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On the boundedness of solutions of nonautonomous
differential equations
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Dedicated to L. Pintér on his 60th birthday

1. Introduction

In the study of existence of periodic solutions and almost periodic solutions as
well as behavior of limiting sets of solutions of ordinary differential equations, the
uniform boundedness and uniform ultimate boundedness of solutions are frequently
needed [1—4, 9]. These properties of solutions can be regarded as either the instability
of infinity or a special case of some kind of stability of a set. Therefore, there exists
a close relation between Lyapunov’s direct method and the boundedness of solutions.
A typical result showing this relation is Theorem 10.4 in [3]. In this theorem the
uniform ultimate boundedness is guaranteed by the existence of an appropriate
Lyapunov function having a negative definite derivative along the solutions. How-
ever, in practiceitis very difficult to construct such a Lyapunov function. For example,
for mechanical systems the total mechanical energy, which is a typical Lyapunov
function, never has a negative definite derivative along the motions with respect to
the generalized coordinates.

The purpose of this paper is to study the boundedness and ultimate boundedness
of solutions of nonautonomous differential equations by Lyapunov’s direct method
when the derivative of the Lyapunov function along the solutions is only semidefinite.
The results generalize V: M. MATROsOV’s theorem [5] on the asymptotic stability
to the boundedness of solutions. An application is given to the boundedness of the
motions of a holonomic scleronomic mechanical system of »n degrees of freedom

being under the action of potential, dissipative and gyroscopic forces.
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2. Notations and definitions

Consider the system
2.1) x = X(t, x),

where (¢, x)ERT X R", Rt =[0, =) and X: R*XR"-R" is continuous. Throughout
this paper, for simplicity, we assume that for any (7,, xo)€ R* XR”, there exists a
unique solution x(z; ¢y, x,) of (2.1) through (#,, x,) defined for all r=1,.

Definition 2.1 [3]. A solution x(¢;1,,x,) of (2.1) is bounded, if

sup Ix(#5 2o, Xo)l < e=.
=

The solutions of (2.1) are uniformly bounded (U.B.) if for every a >0 there exists
a B(x)=0 such that [£,=0, |x,|<a, t=1] imply |x(¢; t,, Xo)| < ().

The, solutions of (2.1) are equiultimately bounded (E.U.B.) for some bound B
if for every «=0 and f,=0 there exists a T(f, «)>0 such that [|x|<e, t=1¢,+
+T(t, )] imply |x(¢; £, x,)|<B.

The solutions of (2.1) are uniformly ultimately bounded (U.U.B.) for some bound
B if for every a=0 there exists a T(x)>0 such that [1,=0, |x,|<a, t=t,+ T(x)]
imply |x(Z; ty, Xo)| <B.

By a pseudo wedge W we mean a continuous and strictly increasing function
W: Rt*—-R* with W(r)>0 if r=0. A pseudo wedge W is called unbounded if
11m W(r)=+ o=

Denote by [a], and [a]_ the positive and negative part of the real number a,
respectively, that is, [4], =max {a, 0}, [a]- =max {—a,0}.

Definition 2.2 [5]. A measurable function 1: R*—~R" is said to be integrally
positive if f A(t)dt=o= holds on every set J= U [@m, bp) such that a,<b,=a, .,
and b —a,,,§5>0 m=1,2,..) foraconstant 6>O.

Definition 2.3 [7]. A measurable function 1: R*—~R* is said to be weakly
integrally positive if for every >0, 4>0 and for every set J= O [a,, b, with
m=1
G+ 0=bp=0p4,<by+4 (h=1,2,"..) the relation [ A(f)dt=co holds.
J

Lemma 2.1. If a measurable function A: R* -R* is 'integrally Dpositive, then
Jor every a>0 and 6>0 there exists a positive integer K(a, ) such that for every

set J= U [Gm» bw] With ap<a,+0=b,=an41 for 1=m=K-1, we have
j ).(t)dtza ' '
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Proof. Itis easy to see that A.is integrally positive if and only if for every 6=0

the inequality
t+4

2.2) : lin inf [ Me)ds =0
' R

holds. Consequently, for any given =0 there are T=T(0)>0 and u(6)=0
such that t=T(5) implies
t+d

[ As)ds = p(d).
; .

Let «=>0 and 6>0 be given, and define K(x, 8)=[T(5)/0]+ 1 +[a/u()]+1,
where [a] denotes the integer part of ac R, that is, [g]l=max {z: z is an integer with
z=a}. Then the number K(z, §) has the property mentioned in the assertion.

The following assertion can be easily proved by making use of (2.2).

Lemma 2.2. If a measurable function A: RY—+R* is integrally positive, then
1o+ T

@.3) Clim [ A=e
%

T—+co
uniformly with }espect to t,ERT,

Remark 2.1. The property of weak integral positivity and property (2.3) are
independent of one another. E.g. A(¢)=1/(1+1t) is weakly integrally positive, but
it does not satisfy (2.3) and so it is not integrally positive. On the other hand, weak
integral positivity and (2.3) together do not imply integral positivity. E.g., the function

4 1/(14+6) n=t=n+1)2
0= 1 n+12<t<n+l
is weakly integrally positive and satisfy (2.3) but it is not integrally positive.
With a continuous function ¥: R* X R"—~R we associate the function

Van(t x) = lim sup (1/h) {V(t+h, x+hX(t, x))-V(t, x)},

which called the derivative of ¥ with respect to (2.1).
It can be proved (see [3], p. 3) that if ¥_is locally Lipschitz, then for an arbitrary.
solution x(z) of (2.1) we have '

V(ta, x(12)) =V (t;, x(1)) = f V(t; 5c(i)) ar, (t, t2€Rv+).
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3. The theorems and their proofs

Theorem 3.1. Suppose that there exist nonnegative constants B and D, non-
negative locally Lipschitz functions V (¢, x), P(t, x) and continuous K(t, x) defined for
t=0, |x|=B satisfying the following conditions:

O W (x)=V (@, x)=W,(x]), where W, and W, are unbounded pseudo wedges;

(i) the derivative of V' with respect to (2.1) satz.sﬁes the inequality

G.D) Veu(t,x)=—K(t,%) for t=0, |x|=B;

(il]) for each M=>B there are k=k(M)>0 and H=H(M)=0 such that
[t=0, B=|x|=M, P(t,x)=H] imply K(t, x)=k;

(iv) for each M =B there exists an L(M)=0 such that [t=0, B=|x|=M,
H(M)=P(t, x)=2H(M)] imply P .(t, x)=L(M);

(v) for each M =B thereis a T(M)=0 such that for any solution x(t) of (2.1)
with B=|x(O)|=M and P(t,x())=2H(M) for ty=st=ty+T(M) there exists
S€[ty, to+T(M)] with |x(s)]<D.

Then the solutions of (2.1) are U.B. and U.U.B.

Proof. For any >0, define f(x)=W,"!(W,(max {B, a})). It is easy to prove
that [t,=0, |x|=«a] imply [x(z; t,, x)|=B(«) for t=t,. Therefore, the solutions
of (2.1) are U.B. Throughout the remainder of this proof we use the notations x(¢)=
=x(t; ty, x), V(O)=V(t, x(2)) and V(t)=V5,(t, x(1)).

To prove the uniform ultimate boundedness, we consider the following two
cases:

(a) there exists a t,=¢, with [x(¢)|=B;

) [x(®)|=B for all t=1,.

In case (@) |x(1)|=B(B) for t=¢t,.

In case (b) we have V(f)=—K(t, x(¢)) for all t=¢,. By (iii) there exist k=
=k(B(x))>0 and H=H(B(«))=0 such that P(t x(t))=H implies K(1, x(¢))=k.
Let i=#, be fixed, and choose a constant S=S(x)>W;(B(e))/k. Then by (3.1)
the nonnegativeness of ¥ implies the existence of a t;€[t, 1+ S(0)] such that
P(t3, x(t)<H. By (v), there exists T=T(B(®))>0 such that if P(t, x(t))<2H
for t€[ts, 1,4 T), then there is an s€[t3, t,+ 7] with |x(s)|<D, which implies
|x(0)|<B(D) for t=t;+T, especially, for t22+S+T

Therefore, only two cases may occur:

(b)) P(t, x())<2H for all t€[t,, ts+T).

In this case, |x(t)|<B(D) for t=i+T+S.

(by) there exists #,€[ty, t3+T] with P(tg, x(t))=2H.

In this case, there are z5, fg such that ty<ty<tg=t,, P(ts, x(t:))=H, P(ts, x(t5))=
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‘=2H. and -H=<P(t, x(t))<2H for - ts<t<ts. By (iv), we get te—t;=H/L(B()).
On the other hand, by V(f)=—K(¢, x(t))=—k for t€[t;, t;] we obtain " ‘
32 - : : W (ts) = V(ts)—kH/L(B()).

Since in case (b) V()=—K(t, x(1))=0 for all t=¢, we get V(E+S+D)=
éIf(i)—kH/L(ﬁ(a)). Let #=t,+m(S+T), where m is a nonnegative integer.
Then from the argument above we get either

©n) x()] = max {B(B), B(D)} for t= to+(m+1)(S+T),
or’ ’ ’ )
(d.) V(ty+(m-+1)(S+T)) =V (ty+m(S+T))—kH/L(B(«)).

Choose a positive integer N=N(x) such that
G3) N(2)kH/L(B(®)) = W(B()):

Then by the nonnegativeness of ¥, (d,,) holds for at most m=0,1,..., N—1, and
thus  |x(t)| <max {$(B), B(D)} for t=t,+N(S+T). This completes the proof.

. Remark 3.1. Using the same argument as one above, the comparison method
and Lemma 2.1, we can prove the following assertion:
If conditions (i), (iii)—(v) of Theorem 3.1 are satisfied and if for each M=B
there exists a weakly integrally positive function 4,;: R*—R* such that

Vit X) = —Ay (DK@, x)+ F(t, V(t, x)) for t=0

and B=|x|=M, where F: Rt XR* R is continuous, the solutions of .z2=F(t, z)

are uniformly bounded, and f 0sup F(t,z)dt<< for r=0, then the solutions
0 =z=r

of (2.1) are U.B. and E.U.B. K, in-addition, AM is mtegrally positive, then the solu-

tions of (2.1) are U.B. and U.U.B.

Remark 3.2. If conditions (i), (iii) and (v) of Theorem 3.1 are satisfied and if

@) Veay(t, )=—AK(E, )+ F(, V(t,x)) for =0 and |x|=B, where
J: R >R* is measurable and satisfies condition (2.3), and F is of the same kind
as in Remark 3.1;

(b) for any M >0 thereexistsa p=u(M)=0 such that [B=|x|=M, HM)=
=P(t, x)=2H(M)] imply

Vean(t, x) = —pPen(t, x)+F(t, V(t, %)),
then the solutions of (2.1) are U.B.and UU.B. .- .

5
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To prove this remark it is sufficient to replace (3. 2) and @3. 3) in the proof of
Theorem 3.1 by - '

V(t)) = V(1) —n(B@) H(B() + j max {F(t; 2):.0 = z = W(B())} dt
and . , K ,
" Nu(B(@)H(B(@) > Wz'(ﬂ(a))‘—i-f max {F(t, z): 0 = z =W (B(x))} dt, "
respectively. °
Remark 33 Condition (iv) in Theorem 3.1 can be weakened as follows: for
any M=>B there exists a continuous function L,: R*—~R#* such that f L, is

uniformly continuous on [0, =) and either

[P(z,l,(t, X))y =Ly for t=0, B=lx|=M and H(M) = P(t,x) = 2H(M),
or

[Peay(t ¥)]- = Ly(t) for t=0, B=|x]= M and H(M) = P(t, x) =2H(M),

Remark 3.4. Condition (i) in Theorem 3.1 can be replaced by 0=V (t, x)=
SW;(lxl) if the solutions of (2.1) are U.B.

Example 3.1. Consider a Liénard equation with forcing term
(3.9 : X+f(x)x+ gt x) =e(®), -
where f(x), g(t, x), dg(t,x)/dt and e(¢) are continuous for (¢, x)éR*XR and
. f le(3)ds< <. Besides, we assume that there exist unbounded pseudo wedges

W;,Wz, a continuous W;: R*>R* with %(r)>0 for r>0 :and an mtegrally
positive function A: R* R such that - .

S W(xD) = [ g6 x)dx = W(lx)),
V S S Sl ; )
gt F) - [ Gg(, Do) dr= 20W(xD,
where F(x)= f f(s)ds.: Obviously, (3.4) is equivalent ,vto’ o

33 =y F0) p =g X)),
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. x t. o+ - - ) , N
Let V(t, x,5)=[»*+2 [ g(t,r)dr]*+ [ le(s)lds, then
0 t

D242 (Ix))) /2 = V(;, x,y) = [y2+2W§(|xl)]i‘/2+ f le(s)| ds
. ’ T
Ve (t, %, ) = —A(OWy(Ix) [p2+2W5(1x])] /2.

Let K(t, x, p))=W(IxD[¥2+2W,(IxD]~*?, P(t, x,y)=|xl, B=1 and H=1. Then
for each M=>1 and for =0, 1=|x|+|y|=M and |x|=1, we have K(, x,p)=
=min {W,(r): 1=r=M} (M2+2W,(M))~*2. Therefore, conditions (i)}—(iv) of
Theorem 3.1 hold (see also Remark 3.1). Now we check condition (v). e

Let E=max {|{F(x)|+1: |x|=2}, D=E+2, and for M>1 define T(M)—
=2M+1.. Suppose that (x(), y(2)) is a solution of (3.5) with 1=|x(?)|+|y()|l=M
and |x(2)|=2 for t€[ty, 1,+T(M)). If |x(D]+|y()|=E+2 for all t€[ty, t,+ T(M)],
then |y(?)|=E, e.g. y(1)=E, and consequently %(¢)=y(t)— F(x(t))=E— max F(x)=
=1. Hence we obtain the inequality 2M le(to+ T(M))—x(t)|=T(M)=2M+1,
which is a contradiction. Therefore, there is an s€[t,, t,-+ T(M)] with [x(s)|+
+|y(s)|<D=E+2, i.e. condition (v) in Theorem 3.1 holds.

Consequently, under our conditions the solutions of (3.5) are U.B. and U.U.B.

Notice that if P(#, x)=|x], then condition (iv) in Theorem 3.1 can be dropped.
(Indeed, if condition (i)—(iii), (v) are satisfied for P(z, x)=[x|, then all the con-
ditions of the theorem are satisfied for the new auxiliary function P(¢, x)=V (¢, x).
If, in addition, H in (iii) is constant, then (v) obviously holds. This special case initi-
ates the following generalization of T. YOsHIZAWA’s theorem ([3], Theorem 10.4):'

Theorem 3.2. Suppose that there exist a constant B=0, a locally Lipschitz
function V(t,x) and a continuous function K(t,x) defined for t=0 and |x|=B
satisfying the following conditions: : .

() W (x)=V(t, x)=W,;(|x]), where W; and W, are unbounded pseudo wedges;,

(i) Vay( x)s—-l(t)K(t x) for t=0 and |x|=B, where A: R+—>R+ is

measurable with hm f /l(s)ds—-oo Jfor any IOEO

(iii) for each M (>B there exists k(M )>0 such that B=|x| =M zmphes
K(t, x)=k(M). v

Then the solutions of (2 l) are U B. and E.U.B. If in addmon A satt.gﬁes condmon
(2.3), then the solutions of (2.1) are U.B. and U.U.B.

" Proof. For any a>0, define f(a)=W""(W,(max (B, a}). Let: x(; f, Xo) be
a solution of (2. l) with lx,l<a "Then . Ix(t to,xa)|<ﬁ(a) for all tzto, ’i,e. the
solutions are U:B. S . S .

s.
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For a given 7,=0 choose T(to, oz) >0 such that o
ot Tltga)
/ As) ds > W(B (a))/k(ﬂ (a))
- Y : ‘o l'=~.‘, L ;o
It is easy to prove that Ix(t to, xo)|<ﬂ(B) for all t>t0+ T(to, a)
The second conclusion can be proved similarly. - w

The following theorem is a generahzatlon of V. M MATROSOV s stablhty theorem
5] to the boundedness of solutlons

‘Theorem: 3.3. Suppose that there ‘exist-a-constant B>O and nonnegatwe lo-
cally Lipschitz functions V (t, x), W (t, x), P(t, x), a contmuous functzon F(t, u) defined
for t=0, |x|=B, u=0 and such that

(1) W (xD=V(t, x)=W,(Ix]), where W, and VI’2 are - unbounded pseudo wedges;

(i) for every M>B ‘there is a measurable functton Apes' RY R such that

4 V(zl)(t x) ——A.M(t)P(t x)+F(t V(t x)) for tZO and BS le =M,

where . ' : co _,;n;.;gz,
(a) Ap IS weakly mtegrally po.s'ztwe R
(b) the solutions of the equatton z= F (t z) are U. B and f [ sup F (t z)]dt<oo
L0sz=r
forevery r=0; _ S : DT :
~ (iid) for every M >B there exists' a continuousA function LM' R* —»R*‘

such that f Ly is uny'ormly contmuous on R+ and ezther [P(g 1)(t x)]+<LM(t)

or [Pm,(t x)]-= LM(t) for 1=0, lexlsM

(iv) for .every: M =B there exists a. constant A(M )>0 :such. that IW(t x)|=
=A(M) for t=0 and B=|x|=M; .

(v) there exists a constant D>B and for any.-M: >B there e.xzsts a. contmuous
functzon Ws R*—=R* with W,(#)=0. for +r=D such that o

' max {P(t X) [Waay(ts x)]} = I’Vs([xl) for =0 and D & Ix[ =M.

Then the solutions of (2.1).are ‘U.B. and E. U B. If 2 tn addztwn AM(t) is mtegrally
positive, then the solutions of (2:1)-are.U.B. and U.U:B.. «

Proof. First we show that under the assumptlons of the .theorem condltlon
(v) it Theofem 3.1'is satisfied. ) '

For any M=>D, choose H(M) 50" ‘such” thdt" ‘2H<a(M)'—bm12M %(r)
and define: T(M)=[24(M)+ 1)/e: Let () be'a solution of (2.1) with,-B=|x ()| =M
and P(t, x(t))=2H(M) for. t€[ty, 1o+ T(M)]. If |x()=D for-all t€[ty, 2+ T(M)]
then according to condition (v) we get [Way(t, x(1))|=a, hence. 24(M)=
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W (55+ T(M) X(ty+ T(M))) Witys x(to))|2ch(M) 24(M)+1, whichis a contra-

diction. Therefore, condition (v) of Theorem 3.1 holds. :
An application of Theorem 3 1, Remark 3.1 and Remark 3.3 completes the

proof. . . . , v v

Remark 3.5. Condition (v) of Theorem 3.3 can be weakened by asking there
is a constant D=B such that for every "M =>D. there are .B,(M)=0 and a con-
tinuous function u,: R*—R* with property (2. 3) and such that [t>0 D= |x| <M
P(f X)=B;) imply |We1y(2, x)| = up (2)-

An application of this theorem to a holonomlc scleronomlc mechamcal system
will be given in Section 4. L : : »

As we have seen so far, the key step in the appllcatlon of Theorem 3 1is- to
check condition (v). Now we establish a sufficient condition for this property by

Lyapunov’s direct method

Lemma 3.1. Suppose that there exist HO>0 D=>B and a IocaIIy Ltpschttz
function Q(t, x) defined on the set {(t,x): t=0, |x|=D, P(t, x)=2H,} such that
(i) for each M >D there are continuous functzons y,g: R* >R and a number

He(0, Hy) such that y has property 2.3), the functmn f [g()),ds is bounded on R+

and [t=0, D=|x|=M, P(t, x)=2H) imply Q(zl)(t x)<—y(t)+g(t),

(ii) for each M=D. there exists L(M)=0 with |Q(t,x)|=L(M). for t=0
and D=|x|=M.

Then condmon (v) of Theorem 3.1 holds wzth these numbers H and D.

Proof. Let M D be glven and let a solution x(¥) of (2. 1) satisfy B< |x(t)| <M
and P(t, x(t))<2H(M) for tE[to, o+ T(M)], where T(M)>0 is a constant such

that
fo+ T(M)

[ y@ds=>2L(M)+ f [g(s)]+ ds for all £,=0.
1 0

If [x(t)|=D for [ty to+T(M)], then'we get _

A ' ‘ t;+T(M) e o
—L(M) = Q4+ T(M), x(t,+ T(M)) = L(M)— [ y()di+ [ [g(s)], ds

1 » )
which yields a contradiction to the choice of T(M). Consequently, there is -s¢
€lto, 1o+ T(M)). -with |x(s)|<D, and the proof is complete .

"Exam ple 3.2, Consider the equatxon

(3.6) SRR x+a(r)x+f(x)—e(t)
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and suppose that the continuous functions a, e: R*—+R, f: R—~R satisfy the
following conditions: _
@) a(t)=0 for tcR*, ais weakly integrally positive, and there exist constant
to+¢
a=0, T>0 such that [5,=0, r=T] imply (1/¢) [ a(s)ds=a;
L £
(i) e€IM, o); '
(iii) there is an r,>0 such that xf(x)>0, |f(x)|>0 provided |x|>r,, and

F@= [ f(s)ds~es, a5 [xl+on

Then the solutions of equation (3.6) and their derivatives are U.B. and E.U.B.
If, in addition, the function a(f) is integrally positive, then the solutions and their
derivatives are U.B. and U.U.B.

Equation (3.6) is equivalent to the system

(EN)) =y, y=—f(x)—a(@y+e).

Define V' (4, x, ) =[y*+2F()]'*+ [ |e(s)|ds. Then
t

7 Von(t x, y) = —a()y* y* +2F(x)] 1.
Choose K(t, x, y)=y*[y*+2F(x)]~'"%, P(t, x,y)=y%. Then

[Pan( x Ve = [=fXx)y—a@y*+e(®yl, = IFNIYI+le@) Iy

Let B>0 be fixed arbitrarily. For M>B let Ky =max {| f(x)|: 0=|x|=M}
and suppose B=|x|+|y|=M. Then [Pgs(t, x, »)]S[Ky+le(®)]M and

f Kyt |e(s)|)M ds is uniformly continuous in R*. Consequently, condltlons (i)—(@iv)

of Theorem 3.1 (see also Remark 3.3) are met with arbitrary H=>0, and the solutions
are U.B. 4
Now define D=ry+1, Hy=1/2, and

) { y if x= To»s
Q(t’ X, y) - __y lf x§—ro,
whose denvatlve is S _— - fo

ot {‘f (—a@yte(® i x=ry
(3. 7)( X }’) f(x)+a(t)y e(t) if x= - —ro.

For a given M >D mtroduce the notation m(M)=min’ {| Sl ro=|x|=M}. By
the conditions, m(M)>0, and [t=0, D=|x|+|y|=M, y*SZH] imply the me-
quality

Q(B.?)(t’ x,y) = —m(M)+4(t)[2H]1/2+e(t)-
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. f1 ) -1 T - L.
Let H=min{ m@DI@+DP, 5}, 1O)=mOD-@HY a) and g()=le(r)
Then Q.4 (2 x, y)=—7(t)+g(t) and for sufficiently large T>0,

to+T 1)+ T '

[ v(@dt =m(T—QHY? [ a(t)dt = m(M)a/(G+1)T~e

t t, . . ’
as T—oo uniformly with respect to #,=0, and so all the conditions of Lemma 3.1
are satisfied.

This completes the proof.

Consider now the system

(3.8) x =X x,»), y Y(t, x,)

where x€R™, yeR¥; X: R* XR™ .R™ and Y: R+><R"'+" RF are continuous,
The following theorem shows that the function Q in Lemma 3.1 can be constructed
from the reduced subsystem

(39) y= Y(t’ 0, y)'

Theorem 3.4. Suppose that

(i) There exist constants B, H=0 and a locally Lipschitz functzon v, x, )
defined for t=0 and |x{+|y|=B such that :

@) WxI+IyD=V({t, x, y)=W(Ix| +|y]), where W, and W, are unbounded
pseudo wedges;

) V(3 ot x, Y)=—A()K(x,y) for t=0 and |x|+|y|=B, where AQ) is
weakly integrally positive, K(x,y)=0 for |x|+|y|=B, and for any M“>B there
exists k(M)=0 such that K(x,y)=k(M) for H=|x|, B=|x|+|y|=M;

(ii) there exist a constant B,>0, a continuous N: R*—+R* with N(s)>0 for
s=B, anda IocaIIy Lipschitz function Q(t, y) defined for t=0 and |y|=B, such that

(©) 0=0(t, Y)=W,(ly|), where W, is a pseudo wedge;

()] Q(s.,,)(t »=—-w(y) for |y|=B,, where W, is a pseudo wedge,

(e) 12@t, »)— (¢, PI=N(max {|y|, |71Ply—7;

(iii) for any M=0 there exists L(M)>0 such that 1X(t, x, y)ISL(M) if
x|+ yl=M;

(iv) there exist continuous Pl, B R‘*—»R+ with Pl(s)>0 for szB1 such that
7@, x, )~ Y (¢, 0, »)| =R (Iy)) B(Ix]);

@) lim ) (BEN())==.

Then the squtzons of (3.8) are U.B. and E.U.B. If, in addmon A is integrally positive,
then the solutions of (3.8) are U.B. and U.UB.

Proof. Obviously, (i)—(iv) of Theorem 3.1 hold with P(t, x, y)=|x|.
Choose D=0 such that D—2H =B,, W(r)/N (r) B(r)=max {B(s): |s|=2H}+1
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for s=D—-2H. Thenlf D<|x|+|y|<M |x]§2H, then lyl;;D}-}HéBl, and
thus ' )

Oea(ty) = .Q(s.e)(’a »+ N(I}’I)IY(I, %, ¥)—¥(1,0, p)| = —Wi(li’l)}' :

+NADBDGDAED =~ NIDROD |- ebr~ A (] -

—N(yDR(Iy)) = ~inf {N() B (r): B, = r = M}.

Therefore, condition (v) of Theorem 3.1 holds by Lemma 3.1, and so the proof is
complete.

Example 3.3. Consider now the system
(3.10) X = A, x)+by, ¥ = falt, x)+dy+e(1),

where Ji> LECRYXR,R) with f£,(¢, 0)=0, f,(¢,0)=0, e(?) is a bounded con-
tinuous function on R* with e€ L1[0, =), b, d are constants with db=0. BeSIdes,

we assume
@) sup {| L(t, )+ £ (2, X)|: t>0 lx[ M}<o for any M=0;
(ii) [dfl(t x)—bfo(t, x))/x=a(x)>0 for r=0 and x>0, where « is continuous

and 11m fa(r)rdr—

(111) LA, x)+dx][bf (8, )~ dfl(t x)]- j[(dafl(t r)[00)— (b3f(t, r)[01)] dr=

2A(t)ﬁ x), _where l(t) is mtegrally positive, ﬂ is continuous with f(x)=0 if x;éO
Under these conditions the solutions of (3.10) are U.B. and U.U.B.
Indeed, let

V(t,x, y)= [(dx—b_y)2+2 /x [dj}(t, N —bfy(t, N dr]"+ b fm le(s)| ds.

Then
V. 10)(t X, y) =

—[bfs(t o dﬁ(t UAtt, x)+dx] + j[d A.n=by; O hte r)]dr B

1

=

[ax—byp+2 [ 1t D=bst, ) ]
0 ’ ’

=-A(OK(x, y),
where

. K(x,y) = B(x) [(dJF% bj:).2.+ Z_éug f [dfi(t, - bfu(t, 'r)] d,] -
L . : 120 o . . h A .
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It is easy to prove that for any M=0 there exists k= k(M)>0 such that
[Ix|+|y|=M, |x|=H] imply - K(x, y)>k(M). Therefore, (1) of Theorem 3.4 holds.
On the other hand, for the subSystem

3.11) : y=dyte(t)
and for Q(t,y)=y%2, N(r)=r, we have _
O (t, ¥) = dlyl[1y] +.(1/d),s,‘2‘§ le(9)I] = (1/2)dy* for |yl =—(2/d) sup le(I.

Therefore, after making the choice B(r)=1, B()=sup {| fo(t, x)|: 1=0, [x|=r}
all the conditions of Theorem 3.4 are met, and our assertlon is true.

Theorem 3.5. For system (3.8), suppose that

(i) there exist continuous functions B, F,: RY—~R* with Pl(s)>0 Jor s=0
such that Y (1, x, y)—Y (¢, 0, =Ry FB(Ix]);

(i) there-exist a constant 'B;>0 and a locally Lipschitz function V,(t, x, y)
deﬁned for t=0, |x|=B, and yeR* such that

WxD =W, x, p) = W(IXI),
' V1(3 0 (t, x, y) =—=W,(Ix]) fo" t=0, [x] ZB1 and ycRY,
where W, and W, are unbounded pseudo wedges and W;: Rt =R+ is continuous wzth
W,(r)=0 for r=8B;;
(iii) there exist a constant Bz>0 a Iocally Lipschitz function I/2(t y) defined

for t=0 and |y|=B,, and a positive continuous functtonN R*‘-»R'* with N(r)=0
for r=B, and such that

Wa(ly)) = Va1, ) = Wa(lyD),
Vz(a.o)(t, »»==Wlyh for |yl =B,
Va(t, )=Vt | = N(max {1y, 15}y 7,
where W, W; are unbounded pseudo wedges, W is nonnegative and continuous with
hm We(r)[(N (r)Pl(r))— oo,

Then the solutions of (3. 8) are U.B. and U U.B.

Proof. First, we shall prove the uniform boundedness. For any a>max {B,, B,},
there exist B(a), By(x) and B,(x)=0 such that W(B(e))=Wi(e), Ba(0)>p1(0)>a,
W, (s)/N(s) B (s)— ,max By(r)=1 for s=p,(a), and W(ﬂz(a))>W(ﬂ1(a)) Then for
any solution (x(t), (t)) with lx(to)|<ac, and | y(to)[<oc, we have x(¢)<p(x). and

|y ()] <B.(a) for 1=t,. _ .
If this is not true, then only two cases may occur:
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Case 1. There exist t>#>f with [p(t)|=p1(®), [y(t)]|=Pps(x), Bl(a)<
<Ip(0)l<Be(@) for t(t, ) and |x(D|<B(x) for t€[ty, 1,).

Case 2. There exist f,>1,>1, such that [x(#)|=a, |[x(t)I=p(@), a<|x()|<
<pB(a) for te(ty, t,) and |y(DI=P:(x) for t€[ts, 1)

In Case 1, for €[, t,], we have
Vs (1, y(0) = =W (Iy )+ N(yOD R(y DN B(x(0I) =
== N(yONB(yON [y OD/(N(yOD)A(y®) - R(Ix@))] =
=-N(y@)B(y@)) = 0.
Therefore, W;(B(0))=V,(ts, y(t))=V;(t,, y(t))=W,(B,()). This contradicts
Wi(B2(e))>W(B1(2))-
In Case 2, for t€[t5, t,], we have V;(t, x(¢), y(¢))=0, thus
W(ﬁ(a)) = I,l(tés x(td)s y(té)) = Ifl(t:i, x(ta), .V(ts)) = VVZ((!)’

whlch contradicts W(B(x))=W,(«).

Therefore, |x(t; to, X0, yo)l<B(®) and [y(t; to, xo, Yo)l<Pal@) for t=1, 1f
{xol<a and |yol<a. This completes the proof of uniform boundedness.

Let v;()=min {¥;(r): B,+1=r=4(2)} and Tj()=W(a)/v,(e). If |x(O)|=
=B, +1 holds for t€]ty, 7] (I>1,+T1(2)) then

W (B, +1) = V(% x(®), y(D) = Vi(t, x(t), y(to))—vl @E—1) <
, < W) —vi(@) Wi(e)/v: (o) =
whlch y1e1ds a contradlctlon Therefore, there exists t;€[t,, t,+ T (x)] with |x(t)l=
=B,+1. Following the same argument as in the proof of uniform boundedness,
we get |x(8)|<B(B,+1) for t=t5, especially for 1=t,4+T; ().

Choose B;>B, with Wy(s)/N(s)B(s)—max {F(r): |rl<p(By+1)}=1 for
s=Bs. If |y()=B,; for t>t°+T1(oz), then there exists v;(0)>0 such that
B(y®O)N(y@®)=vs(®), andso
" Vaas(t y@) ==B(IyODN(y OD Wy @D/ N(yO) B 1y (1)) — B(Ix(DI)] é '

=- N(Iy(t)l)ﬂ(l}’(l)l) = —v(®). ) o
Therefore, if | y(t)|283 for t¢ [t0+T;(a) t0+2';(a)+i], then _
Bl FR@+, y(b+B@+)) =
SH(t+Ti(@, y(to+ H@))—va(@)i = Ho(B(@)~ve(@)t. -
If #=T,(s), where T,(a)= (W (B2(6)) — W;(By))/va(a), then

Wi(By) = Vy(to+Ti(@)+1 y(te + i@ + 1)) < Wé(ﬂz(a))—Va(a)Té(a) = W(By), |
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which yields a contradiction. Therefore, there exists €[ty + T3 (@), 7o+ T3 (@) + Ta(a)]
with |y(te)|<Bs, and thus [x(f)|<B, and |y(ts)|<B,, where B,=max {B;,
B(By+1)}. This implies |x(t)|<B(By and |y(t)l<pBa(B,) for t=t,+T,(x)+T3(®).
This completes the proof.

Sometimes in practice it is very difficult to find a Lyapunov function satisfying
the condition ¥ (¢, x, y)=W,(|x]) (see Example 3.4). Now we give a modification
of Theorem 3.5 asking the much milder property ¥ (¢, x, ) =W,(Ix}+{yl).

Theorem 3.6. Suppose that
(i) conditions (i), (iii) of Theorem 3.5 hold;
(ii) there exist a constant B,>0 and a continuous function Vi(t, x, y) defined
for 1=0, (x, Y)ER™* and such that

W (Ix1) = V(s %, ¥) = (x| +1p),

I./l(a.s)(t’ X, y) = “‘VVa(x, y)9
where W, and W, are unbounded pseudo wedges, and Wy: R™t* . R* is continuous
and |x| >B1 implies Wy(x, y)=0;

(m) Jor any M =0 there exists L(M )=0 such that [t=0, |x|+|y|=M) imply
X (2, x, p)|=L(M);
Then the solutions of (3.8) are U.B. and U.U.B.

Proof. Obviously, by (ii) for any a=>0, if |xo|+ |yl <o, then |x(¢; #, Xo, Yo)<
<W, Y (W;(2))=B(x) provided that (x(¢; ty, Xo, Yo)» ¥(1; £y, Xo, Vo)) exists. Following
the same argument as in the proof of Theorem 3.5, there exists f,(c)>0 such that

[p(t; t, %o, yo)l < Ba(e) provided that [xo| + | yol <aand (x(#; t4, Xo, yo) ¥ (1 to, %o, ¥0))
exists. Then the solutions of (3.8) are U.B. Throughout the remainder of the proof

denote x(1)=x(t; £y, X9, ¥o)» Y ()=y(t; o, Xy, ¥o)-
Let T; () =Wq(B (@) + Ba(e))/min {W;(x, y): By +1=|x|=p(w), Iylsﬁz(a)} Then
by (i), for any ¥=t, thereis a #€[f, i+Ty(a)] with |x(t)]<By+1.
Suppose that for all t€[s,, I+T;(x)+¢*] we have |x(t)|<Bl+2 and |y(¢)|=B,,
where B,=B, is a fixed constant such that
W,(r))N(B(r)—max {B(s): 0=s=B,+2} =1 for r=B;:
Then from \ _ :
, ’ ' W(ly(9)))
Vaaan(b @) =~ N(rO) B (o) |
o0t 20) = =Ny O A1y O N(|y(t)|)P1(|y(r)|)

= —min {N(DB(r): By = r = fy(@)} =—

NICOER

we get S g
0sK(I+L@+1 yI+h@+M) ="

= Vi(t, y(8) — mlt* + Ti(@)+1— 1] = W(B(2) — mir* + Ty (@) +E—1,).
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Thi{refore, t*'<7"2(a)=[W§(ﬂ2(a))+l]/m. This shows only two cases may occur:
' :Case’l. |x(t)|<By+2 for all t€[t,,i+T(a)+T(«)] and there exists £,€
€lty, I+ T () +T,(a)) with |y(2)|<Bs. In this case, |x(f)|<p(B,+Bs;+2). and
Iy(t)|<ﬂ2(Bl+Ba+2) for 1=i+T,(0) +T,(%)-
CaseZ There exists €[4, 1+ (2) +T,(a)] such that Ix(t3)|231+2 In. this

case, there exist 1, t;€[1, t;] with |x(¢)|=B;+1 and [x(s)|=B,+2 and B,+1<

<|x(#)|<B,+2 for t€(t,,t). By condition (iii) f;—1,= 1/L(,B(a)+ﬁ2(a)) and
(i) implies V(F+T(0)+T(@) =W () =V (t)—(t;— t)m() =V, (H—v(x), - where
RO =W(t x(t), y(@)), v@=[L(B@+B:(x))]*m(2), and m(x)=min{#(x, y):
Br¥1=ix{=8(a), |y|=B.(¢)}. Making the choice I=t,=t+mTj(0)+T,()]
(m=0, 1,2, ...) we get that either lx(t)|<ﬂ(B1+Ba+2) and |y(1)l<B(Bi+B;+2)
for t=t,,,, or
(3.12) Viltns1) = I/](tm)_—v(a)'

On the other hand, 0=V (t)=W;(B()+ B.(«)) for r=1,, and so (3.12) can not be
true for m=0, 1, ..., N, where N=N(«) is a positive integer such that N(o)v(a)=>
>W,(B(@)+Bo(a)). Therefore, [x(¢)|<B(B,+Bs+2) and |y(t)|<B2(Bi+By+2)
for t=t,+[N(a)+11[T1(«)+T;(2)]. This completes the proof. -

Example 3.4. Consider the Liénard equation with forcing term
(3-13)‘ N X+f(x)x+g(x) =p(),

where f(x) and g(x) are continuous for x€Rand p(t) is continuous for ¢=0. Besides,
we assume that

O f@=1;
i) x{g()—xLf (- 1)=0;

i) [ ip(s)ds<eo. -
. CL0 ] . . .
Then the solutions of (3.13) are U.B. and U.U.B.

Proof. System (3.13) is equivalent to
(B314)  x=-x+y, y=—{g@)—x[f(x)—1]}~[f)-1y+p(s).

Let V(t, %, )= [y2+2 f {g(r) r[f(r)—ll}dr]”2+ f 1p(s)l ds.

Then
[f(x)—lly2 x{g(x) x[f(X) ]}

[re+2 f {e—rlf -1 dr]”

V(a.u)(f, X, y) = W( y)-
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Then |y|=>0 implies W(x, y)>0. On the other hand, for the subsystem %=—x
the auxiliary function V(f, x)=x%, N(r)=2r and W;(r)=2r? satisfy condition
(iii) of Theorem 3.5 and so the solutions of (3.13) are U. B. and U.U.B. by Theorem
3.6.

4. An application to a holonomic scleronomic mechanical system

Consider a holonomic scleronomic mechanical system of n degrees of freedom
being under the action of potential, disspative and gyroscopic forces. The motions
such a system can be described by the Langrangian equation

@1 i—@l-% = gg ~Bj+Gi,
where g, geR" are the vectors of the generalized coordinates and velocities, respec-
tively, m==(t, g) is the potential energy, T=T(q, §)=(1/2)47A(q)q is the kinetic
energy where A(q) is a symmetric n)Xn matrix function (v denotes the transposed

of v€R™); B=B(t, q) is the symmetric positive semi-definite nX» matrix function
 of dissipation; and - G=G(¢, q) is the antisymmetric nXn matrix of the gyroscopic
coefficients.

By the Hamiltonian variables ¢, p=A(g)d system (4.1) can be rewritten into

the form

: ._OH . - O0H o0H
4.2) | q—-W, p=- 27 —+(G~ B)’——

where H=H (t D, q) is the total mechanical energy:
H=H(t, q, p) =T+r =(1/2)p"47 (Qp+=(t, 9).

Choose the auxiliary functions V=H(t,p,q), W=pTq. Their derivatives with
respect to (4.2) read as follows: : ’

H_(gﬂ) G-B) gf gf — A B DA qngt,q) _

on(t,
S0 94" 1<q)pTA-1(q)p+[ G.9]
where B(t, g) denotes the ‘smallest eigenvalue of the matrix B(t, g); A(q) denotes
the largest eigenvalue of A(g). It is known from the mechanics that the kinetic energy
is.a.positive definite quadratic form of the velocities, consequently A4(g)=>0 for all
3:
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© Let R
e A7 = (357" (@D)nsn>

S 1y, -1 - ) '
dyy = ( dai"(9) Y aers aagq:q)]A'l(q)Pa D = (d;j)nxn>

oq:
3 dag) o
ek.—‘ i jZ'l aq 'pzpp e = (el’ n)

Then for P = pTA 1(q) p, its derivative with respect to (4 2) is

p= _a__'? 577 TA 1(q)p+(G B)A 1(q)p] A~ 1(q)p+

1
+pTA~Y( )[———7 aaq pTA- 1(q)17+(G —B)A~ 1(q)p]+pTDp =

=2 [""’},‘—;’q’]TA-l(q)p'+pTA-*(q)[<G'—E)T+(G—B)1A-1<q)p—
=P @) 4 A @p+p7Dp =2 P 4 -
—2pTA~1(q9)BA~Y(q)p—pTA~ (q)e+p"Dp;
(7L, = |70t 9| B(a: D+Fa. )
where
F(q p) = 21472l (g, p) = IpIlA7 (9l lel +1D] p"

Similarly,

W=p q+p g=-— [‘%0 q)] q+ e q+pTA‘1(q)(G B)’q+pTA (@)p,

W)= _1G(t, 9)—B(t, I E:(a. P)— Fa, p),

on(t, q) I
T

"
where

F(0,8) = 5 lellad+ 4 @IF Fulg. p) = 14~ al ol

It is easy to prove that F(g, p) are continuous for .p, g€R", and for every M=0,
hm sup F(g,p)=0 for i=2,..,5. Therefore, from Theorem 3.3 and Remark
3 5 we get the following . 4 - ‘

Corollary 4.1. Suppose that there are- B=0 and unbounded pseudo wedges
W,, W, such that
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® W gl)==n(t, 9=W,(ql) for t>0 and gcR";
(i) for every M =0 the function B\ (t)=min {B(¢, q): 0=|q|=M} is weakly
integrally positive;
(iii) there is a continuous function r: R¥ XR* +~R* such that r(t, u) is increasing
with respect to u for every t€R* and [9n(t, q)/01).=r(t, n(t, q)) for t€R* and
geR";

(iv) for every uy=0 there is a u,>u, with f “r(s, u) ds<u,—u,;

0
(V) for every M =0 the function |0n(t, q)/0q| is bounded for t=0 and |q|=M;
(vi) for every M>B thereare py=>0 and Ky>0 such that |q"on(t, q)/aqlz,uM
IG(t, 9)—B(t, 9)|=K,, for t=0 and B=|q|=M.
Then the motions are U.B. and E.U.B.
If, in addition, B\ (t) is integrally positive, then the motions are U.B. and U.U.B.
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