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On «}-products of automata

.Z.-ESIK .

1. Introduction

In [3] we introduced a’-products and gave an algebraic characterization of
(homomorphically) complete classes of automata for the af-product:

Theorem 1.1. 4 class " of automata is complete for the a-product if and
only if for every simple group G- there exists an. AcP%, () such that G is a divisor
of the characteristic semigroup of A, written G|S(A).

» Further, we proved the following result.

Theorem 1.2. Let A be a class of automata.

() If A contains a nonmonotone automaton, i.e. an automaton in 24 has a non-
trivial cycle, then A< HSP’l (o) if and only if for every simple group G with G|S(A)
there exists an automaton BEP () with G|S(B).

@) If A consists of monotone automata one of which is not discrete, then
HSPﬁ1 (oY) is the class of all monotone automata.

- (i) If A consists of discrete automata one of which is not trivial then HSPﬁ1 )
is the class of all discrete automata.

(iv) Otherwise, i.e. if A consists of trivial automata, then HSP? (Ji" ) is the class
of all trivial automata.

“The aim of this paper is to give a graph theoretic characterization of complete
classes for the ai-product and to give a description of the ‘classes of the
form HSP?: (.9{ ) on the basis of graph theoretic terms. We believe this solution to
be the final one as regards af-products. The proofs are based on the fact that the
symmetric group of degree n—1 (n>1) can be “realized” in a biconnected graph
on n vertices. For recent results on ay-products and o, -products see [2] and [1].
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2. Notions and notations

An automaton is a system A=(A4, X, §) with finite nonvoid sets 4 and X, the
state set and input set, respectively, and transition 6: AXX—~A. The transition
extends to a mapping 6: 4XX*-4 in the usual way, where X* is the free semigroup
with unit element A generated by X. The characteristic semigroup of A, denoted
S(A), is the transformation semigroup on A consisting of all the mappings §,: 4—~4,
d,(@)=6(a, u) (a€A, ucX™).

Given a system of automata A,=(4,, X,,,) and a family of feedback func-
tions

Qi A X XA, XX ~ X,U{4},

t=1,...,n, the g*-product of the A;’s with respect to X and ¢ is defined to be the
automaton A with state set 4,X...X 4,, input set X, and transition

8((ay, ..., @), x) = (6,(a1, wy), ..., 6,(ay, u,))
where (@15 ..., a)€EA X...XA4,, x€X and

U = q)t(al’ evey am X),

t=1,...,n 1If none of the feedback functions ¢ (ay,...,a,, x) depends on the
state variables g, with s>, we have an a’-product.
Given a (nonvoid) class & of automata, we set:
P’ (o): all oj-products of automata from ;
Pfal(.%’ ): all a?-products with a single factor of automata from & (i.e. n=1
above), '
S(#): all subautomata of automata from %,
H(o): all homomorphic images of automata from .

Recall that a class o is called (homomorphically) complete for the a’-product if
and only if HSP:}1 (&) is the class of all automata.

By a semigroup (group) we shall mean a finite semigroup (group). We write
S,|S; for two semigroups S,; and S, if S; is a homomorphic image of a subsemi-
group of S,. If S; is a group, this just means that S, is 2 homomorphic image of a
subgroup of S,. The following statement is known e.g. from [4]:

Proposition 2.1. If G|G,X...XG, for a simple group G and a direct product
of groups Gy, ..., G, (n=>0), then G|G; for some i. '
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3. Some useful facts

To investigate ai-products of automata we introduce the (directed) graph
D(A) of an automaton A=(4, X,J) as follows. We put D(A)=(V, E) where
the vertex set V is just the state set 4 and

E = {(a, b)c AxAla = b, Ix€X 6(a,x) = b}.

We see that E does not contain loop edges, henceforth, by a (directed) graph we shall
always mean a graph without loop edges.

Take a graph D=(V, E). We say that D is connected if for every pair a, b
of different vertices there is a (directed) path from a to b. A maximal connected sub-
graph of D is a connected graph D’'=(V’, E’) with V'SV, E’SE and such that
whenever D”=(V”, E”) is a connected graph satisfying V' CV”’CV and E’'SE"C
CE, wehave V'=V", E'=E".

A cycle is a graph D=(¥, E) with V={a,, ..., a,}, n>1, and E={(ay, ay), ...,
(@u-15 @), (a5, @)} Thus, cycles are connected graphs. Connected graphs other
than cycles and having at least two vertices will be referred to biconnected graphs.

~ Take a graph D with vertex set ¥'={a,, ..., a,} and place a pebble p; onto g; for
every i= ,n. Suppose we are allowed to move the pebbles according to the
following three rules:

R1: Each step, an arbitrary number of pebbles can be moved. (Thus, some
pebbles may stay where they are.)

R2: Each step, a pebble on a vertex a can be moved to a vertex b only if (a, b)
is an edge.

R3: Once two or more pebbles hit the same vertex, they cannot be separated,
i.e. have to be moved jointly.

Suppose that after a (possibly zero) number of steps p; is on vertex g, , i=1, ..., n.
To this sequence of transformations we assign the mapping V' —~V given by a—a;,
i=1,...,n. Denote by S(D) the set of all mappings obtained in this way. Clearly,
S(D) is a transformation semigroup on ¥. We let G(D) denote the group of all
permutations in S(D). The following observation easily comes from the definitions:

Fact 3.1. Let A be an automaton and D=D(A). Then, for every BCP], ({A}),
S(B) is a subsemigroup of S(D). Further, there exists an automaton CEP{a ({A})
with S(C)=S(D). .

Our game can be further generalized. Take a graph D=(V, E) and fix a non-
void subset ¥V’ of V, say V’'={a,, ..., a,}. Put pebble p; onto q;, i=1,...,n, and
move the pebbles in the graph according to R1; R2 and R3. Suppose that after.a
(possibly zero) number of steps the pebbles get back to the vertices in V7, i.e. for
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every i, p; is located on a vertex g; in V’. We obtain a mapping ¥’V that assigns
a; to a;. The collection of all these mappings is a transformation semigroup on ¥V,
denoted S(D, V’). Put G(D, V’) for the group of all perrnutatlons in S(D V).
The following statement is obvious. .

Fact 3.2. S(D, V")|S(D) and G(D, V’)|S(D).
The next assertion is a reformulation of a well-known fact.

“ Fact 3.3. If G is a subgroup of S(D) then there is a nonvoid subset V'’ of the
vertex set of D such that G is isomorphic to a subgroup of G(D, V"). ’

- Directly from Fact 3.3 and the observatlon that it is impossible to move a
pebble back in a maximal connected subgraph if it has been moved out, we obtain:

Fact 3.4. If G is a subgroup of S(D) then G has maximal connected subgraphs
D;, ..., D, (n>0) such that for some nonvoid subsets V; of the vertex sets of the
graphs D, it holds that G is isomorphic to a subgroup of the direct product G(D,, V)X
X XG(Dy, V).

Fact 3.5. Let G be a simple group. Then G|S(D) if and only if G|G(D’, V")
for a maximal connected subgraph D’ of D and a nonvoid subset V'’ of the vertex set
of D’.

Proof. Suppose that G|S(D). There is a subgroup H of S(D) which can be
mapped homomorphically, onto G. By Fact 3.4, H is isomorphic to a subgroup of
a direct product G(Dy, %;)X...XG(D,,V;) where the graphs D; are maximal
connected subgraphs of D and for every i, ¥; is a nonvoid subset of the vertex set of
D;. Thus, G|G(Dy,)X...XG(D,, V). From Proposition 2.1, G|G(D;,V;) for
some i. '

Conversely, GlG(D’ V") and G(D’, V)IS(D) yield G|S(D).

Suppose we are given a graph D= (V E) with V={a,, ..., a,}, n=l, ie. D
has at least two vertices. Set. ¥;=V—{a;}, i=0, ..., n.  Fix a pair of different in-
tegers i, j€{0, ..., n} and define the mapping np, it V—»V by

a; if i=k,

_ AI%-" (_a") B {ak otherwise:

Let us say that , ; has a realization in D if starting with pebble p, located on a;,
k=0,...,n, ksj, the placement that p, is located on ¥, ;(@), k=0, ..., n, k=j,
can be achieved by a sequence of moves according to R1, R2, R3. Obviously, if
y,,; can be realized for every pair of different integers i, j¢ {0, ..., n}, then for every

ic{0, ...,n}, G(D,;¥)- is the group of all permutations on ¥}: to interchange two
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pebbles on a; and a; (4, , a,€V, a;#q ) take a realization of ¥, , followed by
a realization of ¢, ; and a reahzatlon of 1,0

Conversely, suppose that D is connected and for every i€{0, ..., n}, G(D, V)
is the group of all permutations on ¥,. It then follows that y; , can be realized for
every choise of i and j (i, j€ {0, ..., n}, i#j). Take a path a;=by, by, ..., by=a; from
a; to a;. If the length of this path is 1, i.e. #=1, just move the pebble on g; to a;,
the. others stand still. If ¢>1, since the permutation (byb,—;...by) is in G(D, V),
we can move the pebbles on by, ..., b,_; onto the vertices b,_y, by, ..., b,_s, respec-
tively, so that the rest of the pebbles get back to their initial positions. To achive
the final situation just move the pebbles on b, ..., b,_, one vertex forward along
the path b, ..., b,.

4. The main results

In this section we give a graph theoretic characterization of complete classes
for the af-product. Further, we give a complete description of the classes of the
form HSP; (%)

We start with two lemmas. In these lemmas the following designations will be
used. Given a path q,, ..., q,, n=1, so that g, is free and for each i=0,...,n—1
therfe is a pebble on g;, by moving the pebbles along the path gy, ..., a, we shall
mean the transformation that, in a single step, we move each pebble on g; to Gia1s
i=0, ...,n—1. This definition extends to the case n=0: the placement of the
pebbles remains unchanged. Given a cycle ay, ...; a,-; (n=2) with at most one
pebble on g;, i=0, ..., n—1, by rotating the pebbles around the cycle we shall mean
the transformation obtained by moving the pebble on g; to @;41mean fOT every i,
provided that there was a pebble on g;.

Lemma 4.1. Let D=(V,E) be a graph with D={ay; ..., 0y 1n}, n,m=l,

E= {(a{)! al)! sers (an+m—13 an+m)9 (an+ms_ao)’ (a,,, ao)}' Then fOI‘ every pair 'l', j Of
different integers in {0, ..., n+m}, ¥, ; can be realized in D.

Proof. Fix an integer i€{0, ..., n+m}. We shall show that G(D,¥)) is the
group of all permutations on ¥. Since dy, ..., @,+m i a cycle in D, we may restrict
ourselves to i=n+1. To see that G(D, ¥,,,) is the group of all permutations on
¥, 1 if suffices to prove that the cyclic permutation (d...4,8, 425 -++» dy+m) and the
transposition (a,_,a,) are in G(D, ¥, ;).

- Place pebble p,; onto @;, i=0,...,n,n+2, ...,n+m. Move p, from a, to a,,4,
then rotate the pebbles around the cycle ag, ..., @+ Wesee that (ag...a,8p.12...Gp4m)€
EG(D, V.41 For the transposition (a,, _ la,,), apply the following procedure:

Step 1. Move Pn from a4 10 Gyyy-
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Step 2. Check if p, is located on a, .5, if so, go to Step 3. Move the pebbles
along the path a,,,,, a,, ..., a,. (It is garanteed that g, is free when this transforma-
tion applies.) Next, rotate the pebbles n times around the cycle 4y, ..., a,, and after
that, move the pebbles along the path a,, ..., a,4,, and go back to Step 2.

Step 3. Before this step applies, the placement of the pebbles is this: for every
ic{0, ...,n—1}, p; is located on a;; a, is free; for every. i€ {n+2, ...,n+m}, p; is
ona;_,;p,isona,.,. Move p,_, from a,_; to a, and then rotate the pebbles around:
the cycle ay, ..., a, until g, gets free, we see that a, is free, p,_, is located on a,, and
for every ic{0, ..., n—2}, p; is on a,+;. Now move p, from a,,, to a,, rotate the
pebbles n—1 times around the cycle g4y, ..., a,, and move the pebbles along the
path a,. 15 -.c; Ay -

Lemma 4.2. Let G=W,E) be a graph with V={ay, ..., 8t mi1}>
n_Z_O, m, 1519 and E= {(ao’ (11), cecy (an+m—1a an+m)3 (an+m9 ao): (an’ an+m+l)s [ERE

eeey (an+m+l—1, an+m+l)’ (an+m+l, aO)}' Then' for every pai" of dgﬂerent integers
i, ke {0, ..., n+m+1), ¥; , can be realized in D.

Proof. Place p, onto q,, t=0, ...,n+m+1, tk. First we show that we may
restrict the consideration to the case that k=mn. Either k€{0,...,n+m} or k€
€{0,....n,nt+m+1, ..., n+m+1}. If ke {0, ..., n+m} rotate the pebbles around the
cycle dy» .., Gner until a, gets free, then move p; to a, so that the rest of the pebbles
get back to the position they were after the rotations. Finally, rotatethe pebbles
around the cycle ay, ..., a,4,, S0 that p; gets onto a,. The pebbles p, other than p;
get back to a,, respectively. Similar procedure applies when k¢ {0, ey ntm+1, ..,
wontm+l}. ‘

Let k=n. Because the assumptions i€ {0, ..., n+m}and i€ {0, ..., n,n+m+1, ...,
...,n+m+1} are symmetrical, we may suppose i€ {0, ..., n+m}. We shall realize y/; ,
in five steps.

Step 1. Rotate the pebbles once around the cycle ay, ..., @,, @i my1s -5 Ay mti-
Observe that a,, ,,., becomes free and p, .., gets onto a,.

Step 2. Rotate the pebbles around the cycle ay, ..., @, until p; hits a,. Then
move p; from a, to @, .1, S0 that a, becomes free.

Step 3. When this step applies, one of the vertices ay, ..., a,,, is free, and
exactly one of ppimt1s +os Potm+1> S3Y Py, 18 in the cycle a, ..., @y 4 (Potm+ for the
first time). Check if p; is on @, ,,, if s0, go to Step 4. Otherwise rotate the pebbles
around the cycle gy, -.., @,.,, until p, gets onto a,, and rotate the pebbles once
around the cycle g, ..., @y, Ayimi1s o5 Qpimsr- GO to Step 3.

Step 4. Observe that the placement‘éf the pebbles is this. The cycle ay, ..., Gp1m
contains p,,+1 and the pebbles p; with j€{0, ...,n+m}, j=i, j=n. Thus, one of
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Gy, iy Gyym i free. The relative order of the pebbles p; (j€{0,...,n+m},
Jj#i, j#n) is their original order. Further, p; iS ON @, pi1s Potmtz 1S ON Gy pmits +oes
wees Ppim+t 1S ON @y ypig—q. It is now clear that the pebbles in the cycle ay, ..., Gy p
can be arranged in such a way that a, gets free and after moving the pebbles along
the path @, 115 --os Guim+1» G0 (SO that p; gets onto ay), the relative order of
the pebbles p;, j€{0,...,n+m}, j=n, in the cycle a, ..., a,., Will be just as
desired.

Step 5. We have p, .1 free. The pebbles p,.,..05 ..., Pyams: are back on
yimiss s Qurmyr, Tespectively. Further, the cycle ay, ...,a,,, contains the
pebbles p; j€{0,...,n+m}, j=n, and the pebble p,,,,,. The relative order of
the pebbles p; (j€{0, ..., n+m}, j=n) is just as desired. Rotate the pebbles around
the cycle ay, ..., @, until p,,,+, gets onto a, then move p,, 4 from a, to @, 1.
The pebbles p,imits -oos Patm+: 3T€ NOW back ON ay iy -y Gnimsr> TESPECtively.
Further, it is clear that the pebbles in the cycle a4y, ..., a,,,, can be arranged so
that p; is on a,, and for j€{0, ..., n+m}, j#i, j¥n, p;is on a;.

Theorem 4.3. S,|S(D) for every biconnected graph D on n+1 vertices.

Proof. Let D=(V,E) with V={a,...,a,}. We are going to show that
¥;, j can be tealized in D for every possible pair of different integers i, j. Consequently,
G(D, V) is the group of all permutations on ¥, for every i (0=i=n). Hence the
result follows by Fact 3.2. )

Put pebble p, onto g, for every 1€{0, ..., n}, t5%j. Take a path

a,- - bo, b], ceey bk - aj

from g; to a;. If k=1, y, ; can be realized obviously. We proceed by induction on
k. Assume k=1. There are an mc{0, ..., k—1} and a path

a; = by, bysys vvs bty = by

with {bo, ..., B} {brs1s -oos biyy—1}=0. We distinguish two cases.

Case m>0. Let us rotate the pebbles / times around the cycle b,,, ..., b,
bis1s --os beyi—1. We see that b, is free now. By induction hypothesis, p, can be
moved from g; to b,, in such a way that meanwhile all the other pebbles get back to
the vertex they.were before. Finally, rotate the pebbles k—m times around the cycle
bos -ees Do bk+1, +vs by yy-1. Obviously, we obtained a realization of |//, je

Case m=0. We have a cycle :

bo, by, .. bka bk+1, v by 1

Two subcases arise according to whether this cycle contains all the vertlces of D
or not. i _ o
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Subcase V.={by, ..., byy;-1}- Since D is biconnected, there is at least one edge
in E other than the edges (bo,by), ..., (bxyi—2> Dry1-1)s (Bryi-1, bg). The result
follows by Lemma 4.1. :

Subcase V= {by, ..., bpy;-1}. Take a vertex c€V—{by, ..., b1} closest to
the cycle by, ..., by,;-1. We then have paths b,=c,, ¢y, ..., c,=c¢ and c=d,, ...,
d,=b, for t,sc{0, ..., k+I1—1} such that the sets {b, ..., by4;-1}> {c1, ...; ¢,} and
{d,, ..., d,_,} are pairwise disjoint. The result follows by Lemma 4.2. '

Theorem 4.4. Let D=(V, E) be a cycle with n vertices. Then for every group
G, G|S(D) if and only if G|Z,, for some m=n.
"Proof. It suffices to show that a group is isomorphic to a subgroup of S(D)
if and only if it is isomorphic to a subgroup of Z,, with m=n.
Suppose that H is isomorphic to a subgroup of S(D). From Fact 3.3, there is a
subset J/ of the vertex set of D such that H is isomorphic to a subgroup of G(D, V’).
Let m be the cardinality of ¥’. We prove that G(D, V") is a cyclic group of order m.

Set V={a,,...,a,} and V’'={a;,..,q } so that a4, ...,a, is a cycle and
iy<...<i,. Place pebble p; onto a;, j= 1,..., m. Rotate the pebbles once around
the cycle a;, ..., a,. If each of the pebbles p; is on the vertex g, , or on a, if j=m,

we see that the cycllc permutation (g ...a; ) is in G, V). Otherw15e rotate those
pebbles around the cycle ay, ..., a, for whlch it does not hold. In a finite number of
steps we obtain a realization of the cyclic permutation (g; ...a; ). Thus, (a,l...a,.m)e
€G(D, V). On the other hand, since by our rules and the structure of D the pebbles
can never pass each other, every permutation in G(D, V) is a power of the cyclic
permutation (a a; ) :

Conversely, it is clear from the above proof that if H is isomorphic to a sub-
group of a cyclic group Z,, with m=n then H is isomorphic to a subgroup of G(D, V")
for every subset ¥V’ of ¥ with m elements. Thus, Fact 4.2 yields G|S (D).

Let & be a class of automata. Set D(")={D |3 A€ D is a subgraph of
D(A)}, where the notion of a subgraph of a graph is used in the usual sense. With
the concept of D(X') and that of a biconnected graph we are able to characterize
complete classes for the a}-product:

- Theorem 4.5. A4 class o is complete for the ai-product if and only if for every
positive integer n, D(X) contains a biconnected graph on at least n vertices.

Proof. If D(’) does not contain biconnected graphs then, by Theorem 4.4,
Fact 3.5 and Fact 3.1, every simple group dividing S(A) for some AcP} (.%’ } is
commutative. If » is the highest integer such that D(x") contains a blconnected
graph on n vertices then, again by Theorem 4.4, Fact 3.5 and Fact 3.1, every simple
group dividing S(A) for an A€P}, (9{ ) is either commutative or a divisor of S,.
In either case, 2" cannot be comp]ete for the a}-product by Theorem 1.1. ‘
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For the converse, suppose that for every positive integer n there exists a bicon-
nected graph in D(2¢) having at least n vertices. Take a simple group G. There is a
positive integer n with G|S,. By Theorem 4.3, Fact 3.2 and Fact 3.1, it is easy to see
that S,|S(A) for some AcP} [(A). Thus, o is complete for the at-product by
Theorem 1.1.

In exactly the same way we obtain the following result:

Theorem 4.6. Let " be a class of automata. If A is not complete for the
a*-product then three cases arise.

(i) There is a highest integer n such that D(XA") contains a biconnected graph on
n vertices. Then AEHSPL(.%” )} if and only if for every simple group G with G|S(A),
.either G|S,_, or G|G(D) for a biconnected graph DED(X") on n vertices or G is a
prime group of order p and D (XY contains a cycle of length at least p.

(i) D() does not contain biconnected graphs but there is at least one cycle in _
D). Then Ac HSP:}I(% Y if and only if for every simple group with G|S(A), Gisa
prime group of order p such that D(H") contains a cycle of length at least p.

(iii) Otherwise, i.e. if there is no cycle in D(A), then HSP? (Ji’ ) is the class of
all monotone automata or the class of all discrete automata or the class of all trivial
automata, just as in Theorem 1.2.

Corollary 4.7. There are a countable number of classes of automata of the
form HSP; (X).
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