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On composition of idempotent functions 

A. KISIELEWICZ 

The general problem of composition of functions was raised by W. SIERPINSKI 

[13]. Since then the problem has been extensively investigated in many-valued logic, 
synthesis of automata, and recently, in universal algebra (cf. [11], [1], [3], [4]). 
There are some results and problems showing that idempotent clones play here a 
special role (cf. [2], [3], [8], [10,] [12], [14], see also [7]). In this paper some further 
special properties of idempotent clones are established, and examples are provided 
to show that our theorems do not hold in the general (nonidempotent) case. 

The results are stated in Section 3. Before we introduce some definitions 
(Section 1) and give background information (Section 2). Proofs are given in 
Section 4. 

1. Definitions. A clone is a composition closed set of functions (on a fixed uni-
verse A) containing all projections (cf. [12]). For two clones A and B such that 
B 5 A we say that A is a subclone of B, while B is an extension of A. If A ^ B and 
A is not a trivial clone (i.e. consisting of projections only), then A is said to be a 
proper subclone of B. If m is the least integer such that there is an essentially wi-ary 
function in B—A, then B is called an m-ary extension of A. 

For any set F of functions, i^(F) denotes the set of essentially /i-ary functions 
in F, and pn{F) is the cardinality of P„(F). Moreover, we denote 5(F)={«: />„(F)>0}. 

A function f: A"-*A is idempotent if it satisfies f ( x , x ) = x identically. 
If, in addition, it satisfies 

• f ( f ( x h x2> •••» xn)> f(x\, *n)> ./(*?. *2> *n)) —f(Xl> •*!> •••> 
then it is called diagonal. If every function in a clone is idempotent (diagonal), then 
the clone itself is called idempotent (diagonal). 

Other, undefined concepts are standard and can be found in corresponding 
papers given in our references. Throughout the paper we make use of the fact that 
clones can be identified with sets of polynomials of universal algebras (cf. [11]). 
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2. Examples. The algebraic property of idempotency is of special interest in 
studying clones, because for any clone A, the idempotent functions in A, as it is 
easy to check, form a composition closed set (the full idempotent subclone of A). 
Consequently, studying minimal clones leads to studying certain idempotent clones 
(see [2], [12]). Also, ^„-sequences (and free spectra) of idempotent clones are com-
pletely different in nature from those of nonidempotent clones (see [4], [7], [8]). Diago-
nal clones are rather exceptional among idempotent clones and are fully described. 
Properties of diagonal clones mentioned below are derived from [9] and [6]. 

(2.1) Diagonal clones. A clone D generated by a single essentially r-ary diagonal 
function xT) is called an r-dimensional diagonal clone (algebra). 5(D) = 
= {2, 3, ..., r} and pn(D) is finite for all n. A diagonal clone!D is finitely generated 
iff it is as above. Otherwise, ,S(D) = {2, 3, ...} arid />n(D)S80 for all n s 2 . For 
any diagonal clone. D, iJ(D) with 2, if not empty, is a generating set for D. 
Finally, if a cloné A is generated by diagonal functions only, and has no nondiagonal 
biliary functions, then it.is a'diagonal clone; it is finitely generated if and only if 
p2(A) is finite. Also, the structure of m-ary extensions of r-dimensional diagonal 
clones with m >r+1 is described (see [14]). 

, (2-2) Boolean reducís. For the full idempotent subclone I of the clone (of poly-
nomials) of any Boolean group {G, + ) we have 5(1) = {3, 5,7, ...} and />„(1)= 1 
for odd (see [8], p. 234). In this paper such clones are called simply Boolean 
reducís. The structure of m-ary extensions pf Boolean reducts with » i^ 5 is described 
in [14]. 

(2.3) Cornier-examples. Let C be the union of two infinite disjoint sets A and B 
and two further elements a and b. For any n^l we define two functions on C: 
/„(*!, ..., x„)=a if x1, ...,x„€A and are pairwise distinct, and f„=b otherwise. 
Similarly, g„(xl5 ..., xn)=a if x l 5 x n £ B and are pairwise distinct, and g„=b 
otherwise. It is easy to check that any set of functions f¡, g¡ containing the constant 
b is a clone. Thus, for any set of positive integers S, there exist a clone B and a sub-
clone A of B such that 5(8—A)=S. For these clones i^(B)U {6} is always a sub-
clone. Also, examples of clones without constants and having the.same, properties 
can be given using constructions applied in [3]. • . 

3. Results. Our main result concerns the difference B—A of an idempotent 
clone B and its subclone A. In the general case, by example (2.3), the set iS(B—A) 
can be arbitrary. If .B is assumed to be idempotent, the situation is very different: 

Theorem 1. Let B be an idempotent clone and A its proper subclone.-Then one 
of the following conditions holds: 
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(i) .S(B—A) = {m, m+1, ...} for some m^2, 
(ii) S'(B-A) = {2, 3, ...,r} for some rs=2, 

(iii) S(B-A) = {2, 3, ...,r}U{m, m + l, ...} for some r^2 and m>r+1, 
(iv) 5(8—A) = {3, 5, 7, ...}U {m, m+1, ...} for some even 5. 
Moreover, conditions (ii)—(iv) determine the structure of the clone B. Namely, 
1. if (ii) holds, then B is an r-dimensional diagonal clone, 
2. i/(iii) holds, then B is an m-ary extension of an r-dimensional diagonal clone, 
3. if (iv) holds, then B is an m-ary (or.(m — 1 )-ary) extension of a Boolean reduct. 

Corollary. The difference B—A of an idempotent clone B and its proper Hub-
clone A is always infinite, unless B is a finitely generated diagonal clone. 

Theorem 1 is actually a classification of the differences B—A, analogous to that 
of [14]. It is of some interest that from such a theorem one can derive a result con-
cerning composition of functions: 

Theorem 2. If B is an idempotent clone which can be generated by (at most) 
k-ary functions, then for any n^k, the set i^,(B) of essentially n-ary functions in B, 
if not empty, is a generating set for B. 

In addition to the examples in (2.3), many others can be constructed showing 
that our theorem fails to hold for nonidempotent clones. 

4. Proofs. At first, we give the proof of Theorem 1 which is based on several 
lemmas. We use techniques and constructions worked out in [5] and [8]. Throughout, 
B is assumed to be an idempotent clone, and A its subclone. The numbers in question 
are always integers. For every k ^ 2 we consider the following property of the 
clone B: 

(+) for every function f(xlt ..., x„)6i^(B) with n^k there exists a function 
/(*!, ..., x„+1)6.PB+i(B) in B such that f(xu ..., x„, xi)=f(x1, ..., *„) for some /. 

Lemma 1. I f B satisfies (+) for some k, then for every m^k, m£S(B—A) 
implies {m, m+1, ...}QS(B-A). 

Proof. m£S(B—A) means that there is an essentially m-ary function 
fixl5 ...,xm) in.B-A. Then, /(xx,...., xm+1)$A, since-(by substitution ,) 
it generates / (xj , ..., xm). It follows that ?n + l€iS'(B—A). Now the result follows 
easily by induction. 

Lemma 2. Let g{x,y)=x - y be a binary function in B, not diagonal. If f= 
=f(x1, ...,xB)£Pn( B) (n^ 2), then for some i,f=f(Xl, ..., xr x„^, ..., x„KPn+1{ B), 

Proof. At first, note that / obviously depends on each of the variables 
xu ..., x i + 1 , ..., x„, since substituting x„+1=xi in / we get / depending on 
these variables. 
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Now, suppose that fix-y, x2, •••, x„) does not depend on y. Then by sub-
stituting y=x, fix-y,x2, ..., x„)=/(x, x2, ..., xn). Consequently, f((x-y) -z, x2, ..., 
..., JC„) =fix, x2, ..., xn). Similarly, if f(x -y, x2, •••,xn) does not depend on x, then 
f{ix-y)-z,x2, ..., x„)=/(z, x2 , . . . , x„). By analogous arguments for all indices /', 
and in view of the idempotency of / , we infer that, if fixi,..., xf • x n + 1 , . . . , xn) 
is not essentially (л +1 )-ary for any i, then (x • y) • z =/((x • y) • z, ..., (x • y) • z) does 
not depend on y. Consequently, ix • y) • z=x • z. Similarly, x • (y • z)=x • z. This 
means that x • у is diagonal, a contradiction. 

Lemma 3. If there is a binary nondiagonal function in B, then condition (i) of 
Theorem 1 holds. 

Proof. By Lemma 2, В satisfies condition (+ ) for k=2. Now, if m is the least 
integer such that m£S(B—A), then in view of Lemma 1, S(B—A) = {m, m +1, ...}, 
as required. 

Lemma 4. If В is a diagonal clone, then 5(8—A) = {2, ...,/•} for some r^2 
wheneverB is finitely generated, and 5(B—A)={2, 3, ...} otherwise. 

Proof. If В is finitely generated, then the result is by (2.1). Suppose that В is 
not finitely generated and m^SiB-A). Then Pm(B)=Pm(A). However, as Pm(B) 
generates the clone В (cf. (2.1)), PmiA) also does, and so A—B, a contradiction. 

Lemma 5. If В is an m-ary extension of a diagonal clone D for some m^2, then 
D is contained in the clone generated by /^(B). 

Proof. If there is a diagonal function in Pm(B), then by (2.1) iJ,(D) generates 
D, and since ii,(B) Z3ij„(B), the result follows. In the opposite case, D is an /--dimen-
sional diagonal clone for some r<m (r^2). In this case we apply the method of 
diagonal decomposition of the clone В with respect to D (see [8], p. 244). 

Let / (x l 5 ...,xm) be a nondiagonal essentially m-ary function in B, which 
exists by assumption. Then 

f(xi, -,xm) = {fiixl, ...,xj, ...,xj> 

and each / ' is either essentially m-ary or equal to /¡¡(xk). Indeed, if e.g. fxixx, ..., xm) 
depended on exactly к variables with 1 say / J (x l 5 ..., xm)=g(x1? ..., xk), 
then we would have (g(*i> •••> h2ixj),..., /ir(xi)>6^i(®)- This function is non-
diagonal (by properties of diagonal decomposition) contradicting the assumptions 
in our lemma. Moreover, at least one / ' must be essentially m-ary, since otherwise 
f would be a diagonal function. 

So, suppose that e.g. Z 1 ^ , . . . , x„) is essentially m-ary. 

/ ( x j , . . . ,х т - 1 г xm_j) = Лх(хк) for some к (1 ё к ^ m - 1 ) 
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(otherwise we can infer a contradiction, as above). Put 

g(xi, ...,xm) = (Pix^ ...,xJ, h2(xh),..., h,(xir)) 
where i2, ..., iT are pairwise distinct and (;2, ..., 2,..., m). Then g£i£,(B) 
and g(xx, ...,xm.1,xm-i)=(h1(xk),h;i(x,), ..., hr(xir)) is an essentially r-ary diag-
onal function, and by (2.1), it generates the clone D. This completes the proof. 

Lemma 6. Suppose that P2(B) is finite, nonempty, and consists of diagonal 
functions only. If B is not a diagonal clone, then either S(B—A) = {m, m+1, ...} 
for some m S 2, or S^B— A)={2, ..., r}U {m, m+1, ...} for some r^2 andm>r+1 
In the latter case B is an m-ary extension of an r-dimensional diagonal clone. 

Proof. Denote by D the clone generated by P2 (B). By (2.1) it is an r-dimensional 
diagonal clone for some 2, and consits of all diagonal functions in B. In other 
words, since by assumption B^D, B is an m-ary extension of D for some w s 2 , 
just as the second part of the lemma states. Moreover, B satisfies (+) for k=m. 
Indeed, it is enough to set J—fL, where L is a mapping defined in [8], Section 5.4. 

Now, if s is the least integer such that j£5(B—A) and s^m, then in view of 
Lemma 1, 5(B—A)= {i, j+1 , ...}, as required. It remaines to consider the case 
when j<m, which means that there exists a diagonal essentially s-ary function in 
B—A (i^2) . By means of (2.1), it follows that the full diagonal subclone of A is 
contained properly in D, and consequently, {2, ..., /•jQjS'iB—A). On the other 
hand, by Lemma 5, m£S(B—A), and since B satisfies (+) for k—m, {m,m+l, 
i S ( B - A ) . 

Now, if r ^ m - 1 , then S (B-A)= {2, 3, ...}, while if r < m - 1 , then as B 
is an m-ary extension of D, S(B—A) = {2,..., r}U{m, m+1, ...}. This completes 
the proof. 

Lemma 7. If P2(B) is infinite and consists of diagonal functions only, then con-
dition (i) in Theorem 1 holds. 

Proof. In view of Lemma 1 it is enough to show that B satisfies condition (+ ) 
for k—2. Applying again the method of diagonal decomposition [8], we construct 
a suitable mapping. 

Let f{x%, ..., xm)£Pm(B), m^2. By virtue of (2.1) (for every m) there exists 
an essentially (m+l)-ary diagonal function in B. This function generates an (m+1)-
dimensional diagonal clone, a subclone of B. We decompose B just with respect 
to this diagonal clone. Thus, we have 

Since each / ' depends on at least one variable, there are a variable xk and indicies 
ij, i2 such that both /'» and / ' • depend on xk. Replacing in / ' • the variable xk by 
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.xm+i, we obtain an essentially (m+l)-ary function / which yields / , with the sub-
stitution xm+1=x* as required. 

Lemma 8. If /?2(B)=0 and B is not a q-ary extension of a Boolean reduct for 
any g s 4 , thenS(B—A)={m, m + \, ...} for some m^3. 

Proof. It is enough to show that B satisfies condition (+) :for lc=3. For the 
.proof one should consider three cases corresponding to Sections 3, 4 and 6 of [5] 
{note that in Section 7, actually, 4-ary extensions of Boolean reducts are considered), 
and observe that the constructions given there satisfy the requirements of our con-
dition (+) for k—3. 

Lemma 9. IfBis an m-ary extension of a Boolean reduct I with wis4, then 
either S(B-A) = {q,q+1,...} for some q^m or 5 (B-A) = {3, 5,7, ...}U 
U{m, w+1,...}. 

Proof. For /£ij,(B) with n^m— 1 put J=fL1, where L^ is the mapping 
defined in [8], Section 5.2. It follows (by properties of that B satisfies condition 
( + ) for k=m— 1. (In [7] it is assumed that m^5, but the construction works also 
for w=4, since the conditions (i), (ii) in [8], p. 242, hold for m=4 as well (cf. 
{5],p. 111)). 

Now, if q is the least integer such that qZS(B—A) and q^m, then by Lemma 
1, S(B-A) = {q,q+1,...}. 

• In turn, q<m means that one ofthe essentially w-ary functions of I with 
is inB—A, and as each Boolean reduct function generates I, we have {3, 5, 7, . . .}£ 
§5(B—A). Since B satisfies (+) for k—m— 1 (applying this condition to Boolean 
reduct functions), we get 5(8—A) = {3, 5, 7, ...}U{m,m + l, ...} regardless as to 
whether m is even or odd. The proof is complete. 

Lemma 10. If />2(B)=p3(B)=0, then S(B-A) = {m, m+1,...} for some 

Proof. Let s be the least integer (^4) with the property />S(B)=»0. Then B 
satisfies (+) for k=s. To see this, it is enough to put J=fLl, where L^ is as in 
the previous proof. The result follows by Lemma 1. 

Now, Theorem 1 is a consequence of Lemmas 3, 4, 6, 7, 8, 9, and 10. The Co-
rollary is an immediate consequence of Theorem 1. We prove Theorem 2. 

To this end suppose that P„(B) is nonempty (i.e. n£S(B)), arid denote by A 
the subclone of B generated by P„{B). Then we have /i(£S(B—A). Now, if A=B, 
then the result is true. Hence, suppose that A is a proper subclone of B and apply 
Theorem 1. Observe that in cases (ii)—(iv) of Theorem 1, the second part of the 
.theorem combined with Urbanik's result [14] yields that we always have ,S(B—A)=0. 
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This contradicts the fact that «eSCB), while «$5(8-A) . It follows that under 
our assumptions case (i) in Theorem 1 holds for some In particular, for every 
i^/ j , A), i.e./?(B)=/?(A). Since by assumption A:Sn, and B is generated 
by ¿-ary functions, it follows that A=B, completing the proof of Theorem 2. 
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