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On conimutativity and spectral radius property of
real generalized *-algebras

ZOLTAN MAGYAR

. Introduction. Let A denote a Banach algebra over the real field throughout this
paper. Of course, a complex algebra is a real algebra as well, although the spectra
will change (cf. [1], p. 70): Assume we have a linear operation g—~a* on 4 with the
properties

() a**=a,

@ii) (ab)*=>b*a*
Then A4 is called a *-algebra. If we replace (ii) by
i) (ab)*=a*b*

then we call 4 an auto-*-algebra. We say A is a generalized *-algebra if 4 is either
a *-algebra or an auto-*-algebra (cf. [4], [6]). In such an algebra let

Ag ={acAd; a=a*), A;={acd; a=—a*}, Ay={acA; aa* —aa}

We call the elements of 4y, A, and Ay self-adjoint, skew-adjoint and normal, res-
pectively.

In [6] A4 is called Hermitian if each self-adjoint element has purely real spectrum
and A is called skew Hermitian if the spectra of the skew-adjoint elements do not
contain any non-zero real number (the spectrum is defined as follows: a complex
number z belongs to Sp (x) if and only if z.1—x is not invertible in A4;, where A4,
is the complexification, and unitization if necessary, of 4, see [1], p. 70). None of
these properties implies the other one as simple examples show. This i is a marked
difference from the complex case.

We shall retain the above definition of skew Hermitianness but we shall call A
Hermitian if both properties are satisfied.

Our main results then:

" Received November9, 1984 and-in revised form May 25, 1988.



340 | e R Z. Magyar

Theorem 1. If A is an Hermitian Banach auto-*-algebra then Afrad A is com-
mutative.

Theorem 2. If Ais an Hermitian Banach generalized *-algebra then r(a*a) =r(a)?
for any a€ A, where r denotes the spectral radius.

Remarks. If the *-operation is the identical mapping then Theorem 1 reduces
to a theorem of I. KAPLANSKY (see Thm. 8 in [2]) and, indeed, that result is the
starting point of our proof. We should emphasize that the significance of Kaplansky’s
theorem for Hermitian auto-*-algebras was first pointed out by T. W. PALMER
in [4], though [4] contains a wrong proof assuming the unitary elements form a
group, which is not true in an auto-*-algebra. On the other hand, the authors of [6]
simply overlooked that the proof of their key Gelfand—Naimark type theorem
{Theorem 2.3 in [6]) does not work for auto-*-algebras. Now our Theorem 1 implies
that all results of [4] and [6] are true.

* Finally we shall include a version of Theorem 2 which answers a question in
{6} (see Proposition 3 below).
To prove our theorems we shall need the following simple lemmas.

Lemma 1. If A is skew Hermitian then every skew-adjoint eIement has purely
imaginary spectrum. : :

Proof. Suppose to the contrary that a€4;, z€Sp (@) and z is not imaginary.
Then z can not be real, since 4 is skew Hermitian, and hence 2 is not real. Thus z
and 23 are linearly independent over R, and hence ‘there are s, t€R such that sz+
+1z2=1. Then Sp (sa+ ta3)91 while sa+1a® is skew-ad_]omt this is a contra-
diction.

Lemma 2. If A is an auto-*-algebra then. *
. rad Ag —AgﬂradA _
(see [1] for the concept of the Jacobson-radlca])

~ Proof. The contamment > follows at once from the qi.lasi-'inVerse-characte‘-

rization” of the radical (see [1], p. 125). : R '

Prove “‘c”. Consider an element acrad AH, and an 1rreduc1ble representatlon

- p of A ovet the real vector space X. Thén we havé 1o show p(a) 0°(if this is true

for all p then acrad A). If p is irreducible for Ay too,’ then we are done If p lS not
irreducible thien for any non-trivial 4z -mvanant subspace M set ’

= the linear span of p(A ,)M

Then therelations Ag 4, 4;, A; 4;C Ay imply p(Ag) M’ M’ and p(4,)M’'c M.
Hence M+M’ and MN M’ dre invatiant for: -dg+A;=~4; and therefore. X=Mo
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@®M’. Now if M were not irreducible then one could find a non-trivial Ay -invariant
subspace L in M, on the other hand, X=L@L’ and clearly L'CcM’, which is a
contradiction. The same is true for M’ since it is another invariant subspace So
we see pl,_ is a direct sum of two irreducible representations and hence p(a)=0.

Lemma 3. Let A be an auto-*-algebra. Then
SPag (h) =Spa(h) for any hcAy.

Proof. If a self-adjoint element has a quasi-inverse (or inverse) in A4, then this
quasi-inverse (or inverse) is self-adjoint, too. Thus we get our statement .using the
well-known characterization of the spectrum (see [1], p. 70).

Lemma. 4. Factorization by the radical does not effect the spectra except pos-
sibly for the number O in them.

Proof. Use the “quasi-inverse-characterization™ of the radical (see [1], p. 125)
and the fact if x has a left- and a right-quasi-inverse then x is quasi-invertible.

Proof of Theorem 1. First observe that the “* preserves the radical (use
- the characterizations of the radical from [1]). Hence 4/rad 4 is'a Banach auto-*-
~algebra and it is Hermitian by Lemma 4. Thus we can assume A4 is semi-simple.
In this case Ag is semi-simple, too, by Lemma 2. If [a]|’:=|a*]| then | .|’ is another
Banach algebra norm, hence by Johnson’s theorem the two norms are equivalent
(see [1], p. 130 for the proof of Johnson’s theorem). Thus Ay is closed. Using Lemma
4 we see Ay is a semi-simple Banach algebra in which every element has purely real
spectrum. This 1mphes, by Theorem 8 of {2], that

)) Ay is commutative.

Let h-»ﬁ be the Gelfand transform on Ag. It is 1nJect1ve, because Ay is semi-
simple. Next we will show
)] if j€d; and =0 then j=0.
Consider a.fixed j€A4; for which j*=0. Let k€A, be arbitrary and reR. Since
A is skew Hermitian, thus Sp (rj+k) is imaginary, and hence, using Lemma 3,

P P

we have 02(U+k)’-—r( Jk +kJ)+k2 for j2=0. This is true for any r; therefore
N
jk+kj =0, jk+kj=0. -Thus: (_]k)z“](— jk)k=0, which implies ( JB)=0, jk=0.
Since jk+kj=0, we have jk=kj=0 for any k€A,. Now let ac4 be arbitrary,
and h=(1/2)(a+a"), k=(1/2)(a— a*). Then aj=(h+k)j=hjc4,, and therefore
Jjaj=0, (aj)*=0. We get from this Sp (aj)={0} for each aEA and hence j=0

for A is semi-simple.
Next we want to show that

3) khk = k*h for any h€dy, keAd,.
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Let g=hk—kh. Since k”EAH, thus k®h=hk? and hence gk=—kg. Therefore
(kg)*=k-(—kg)-g and hence (kg) —k2g2. Since k,g€A, and kg€Ay, thus
k2, g* have non-positive real spectra, while (kg)? has non-negative spectrum. Thus
we can infer I?E =0, kg=0, which is exactly (3).

Now we will prove that
4 kh =hk for any h€Ay, k€A;.

Let g=hk—kh. Then g®=hkhk—hk®h+khkh—kh®*=0 (use (3) for h, k in the
1st and 3rd term, and for A2, k in the 4th term). Thus, by (2), we get g=0.
Finally, we will show that

(5) - Jk=kj for any j,keA,.

Since jk, kj€ Ay, thus, by (4), jkj=7*k and kjk=Kk?; therefore 0=Fkjkj—kj*k+
+jkjk—jk%j, in other words, m*=0 where m=kj—jk€Ay. Thus m=0 and (5)
is proved.

The theorem is proved by uniting (2), (4) and (5).

Remark. Since the complex radical of a complex algebra is the same as the
real radical (cf. [1]), therefore Theorem 1 is valid for complex algebras, too. Of
course, one should check that a complex Hermitian algebra is Hermitian in our
sense as a real algebra. This follows from the fact if S is the complex spectrum of
an clement then the “real spectrum” is the set SUS.

Proof of Theorem 2. By Lemma 4 we may again assume A is semi-simple.
But then, by Theorem 1, 4 is a *-algebra anyway. So let 4 be an Hermitian Banach
*.algebra. Let p(x):=r(x*x)'? for all x€A4. Now A satisfies the conditions of
Lemma 3.1 from [6], therefore we can infer

()] p is an algebra-seminorm on A.
The proof of Lemma 41.2 in [1] (see p. 225) yields in the real case that

@) if 1€Sp(a) then p(a)=1.
We assert that ‘
(8) 3p(a) = r(a) for all acA.
If r(9)=0 then this is clear. If r(a)>0 then let b=r(s)~'a. We can choose a

~ z€Sp (b) such that |z|=1. Let c=(z+Z)b—b% Then 1=(z+Z2)z— 2%¢Sp (¢), and
hence, by (7) and (6), we have

1= p() = |2+2lp(b)+p () = (2+P(b)) p(b), thus p(d)=1/3
and (8) is proved. :
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Applying (8) to a” we get r(a)"=r(a*)=3p(a"). Now use the submultiplicativity
of p and tend with n to infinity. The theorem is proved.

Remark. Differently from the complex case (cf. [5]), r(a*a)=r(a)? does not
imply A4 is Hermitian; e.g., if A=C (considered as a real algebra) and the * is the
identical mapping then r(a*a)=r(a)® for all a but 4 is not Hermitian.

Proposition 3. Let A be a skew Hermitian Banach generalized *-algebra. Then
r(a*a)=r(a)® for any normal element a.

Proof. Let acAy be fixed. Let B be the second commutant of the set {a, a*}.
Then B is a Banach algebra, closed under the involution and Spg (b)=Sp, (b)
for any b€B. Further, B is commutative for a is normal. Let f be a multiplicative
linear functional on B. Let f(@)=u, f(a*)=v. Since A is skew Hermitian, thus, by
Lemma 1, a—a* and a?—(a*)? both have imaginary spectrum, and hence u—v and
u?—v® are imaginary numbers. Thus if u>v then u+4v is real and v=4#. In any
case |v|=|u|, and hence | f(a*a)|=| f(a){%. This is true for any multiplicative linear
functional f on B, therefore r{a*a)=r(a)2
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