

Theorem 2. If A is an Hermitian Banach generalized *-algebra then r(a*a) ^r(a)2 

for any a£A, where r denotes the spectral radius. 

Remarks . If the ""-operation is the identical mapping then Theorem 1 reduces 
to a theorem of I. KAPLANSKY (see Thm. 8 in [ 2 ] ) and, indeed, that result is the 
starting point of our proof. We should emphasize that the significance of Kaplansky's 
theorem for Hermitian auto-*-algebras was first pointed out by T. W. PALMER 

in [4], though [4] contains a wrong proof assuming the unitary elements form a 
group, which is not true in an auto-*-algebra. On the other hand, the authors of [6] 
simply overlooked that the proof of their key Gelfand—Naimark type theorem 
(Theorem 2.3 in [6]) does not work for auto-*-algebras. Now our Theorem 1 implies 
that all results of [4] and [6] are true. 

Finally we shall include a version of Theorem 2 which answers a question in 
[6] (see Proposition 3 below). 

To prove our theorems we shall need the following simple lemmas. 

Lemma 1. If A is skew Hermitian then every skew-adjoint element has purely 
imaginary spectrum. 

Proof . Suppose to the contrary that a£Aj, z£Sp (a) and z is not imaginary. 
Then z can not be real, since A is skew Hermitian, and hence z2 is not real. Thus z 
and z® are linearly independent over R, and hence there are s, t£ R such that sz+ 
+ tz?=1. Then Sp(sa+ta^Sl , while sa+ta3 is skew-adjoint; this is a contra-
diction. 

Lemma 2. If A is an auto-*ralgebra then 

rad Aa = y4Hflrad A 

(see [1] for the concept of the Jacobson-radical). 

Proof . The containment" =>" follows at once from the "quasi-inverse-characte-
rization" of the radical (see [1], p. 125). 

Prove " c " . Consider an element a£ rad -'AB, and an irreducible representation 
p ofA ovei the real vector space X. show:'p(«)i=0':"(if this is true 
for all p then a£rad A). If p is irreducible for AH too,'then We are done. If p is not 
ineducible'tlieii for any non-trivM ^¿-ihva^tsiibs^)ace;M'siBi : ' 

M':— the linear span of p ( A j ) M : 

Then the relations ABAjCAj, AJAJC:AB imply p(AH)M'C.M' and p(AJ)M'<zM. 
Hence M+M' and MOM' i re invariant for •A^+ A]=A, and therefore X—M® 
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®M'. Now if M were not irreducible then one could find a non-trivial AB -invariant 
subspace L in M, on the other hand, X=L®L' and clearly L'cM', which is a 
contradiction. The same is true for M' since it is another invariant subspace. So 
we see p\Aa is a direct sum of two irreducible representations and hence p(a)=0. 

Lemma 3. Let A be an auto-*-algebra. Then 
Sp^W = SpA(h) for any heAB. 

Proof. If a self-adjoint element has a quasi-inverse (or inverse) in A, then this 
quasi-inverse (or inverse) is self-adjoint, too. Thus we get our statement using the 
well-known characterization of the spectrum (see [1], p. 70). 

Lemma. 4. Factorization by the radical does not effect the spectra except pos-
sibly for the number 0 in them. 

Proof. Use the "quasi-inverse-characterization" of the radical (see [1], p. 125) 
and the fact if JC has a left- and a right-quasi-inverse then x is quasi-invertible. 

Proof of Theorem 1. First observe that the "*" preserves the radical (use 
the characterizations of the radical from [1]). Hence ^4/rad A is a Banach auto-*-
algebra and it is Hermitian by Lemma 4. Thus we can assume A is semi-simple. 
In this case AB is semi-simple, too, by Lemma 2. If ||a||':= ||a*|| then || • ||" is another 
Banach algebra norm, hence by Johnson's theorem the two norms are equivalent 
(see [1], p. 130 for the proof of Johnson's theorem). Thus AB is closed. Using Lemma 
4 we see AB is a semi-simple Banach algebra in which every element has purely real 
spectrum. This implies, by Theorem 8 of [2], that 
(1) AH is commutative. 

Let h—k be the Gelfand transform on AB. It is injective, because AB is semi-
simple. Next we will show 
(2) if jeAj and / = 0 then j = 0. 
Consider a fixed jdAj for which j2=0. Let k£Aj be arbitrary and r£R. Since 
A is skew Hermitian, thus Sp (rj+k) is imaginary, and hence, using Lemma 3, 

we have 0^(rj+k)2=r(jk+kj)+k2, for y'2=0. This is true for any r, therefore 

jk+kj = 0, jk+kj=0. Thus (jkf =j(-jk)k=0, which implies (Jk)=0, jk=0. 
Since jk+kj=0, we have.jk=kj=0 for any k£A}. Now let a£A be arbitrary, 
and ft=(l/2)(a+a*), fc=(l/2)(a-a*). Then aj=(h+k)j=hj£Aj, and therefore 
jaj=0, (aj)2=0. We get from this Sp(a/)={0} for each a£A, and hence j=0 
for A is semi-simple. 

Next we want to show that 

(3) khk = k2h for any h(iAB, k£Aj. 
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Let g=hk—kh. Since k2£AB, thus k2h=hk2, and hence gk=—kg. Therefore 
(kg)2=k-(-kg)-g and hence (kg)*=-k2g2. Since k, g£A} and kg£AB, thus 
k2, g2 have non-positive real spectra, while (kg)2 has non-negative spectrum. Thus 
we can infer kg=0, kg=0, which is exactly (3). 

Now we will prove that 

(4) kh = hk for any h£AB, k£Aj. 

Let g=hk-kh. Then g2=hkhk-hk2h+khkh-kh2k=0 (use (3) for h, k in the 
1st and 3rd term, and for h2, k in the 4th term). Thus, by (2), we get g=0. 

Finally, we will show that 

(5) jk = kj for any j,k£Aj. 

Since jk,kj£AB, thus, by (4), jkj=j2k and kjk=k2j; therefore 0=kjkj—kj2k+ 
+jkjk—jk2j, in other words, m2=0 where m=kj—jk£AB. Thus m=0 and (5) 
is proved. 

The theorem is proved by uniting (2), (4) and (5). 

Remark. Since the complex radical of a complex algebra is the same as the 
real radical (cf. [1]), therefore Theorem 1 is valid for complex algebras, too. Of 
COUTS8) cnc should check that a complex Hermitian algebra is Hermitian in our 
sense as a real algebra. This follows from the fact if S is the complex spectrum of 
an element then the "real spectrum" is the set SUS. 

Proof o f T h e o r e m 2 . By Lemma 4 we may again assume A is semi-simple. 
But then, by Theorem 1, A is a *-algebra anyway. So let A be an Hermitian Banach 
*-algebra. Let p(x):=r(x*x)1/2 for all x£A. Now A satisfies the conditions of 
Lemma 3.1 from [6], therefore we can infer 

(6) p is an algebra-seminorm on A. 

The proof of Lemma 41.2 in [1] (see p. 225) yields in the real case that 

(7) if l€Sp(a) then p(a)s= 1. 
We assert that 

(8) 3p(a) s r(a) for all a£A. 

If r(a)=0 then this is clear. If /-(a)>0 then let b=r(a)~1a. We can choose a 
z€Sp(i>) such that |z| = l. Let c=(z+z)b-b\ Then 1 =(z+z)z-z 26Sp (c), and 
hence, by (7) and (6), we have 

1 ^ p(c) ^ \z+z\p(b)+p(bf ^ (2+p(b))-p(b), thus p(b) i? 1/3 

and (8) is proved. 
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Applying (8) to a" we get r (a)"=r (cf) s 3p (a"). Now use the submultiplicativity 
of p and tend with n to infinity. The theorem is proved. 

Remark. Differently from the complex case (cf. [5]), r(a* a)^r(a)2 does not 
imply A is Hermitian; e.g., if A — Q. (considered as a real algebra) and the * is the 
identical mapping then r(a*a)=r(a)2 for all a but A is not Hermitian. 

Proposi t ion 3. Let Abe a skew Hermitian Banach generalized *-algebra. Then 
r(a*a)=r(a)2 for any normal element a. 

Proof. Let a£AN be fixed. Let B be the second commutant of the set {a, a*}. 
Then B is a Banach algebra, closed under the involution and SpB (b)=Spx (b) 
for any b£B. Further, B is commutative for a is normal. Let / be a multiplicative 
linear functional on B. Let f(a)=u, f(a*) = v. Since A is skew Hermitian, thus, by 
Lemma 1, a—a* and a2—(a*)2 both have imaginary spectrum, and hence u—v and 
u2— v2 are imaginary numbers. Thus if u^v then u+v is real and v=u. In any 
case |t/| = |«|, and hence \f(a*a)\ = \f(a)\z. This is true for any multiplicative linear 
functional / on B, therefore r(a*a)=r(a)2. 

References ' 

[1] F. F. BONSALL and J. DUNCAN, Complete Normed Algebras, Springer (Berlin—Heidelberg— 
New York, 1973). 

[2] I. KAPLANSKY, Normed algebras, Duke Math. J., 16 (1949), 399—418. 
[3] S. SHIRALI and J. W. M. FORD, Symmetry in complex involutory Banach algebras, II. Duke 

Math. J., 37 (1970), 275—280. 
[4] T. W. PALMER, Real C*-algebras, Pacific J. Math., 35 (1970), 195—204. 
[5] V. PTAK, Banach algebras with involution, Manuscripta Math., 6 (1972), 245—290. 
[6] S. H. KULKARNI and B. V. LIMAYE, Gelfand-Naimark theorems for real Banach *-algebras, 

Math. Jap., 25 (1980), 545—558. 

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES 
REALTANODA U. 13— IS 
1053 BUDAPEST, HUNGARY 


