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Fourier—Stieltjes transforms of vector-valued
measures on compact groups

V. S. K. ASSIAMOUA and A. OLUBUMMO

1. Introduction. In recent years, various studies have shown the growing im-
portance of vector-valued measures as can be seen for instance from [1], [3], [4] and
many others as well as the numerous references contained in them. To give just one
specific example: the Fourier transforms of the distributions studied by BoNNET [2]
in generalizing the Bochner theorem to noncommutative Lie groups turn out to be
vector-valued measures.

In the present paper, we study the Fourier—Stieltjes transforms of vector-valued
measures defined on an infinite compact group. Let G be an infinite compact group
with X as its dual object. We consider measures m on G with values in a Banach
space E. Following AsSIAMOUA [1], we define the Fourier—Stieltjes transforms of
such measures and obtain analogues of the results in § 28 of HEwrtT and Ross [6].
Among other results, we prove the celebrated Lebesgue theorem and the Parseval—
Plancherel—Riesz—Fischer theorem.

2. Preliminaries
-2.1. Definition. Let S be a locally compact Hausdorff space and ¢ (S) the
real (resp. complex) vector space of all continuous real (resp. complex) valued func-
tions on S with compact supports. A vector measure on S with values in a real (resp.
complex) normed linear space E is any linear mapping m: X'(S)—~E with the

following property: for every compact set KC.S, there exists a positive constant ag
such that if feo#'(S) and supp fcK, then ([3], 2, no. 1)

Im(Nls = awsup {LfQ)]: 1€K). |
We note that if S is compact, then 5¢'(S) is equal to the vector space €(S, R) (resp.
%(S, C)) of all continuous functions on S into R (resp. C)-and a vector measure
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on S is a linear mapping m: 5 (S)—E which is continuous in the uniform norm
topology since in this case, there exists a constant g=as such that

Im(Nlie = allfl, feX(S),

where | fll=sup {| f(?)}: €S} is the uniform norm on #(S, R). If m: 4 (S)—~E
is a vector measure, we shall write

m(f) = [f(Odm() or f fdm.
S

2.2. Definition. An E-valued vector measure is said to be dominated if there
exists a positive (real-valued) measure u such that

I/ fdml, = [1/1du, fex(s).

If m is dominated, then there exists a smallest positive measure |m| called the variation
or the modulus of m that dominates it. _

A positive measure is said to be bounded if it is continuous in-the uniform norm
topology of #°(S) and a dominated vector measure is said to be bounded if it is
dominated by a bounded positive measure. _

Thus every dominated vector measure on a compact space is bounded. (For
these properties of vector measure and the general theory of vector integration, the
reader is referred to [3] or [4].) We note also that if E is a Banach space and S=G
is a group, then the space M1(G, E) of all bounded E-valued measures on G is a
Banach space with the norm

lmll = [ 1o diml,
where x¢ is the characteristic function of G.

3. The Fourier—Stieltjes transform. We shall now define the Fourier—Stieltjes
transform of a vector-valued measure on a.compact group G and obtain some of the
propertles of such transforms. :

3.1. Definition. Let G be a compact infinite group and X its dual object
For each o€Z, we choose once and for all, an element U in o, denote its- Te-
presentation space by H,, fix a conJugatlon D, on H, and put U(")—D U"”D,, ([6],
27.28. C). :

As in [1], we define the Fourter——StzeItjes transform of a vector-valued measure
m: G—~E by

(o)) = f OE nydm(®), & DEH, XH,.

Let E be a Banach space. Then the mapping (&, #)—>(6)(€, ) from H,XH, into
the space &(H,,X H,, E) of the E-valued continuous sesquilinear mappings on
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‘H,X H,, equipped with the norm .
@) = sup{l @) Mle: 1¢la, =1, Inlla, =1}

is continuous ([1], 4.1).
Following HEWITT and Ross [6], 28.24, we shall write

SC,E)= [ #(H,XH,, E).
L3

It is easy to see that, with addition and scalar multiplication defined coordinatewise,
& (Z, E) is a vector space. For #¢%(Z, E), we put

2]l = sup {lP(0)]: c€Z}
and denote by &_(Z, E) the space {P€F(Z, E): | D|.<<}. Also we denote by
F0(Z, E) the space
{9 %.(Z, E): {o€Z: ®(0) = O} is finite}
and by %(Z, E) the épabe '
{9€%.(Z, E): for every & >0, {o€Z: |P(o)] >¢} is finite}.

The next theorem is an analogue of HEwitT and Ross [6], 28.25.

3.2. Theorem. ‘

(1) The mapping & ||l is a norm on %..(X, E) and %.(Z, E) is a Banach

space with respect to this norm. _

(ii) S (2, E) is dense in %(Z, E).

Proof. (i) Itis clear that ¢—||P||.. is a norm. Let {®,} be a Cauchy sequence

&.(Z, E). Then'for every a€ X, {®,(0)} is a Cauchy sequence in & (H,XH,, E).

Since ¥ (H,X H,, E) is a Banach space, {®,(¢)} converges to. an element $(o) in
S (H,X H,, E). An argument similar to [6], 28.25 shows that ®=(&(c¢)) belongs
to % (Z, E) and that {&,} tends to &.

(i) Let @ be an element of S(Z, E). For n=1,2,..., define the element
&, of .5‘.’,0(2 E) by o

' 45(0') if 2@l = 1/n,

@,,(0') = { : -
0 if [[@(o)] < 1/n.

Then plainly {&,} converges to & in %(Z, E).

. 33 Lemma Every ®(0)€e¥(H,XH,,E) is determmed by the. a”; elements
a;=9(0)(;, &) of E where d, is the finite dimension of H; and (&, &a; ... &4) i

an orthonormal bas:s of H,. More precisely, we have o (0)= z d a;’,fi;’,(a) where
()= (U%, £, -

7
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(Note that for a complex function u, # is the Fourier transform that is- the
Fourier—Stieltjes transform of the measure uA A being the normalized Haar measure
on G.)

Proof. We have »
L
e = 3 B

. hj=1
on putting

d, d,
&= Zajfj and n = Zﬂiél
j=1 i=1
Now for a coordinate function uj;: t-(U®, ¢;, &), we have (by [6], 27.19)
50D = [TOLugOad =3 [aan@)un)dio) = 1d.aB.
G st G .

Thus . L .
2(0)(¢&, n) = 2 a;Baf; = 3 d,af(a) (& n)af;.

Hence

(o) = Z' d,a(pifj(0).
i,j=1

3.4. Definition. We shall write % (Z, E) for the vector space
{oc7C, E): %;dag'- 18(0) (&5 ENNE <==}-
4 s J

3.5. Lemma. Suppose that E is a Hilbert space. jThen.th'e mapping

i (¢’ T) <d> W> = Zd 2 <¢(a)(fj’ l) q’(a)(fj’ :i)>

1, j=1

is an inner product on .9;(27, E).
Proof

22 4, 20)(¢;, &), P@)EstN =35 d"2l|45(0)(€,, .)Ilad"zllY’(U)(éj, .)"ES
=22 (d:19(0)(&; DNPY2 2 3 (d ¥ ()5 E)PH? <o

This shows that the mapping is well defined and the proof can be easily completed.

4. Properties of Fourier—Stieltjes transforms. Throughout this section, we adopt

the following notation: if X is a subset of M 1(G, E), we shall denote by X the set

{t: ucX). In the ‘next two theorems we obtam analogues of Theorems 28 36 and
28:39.(i,-ii) of [6), respecuvely - g :

‘4.1, T-heorem.«vThe mapping m— from M\(G, E) into "IS’;;(Z‘,'E”)' is linear,

‘injective and continuous. . o
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Proof. That mi—m 1s hnear is clear We know that it is one-to-one by [1],
Lemma 4. 1 5. Now B : :

(@)l = sup {||m(&5(£, Dl 1Els, = 1 and s, = 1) =
= sup{||f O 1) dm(0);: 1€lm, = 1. Inls, = 1} = fodlml

since U is unitary. Thus [#(o)l =|ml, c€Z and |#]-=|m|. Hence M (Z, E)'
and the mapping is continuous.

4.2. Definition. Let (G, E) denote complex Banach space of all continuous
E-valued functions on G with pointwise operations and norm given by |f]=
=sup {|| f(¢)lg: t€G}. For ¢€X and a fixed orthonormal basis (¢;, &, ..., ;) in
H,, J°(G) will denote the subspace of 4(G, C) generated by the coordinate functions

- We set” £7(G, E)={x¢: x€E and @€ S5°(G)} and define S (G, E) to. be sub-
space of %(G, E) generated by the union U £°(G; E). ’ :

4.3. Theorem. ‘ .
() For each o¢X, we have S°(G, E)=%(H,XH,, E).
NN
Proof. (i) The result readily follows from Lemma 3.3 since
. 9(O)EH(H,XH,, E) =
< afs in 'E and- u ’s in- J(G C) such that (o) = 3 d, a,,uu(o)a
o = 0(0)e5°(G, E). '
(i) Suppose that fc #(G,E). Then f may be written f= }:" o o,€C,
i=1

iJo,?

0,€Z and f, = 3 x5, x,€E, uj€ (G, C). Thus
j=1

f©@) s &m) = Z' o ij 451(0) (415 E) # 0 onlyif o=0;, i=1,2,.0,m.
Hence feS(E, E). ' S e
Conversely, if (peym(}: E), then the set P= {062 di(a);éO} is finite. More-
over, ¢ach di(a)— Z’ d,afyif;(c): Putting f=23d, é'-quu”', we get f=9o
and so #(G, )= 9:,0(2 E). : I o
4.4, Lemma, The space J(G E)is densé in (G, E) i

Proof. We identify #(G, E) with #(G, C)®.E, the m_]ectxve tensor product of
#(G, C) and E, i.e. the tensor product carrying the norm

" 2 xi‘Pi"b""“‘ " ‘2‘”‘Pi®xs"c =sup {IZ u(xi)”(‘/’:)[3 Jul = L ol = 1},
1=i=n 1=j=n i 1=i=n -

id
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u€E’, vc 5 (G, C)’ where E’ and # (G, C)’ are the topological duals of E and # (G, C),
respectively ([7], 44.2 (3)). Since 4 (G, C) is dense in € (G, E), ([6], 27.39), it follows
that J4(G, E) is dense in %(G, E), because ¥(G, E) is norm isomorphic to
€ (G, O)'®,E, the completion of 4(G, C)®,E, ([7], 44.7 (2)).

4.5. Theorem. The space L,(G, E) of the Fourier transforms of Haar-integrable
Junctions f: G—E is dense in (2, E).

Proof. The space £ (G, E) is dense in L,(G, E) because # (G, E) is dense in
%(G, E) and ¥(G, E) is dense in L,(G, E) ([4], 7.16). Since S (@):5«3.,(2, E)
is denise in %(Z, E), £,(G, E) which contains # (G, E), is dense in %(Z, E).

4.6. Corollary. If fecL,(G,E), then the set {ccZ: f(6)#0} is countable.

4.7. Lemma. Let L,(G, E) denote the Banach space of the Haar-square integ-
rable functions on G into E. If f€L,(G, E), then

f= ng,f(a)(f,,f.-)ui-’,--

Proof. If f=xh, xcE and h€Ly(G, C), then
f= Ez; d, . :2;'1 ([ xh(ag,(e) dA)) ug;
(use [6], 27.40 for k). Hence f= ; d, : ,2=1 ([ f@)ag (1) da(9) ug;. Since Ly(G, O)QE
is dense in Ly(G, E) it is clear that the last equality holds for fcL,(G, E). Now,
. [roug@die) = [ (?§“’éj, ENS (O dAt) = f(0) (¢ &)
Hence f=2d, > f©)(E), E)u-
Finally, we obtain the analogue of [6], 28.43.

4.8. Theorem. Assume that E is a Hilbert space. Then the mapping f—f is
an isometry from L,(G, E) onto %,(Z, E) and so &3(Z, E) is a Hilbert space.

‘Proof. If E is a Hilbert space, than L(G,E) is a Hllbert space so that
JeLy(G, E) if and only if

1118 = (3 2 datpsyy 3 2 d,a:,u:?;>,
where af,=/f(0)(¢;, &), 1=i, j=d,. Hence |
3= 3 2 Blalil = 3 3 d 1@ i
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since d, ||u,,u2 1 ([6], 27.40). Thus fc %(Z, E) and
170g = 2 d, 1 f()(&;, EDIE = I £ 113

Conversély, let €% (2, E). Then sz,lldﬁ(a)(éj, E)2<c and hence
a 2 J N

the set {®(0)(¢;, £)=0} is countable, say {a.},.n. Put f;,=k2n’ d, a,u,, where
=1 "

uy replaces uf; whenever af;=a, is different from zero. Then the functions f, form

a Cauchy sequence in LZ(G E) whose limit f satisfies f=® and the proof is com-
plete.
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