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Convergence of Hermite—Fejér interpolation at zeros 
of generalized Jacobi polynomials 

PAUL NEVAI*) and PÉTER VÉRTESI 

1. Introduction 

The aim of this paper is to find necessary and sufficient conditions for uniform 
convergence of Hermite—Fejér interpolating processes based at the zeros of gen-
eralized Jacobi polynomials. As a by-product of our investigation we also give an 
answer to a question raised by P. T U R A N [35, Problem XXVII, p. 47] (cf. [36, Sec-
tions 2.3.1 and 3.6, pp. 337—338]). I f / i s a bounded function and w is a nonnegative 
integrable weight function on the real line, and xln(w)>x2n(w)>...>x„„(w) are 
the zeros of the orthonormal polynomials p„(w) corresponding to w, then the as-
sociated Hermite—Fejér interpolating polynomial H„(w,f) is defined to be the 
unique polynomial of degree at most 2n— 1 which satisfies 

H„{w, / , xkn(w)) = /(x t o(w)) and H'n(w, f , xkn(wj) = 0, k = 1, 2, . . . , n. 

Ever since the work of L. Fejér, G. Grünwald and G. Szegő there has been a 
great deal of research performed in conjunction with convergence properties of 
these polynomials in terms of the weight function w, the point system {xtn} and 
the function / . In particular, when {xtn(w(o,6))} are the zeros of the Jacobi poly-
nomials which are orthonormal with respect to the Jacobi weight w>(fl,fc) de-
fined by 

{ X ) - [ 0 for x<t( - l , l ) , 
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— 1, — 1, one has a complete description of the conditions assuring uniform 
convergence of the corresponding Hermite—Fejér polynomials Hn(wiab),f). 
Namely, roughly speaking, for negative parameters a and b lim Hn(w^a,b^,f)=f 
uniformly for all continuous functions f , whereas for nonnegative a and b 
lim Hn(wia'b\f)=f takes place uniformly only under additional conditions on / . 
An accurate synthesis of the results we are interested in is given by the following five 
statements. 

P r o p o s i t i o n 1.1. Let ö=— 1, ¿>=— 1 and 0 < e < l . Then 

lim max \f(x)-H„№-b>,f,x)\=Q oo —e^x^e 

for every function f continuous in [—1, 1]. 

P r o p o s i t i o n 1.2. Let — 1 and —1<£<1. Then 

sup max \Hn{w^b\f x)| 
nSl 

for every function f bounded in [—1,1] if and only if — 1 

Propos i t i on 1.3. Let b> — 1 and — l < e < l . Then 

lim max \f(x)-Hn(w^b\fx)\ = 0 
n— CO 

for every function f continuous in [—1,1] if and only if — 1 <ö<0. 

The above three theorems are condensed from [4, Vol. II, pp. 9—48, 285—317, 
361—417, 502—512, 527—562, 767—801], [28, p. 138], [32, Theorem 14.6, pp. 340— 
344] and [33, Vol. 1, pp. 335—362]. 

By Markov's theorem on the derivatives of algebraic polynomials (cf. [16, 
§ VI. 6, p. 141]) if {Q„} (deg On=ri) is a uniformly convergent sequence of algebraic 
polynomials in an interval, then is 0(«2r) in the same interval for r= 1,2, 
In view of this observation the following result whose special case of Legendre 
zeros (a=b=0) was also treated by A. SCHÖNHAGE [27] and J. SZABADOS [29] is 
especially satisfying. 

P r o p o s i t i o n 1.4 [38, Theorem2.1, p. 84]. Let — 1 <e-= 1 and let f be con-
tinuousin [—1,1]. Let a£[s—I, s) for a fixed positive integer s, and let í>=—1. Then 

lim max \f(x)—H„(w<a'b\f,x)\ = 0 /I-*« e^x^l 
holds if and only if 

lim H a W b \ / , D = / ( 1 ) 
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and (if 1) 
lim n-»[Hp№-b>, f , x)]L=1 = 0 

for r= 1 ,2 , . . . , s— 1. 

The following result of J. Szabados is the culmination of research by several 
authors including L. FEJÉR [4, Vol. II, pp. 22 and 40], E . EGERVÁRI and P. TÚRÁN [3], 
A . SCHÖNHAGE [27] a n d G . FREUD [9]. 

P r o p o s i t i o n 1.5 [29, Theorems 1 and 3, pp. 470 and 457]. Let 6>—1 and 
— l < e < l . Let fbe continuous in [—1,1]. Then 

i 
lim Hn(w^»\f 1) = (1 + b)2-"-1 f /(f)w«»-6>(0dt, 

and 
lim max \f(x)-Hn(\^a'h\fx)\ = 0 n-»oo es i s l 

holds if and only if 

/(1) = (1 + b)2~b~1 ¡f(t)wV-bHt) dt. 
- l 

In what follows the function w is a generalized Jacobi weight if it can be re-
presented as 

w = where O^C 1 and g 'SLip l on [ - 1 , 1 ] 

for some a>- — l and — 1. Because of J. Korous'theorem yielding bounds for 
the corresponding generalized Jacobi polynomials p„(w) (cf. [32, Theorem 7.1.3, 
p. 162]) one expects a close relationship between Jacobi and generalized Jacobi 
polynomials, in particular, between associated approximation procedures. This is 
indeed the case as shown in the research conducted by V. M. Badkov, A. Máté, 
V. Totik and us (cf. [1], [2], [11]—[15], [18]—[22] and [24]). 

In [24] we dealt with characterizing weighted mean convergence properties of 
Hermite—Fejér interpolating sequences associated with generalized Jacobi poly-
nomials and we proved the following 

P r o p o s i t i o n 1.6 [24, Theorem 5, p. 55]. Let 0<p<°°, and let w be a gen-
eralized Jacobi weight. Let u be an unrelated Jacobi weight function. Then 

lim H„(w,f)=f in Lt(u) in [ - 1 , 1 ] 

for every function f continuous in [—1, 1] if and only if w~1£Lp(u) in the interval 
[ - 1 , 1 ] . 
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2. Main results 

As announced in [23], we can generalize and/or extend the previous six proposi-
tions as follows. 

- Theorem 2.1. Let w be a generalized Jacobi weight, and let 0 < e < 1. Then 

lim max \f(x)-Hn{w,f,x)\=0 n— co —e^x^e 

for every function f continuous in [—1,;1]. 

Theorem 2.2. Let w be a generalized Jacobi weight: Then for every fixed non-
negative integer m there exists a polynomial II such that R defined by R(x) = 
=(l-x)mn(x) satisfies 

l iminfn- 2 a |K( l ) - t f n (w, R, 1)| s 1. 
FL-»CO 

Theorem 2.3. Let iv be a generalized Jacobi weight, and let — l < e < 1. Then 

sup max \H„(w,f x)| «*> nmi 
for every function f bounded in [—1, 1] if and only if »'(1)^0. 

Theorem 2.4. Let w—gw(a'b^ be a'generalized Jacobi weight function, and let 
— l < e < l . Then 

lim max \f(x)-Hn{w,f,x)\ = 0 n-*co ET-X1 

for every function f continuous in [—1, 1] if and only if w(l) = °°. 

Theorem 2.5. Let w=gw<-a,b) be a generalized Jacobi weight function, and let 
— l-==e-= 1. Let f be continuous in [—1,1]. Let — 1, s) for a fixed positive 
integer s, and let ¿>=>-.— 1. Then 

lim max \f(x)-Hn(w,f,x)\ = 0 ISiSl 
holds if and only if 

lim Hn(w,f> 1) = / ( 1 ) 

and (if aslj 
lim n-*[H<;\w,fix))\x=1=0 

for r= 1, 2, ..., s— 1. 

Theorem 2.6. Let ,w—gw{0,b) be a generalized Jacobi weight function, and let 
— 1 . Let f be continuous in [—1,1]. Then 

l i m / / n ( w , / , l ) = ^ 
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Hence, 
lim max \f(x)—Hn(w,f x)| = 0 

holds if and only if 

/(1) = (2w(l))-* ff(t)d[w(t)(l + t)]. 

Needless to say that analogous results can be proved in the interval [—1, e] as 
well, and therefore one can formulate results that are concerned with convergence 
in the entire interval [—1, 1]. 

3. Notations 

As a rule of thumb, all positive constants whose value is irrelevant and which . 
are independent of the variables in consideration are denoted by "K". Each time 
"K" is used it may (or may not) take a different value. The symbol is used 
to indicate that if A and B are two expressions depending on some variables then 
A-oB^AB-^K and \A~1B\^K. We use N and R to denote the set of positive 
integers and real numbers, respectively. 

Given a weight function w, the leading coefficient of the corresponding ortho-
normal polynomial p„(w) is denoted by y„(iv). Kn(w) is the associated reproducing 
kernel function, that is 

(3-1) Kn{w,x,t) = "2 pn(w,x)pn(w,t). k=0 

In terms of the Christoffel—Darboux formula (cf. [32, Theorem 3.2.2, p. 43]), K„(w) 
can be expressed as 

(3.2) Kn{w, x, 1) = (y„-1(>v)/v„(M'))[/?n(H', x)pn^1(w, t)-p„^(w, x)pn(w, t)]/(x~t). 

The Christoffel function A„(u>) is defined by 

(3.3) ¿„(w, x) = x, x). 

The Cotes numbers kkn(w) in the Gauss—Jacobi quadrature formula are given by 

(3-4) Xkn(w) = Xkn(w, xin(w)). 

The fundamental polynomials of Lagrange interpolation / i n(w) associated with the 
zeros of/7„(iv) are defined by 

(3-5) 4n(w> x) = pn(w, x)/[p'n(w, xA„0v))(x-xk„(w))]. 

6 
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Another useful expression for fkn(w) is the following 

(3.6) tk„(w, x) = (y„-1{w)jyn(w))).kn(w)p„_ 1 (iv, xtB(vv))/7„(vv, x)j(x-xk„(w)) 

(cf. [32, formula (3.4.7), p. 48]). 
The usual way of expressing the Hermite—Fejér interpolating polynomial 

H„(w,f) is in terms of the fundamental polynomials ¿k„(w), and it is given by 

(3.7) .. Hn(w,f, x) = 2 f(xkn(w))vkn(w, x)if2
kn(w, x) 

t=i 

where vkn (w) is defined by 

(3.8) vk„ (w, x) = 1 -pi (u>, xkn (w)) [p'n (w, xkn (w))] - 1 (.v - xkn (iv)) 

(cf. [32, p. 330—331]). For special orthogonal polynomial systems due to available 
differential equations p"„(w, xkn(wj)[p'n(w, xfe„(vv))]_1 can be expressed explicitly in 
terms of the weight function and the zeros of the orthogonal polynomials, the above 
expression is convenient when investigating Hermite—Fejér interpolation. How-
ever, for general weight functions it is difficult (if not impossible) to handle the 
derivatives of orthogonal polynomials, and thus this formula is of limited value. 
On the other hand, G. Freud's formula 

(3.9) ' • _ ' . vkn(w, x) = 1+A'n(w, xk„(w))),kn(w)"1 (x-x k n(w)) 

(cf. [5, p. 113]) involves the Christoffel functions and their derivatives which are 
much more suitable when the weight function is not one of the classical ones (cf. 
[5, 8, 24]). If P is a polynomial of degree at most 2n—1 then in view of the Hermite 
interpolation formula (cf. [32, pp. 330—331]) we can write 

(3.10) P(x) = Hn(w, P, x)+^n(w, P\ x) 

where 

(3.11) X„(w,/, x) = 2 f(^nM)(x-xk„(w)yi(w, X). 
k=l 

4. Technicalities 

Here, in addition to formulating some useful and known properties of generalized 
Jacobi polynomials which run parallel to those of Jacobi polynomials, we will 
also prové a few propositions of technical nature that will subsequently be applied 
to demonstrate our principal results. In what follows w is a generalized Jacobi 
weight. . . . . • • 
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If * t ( I(w)=cos (0fe„(iv)) where x0„(iv)=l, .vb+1;„(m') = - 1 and O s B ^ w j ^ n then 

(4-1) 0k+i,n(w)-Okn(w)~lln . 

uniformly for O ^ k ^ n and M£N (cf. [18, Theorem 3, p. 367]). 
Using Korous' theorem (cf. [32, Theorem 7.1.3, p. 162]), similarly to Jacobi 

polynomials, the generalized Jacobi polynomials can be estimated in terms of the 
weight function as follows: 

(4.2) |Ai(m',X)|=§K 
[ i v W ( l - i ! ) " ! ] - " ! for x<E[-l + n-2 , l - n ~ 2 ] 
n ^ l w i l - n - 2 ) ] - 1 ' * for X 6 [ l - n - 2 , 1] 
n ^ i w i - l + n-2)]-1 '2 for x e [ - l , - l + n-2], 

uniformly for (cf. [32, Theorem 7.32.2, p. 169] or [1, p. 226]), 

(4.3) 
n|x-xm„(iv)|[w(x)(l-x2)3/2]-1 '2 for 2x€[— 1 +x„„(w), 1 +x ln(w)] 
n^ lwi l -n- 2 )}- 1 / 0 - for 2x£[l +x ln(iv), 2] 
ni/2[W(_ i + „-2)]-i/2 f o r 2x6[—2, - 1 +x„„(w)], 

li>„("', x) | • 

uniformly for «€N where m is the index of the zero xk„(w) which is (one of the) 
closest to x (cf. [19, Theorem 9.33, p. 171]), and 

(4.4) !/>„-,(.V, Xtn(iv))|~M'(x^„(vv))~1/'2(1 - x , „ ( w ) ^ 

uniformly for l ^ k ^ n and N (cf. [19, Theorem9.31, p. 170]). 
The derivatives of generalized Jacobi polynomials at ± 1 satisfy 

(4.5) If/^H«-, :h 1)F'I Kr^\p~l(w, ± 1)| 

uniformly for H€N (cf. [20, formula (23), p. 674]). Writing P ^ M p ' ^ i p ' 1 ) , and 
using (4.5) and the product differentiation rule (Leibnitz's formula) we obtain 

(4.6) |[p-%w, ± 1)]W| ^Kni(\p--(w, ±1) | 

uniformly for N. 
For the Christoffel functions and Cotes numbers we have the following esti-

mates 
* 7i—*w(x)(l —X2)1^2 for x e t - l + n"3, l-tl~2] 
?? - 2 w(i -» - 2 ) for x 6 [ l - « - 2 , 1] 
n-2w(-l + n~2) for x€[— 1, — 1 + « - 2 ] , 

(4.7) ?Jw, x)-

uniformly for «6N (cf. [17, p. 336]) and 

(4.8) ^ ( " ^ « - ' « ' ( - ^ ( ^ ( l - x ^ w ) 2 ) ^ 

uniformly for l s / c s « and n€N (this follows immediately from estimates (4.1) 

6» 
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and (4.7). (tf. 3.4)). The'derivatives of. the Christoffel functions satisfy 

n - M x X l - x 2 ) - 1 / 2 for х£[-1 + п~2, 1 - й " 2 ] 
(4.9) \K(w,x)\ S i w ( l - « " 2 ) for x € [ l - n " 2 , 1] 

|4V (— 1- -f- n ~2) for JC€[ — 1 , - l + n~2], 

uniformly for (cf. [24, formula (23), p. 36]) and 

(4.10) rn(w, xkn(w)) m Kn-iw(xkn(wj)(l-xkB(w)2)-^ 

uniformly" for~l щ к ^ п and n£N (cf. [24, formula (24), p. 36]). 
A weight function w is said to belong to Szego's class (w£5) if it is supported 

in [—1,1] and log w(cos in [0, я]. For instance^ all generalized Jacobi 
weights are in Szego's class. According to the Szego Theory (cf. [32, Theorem 12.7.1, 
p. 309]) the leading coefficients y„(vv) of the orthogonal polynomials p„(w) satisfy 

(4.11) 0 < lim 2~"yn{w) = я - 1 / 2 exp | (2я ) - 1 f log w(cos &)dd} <» 
" " " о 

whenever w£S. 
The following proposition is a simple but unexpected generalization of (4.2) 

and (4.4). 

Lemma 4.1. Let w(a'b) and w2=g2w<-a,b) be two (not necessarily dif-
ferent) generalized Jacobi weights corresponding to the same parameters a>- — 1 
and — 1. Then for every fixed integer / we have 

(4.12) ' | / w K > 0 v 2 ) ) | S Kw{xkn(w2))-W{l-xk„(w2)2)^ 

uniformly for l^k^n and n£N. 

: P roof . By Korous' theorem (cf. [32, Theorem 7.1.3, p. 162]) we have 

\P«+t(Wl> *)l ^ K[\Pn+ir(w2, *)l + \Рп+(-ЛЩ, *)|] 
for x£[—1, 1]. Being orthogonal polynomials, the generalized Jacobi polynomials 
satisfy the three-term recurrence 

xpn(w, x) = an+1(w)pn+1(w, x) + b„(w)p„(w, x)+an(w)pn_l{w, x), 

and since w>0 almost everywhere in [—1,1], we have lim a„(w) = l/2 and 
lim b„(w)=0 (cf. [25], [26], [12, p. 68]," [22, Sections 4.5 and 4.13] and (4.11)). Hence 
by repeated application of the recurrence formula we obtain 

Ipn+j(w2> ^ K[\pn^(w2, x)| + b„(w2, x)|], 1], 

for all fixed j. Now inequality (4Л 2)'follows from (4.4) applied with w=w2. 
;:. The; next step is to conipare Christoffel functions of generalized Jacobi weights. 
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Lemma 4.2. Let wi=giw^c,b) and u>2=g2wia,6). be two generalized Jâcobi 
weights corresponding to the same parameters a> —1 arid b>~—l. Then , 

(4.13) (A-ft„ (m'j)) Afc„ (>v,) ~ 1 — ( » v j ) Àk„ (w2) - ' | s ' / . 

holds uniformly for 1 Sk^n and w£N. 

P r o o f . Let wx=gw2. Then the identity 

g(x)À~1(w1, x)-À~1(w2, x) = f K„(wx, x, t)K„(w2, x, t) te(x)-g(i)j w2(t) dt 
R 

is a straightforward consequence of orthogonality relations. Since we have g'£ Lip 1, 
we can write g(x)—g(t)=g'(x)(x—t)A-0(}x—tf). Hence the previous formula 
becomes .. -

(4.14) g(x)k~\ wi,x)-k-\w2,x) = 

= g'(x) ¡Kn (W, , x, t)Kn (w2, x, i) (x - 0 w2 (t) dt + 
R 

+ 0 ( 1 ) f lK^Wx, x, t)Kn(w2, X, 01 (x~tfw2(i) dt. 
R 

In view of (3.2) the first integral here can explicitly be evaluated in terms of . the 
orthogonal polynomials involved and their leading coefficients.-We have 

(4.15) : 

fKn(Wlt X, t)K„(w2, X, t)(x-t)w2(t) dt = (yn-iiwJlySwàypn-xÇwx, x)pn(w2, x). 
R 

Using Schwarz's inequality, wa=Kwlt (3.2) and again orthogonality relations, we 
can estimate the second integral as follows : 

(4.16) [ / \Kn(Wl, x, t)K„(w2, x, i)| (x-tTw2(t) dtf ^ 
R 

- ^ K J Kl(wx, x, t)(x— t)2w1(t) dt ¡K;(w2,x,f)(x-tfw2(t)dt = 

R R 

= K[yn- i(vVi)/yB(Wi).]2[/>^ 1(^1, x) +pl{Wl, *)]X 

X^-iOvaVy^w,)]2!^.^^, x)+pl(w2,.*)]. 
Since generalized Jacobi weights vv are in Szegô's .class, we can use (4.11) to estimate 
the ratios of the leading coefficients of generalized Jacobi polynomials. Using this 
observation and inserting (4.15) and (4.16) into (4.14), we obtain 

ë £[!/>„_!(»!>!, ^l + LPnOvj, x)\]{\p„^(w2, x)| + |/?„(tv2,.\:)|]. 
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Applying this inequality with x=xfc„(H>1) (cf. (3.4)) and using Lemma 1 (cf. (4.12)), 
Lemma 4.2 follows immediately. 

Our next goal is to estimate v^w, x) (cf. (3.7)—(3.9)) via improving (4.10) 
regarding the derivatives of the Christoffel functions. For Jacobi polynomials 
we have 

(4.17) vb,№-h\x) = l-{l-xiri[a-b+(a+b+2)xk„}(x-xkn) 

(*fcn=*fa.(yo'i,))) (cf. [32, formula (14.5.2), p. 339]). In what follows we will show 
that the right-hand side of (4.17) is the principal contribution to vk„(w, x) as well. 

Lemma 4.3. Let w=gw(a'b) be a generalized Jacobi weight. Then 

(4.18) №(w, xtB(w))).kn(w)~> + [1 (m;)']"1^ - b+(a + b+2)x,„(vv)]| s K 

uniformly for and n(L N. 

P r o o f The crux of the matter is the inequality 

\g(x)K'n(w, x, x)-K;M°'h), x, x)| S 

si K[ \p n ^(w^" \ x)| + | A , - i ( u ^ , x)\ + \ p n W b > , ,v)|]x 

X t l / C i O v ^ , x)| +!/>;(»<"•»), x)\] ( x £ [ - l , 1]), 

N, which is a special case of a general inequality proved in [24, Lemma 1, p. 31]. 
Setting here x=xkn(w) we can apply Lemma 4.1 to estimate pn+i(w(a'b\ xkn(»')). 
Moreover, since 

p№'b\ x) = constpn-1(w<-a+1-bf1\ x) 

where the constant is of precise order n (cf. [32, formula (4.21.7), p. 63]), we can use 
(4.1) and (4.2) to estimate p'n+i(w(a-b\ xkn{w)). We obtain 

(4.19) ¡g(^(n>))tf„'(w, xkn(w), xkn(w))-K(w("-b\ xkn(w), xt„(w))| s 

^Knw-*(xkn(w))(l~xkn(wy)-w 

for 1 ^ k ^ n and Now the point is that Kil(w(a,b\ xk„(w), xk„(w)) can be 
evaluated. By (3.2) 

K(w) = (y„ _ 1 (w)/y„ (w)) \p'n (w) p„_l (w) — P„ (w) pii_ , (vv)], 

and since the Jacobi polynomials satisfy the differential equation 

(l-xz)Y" = -n(n+a+b+l)Y+[a-b+(a+b + 2)x]Y' 

(cf. [32, Theorem 4.2.1, p. 60]) we obtain 

K{w(a'b\ X, x) = (1 -x2)-1{[a-b+(a+b+2)x]K„(wi°-b\ x, x)~ 

-{yn-ii^mw("-b)))(2n+a+.b)pn_l(w^b\ x)pn(w^b\ x)} 
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(which, as a matter of fact, immediately yields formula (4.1-7)). We have. 
y , , - i ( w U M )hn( w ( a ' h > ) 1 /2, (cf. (4.11))., Therefore, substituting x=xkn(w) here 
and applying Lemma 4.1, we get 

(4.20) \Ki(vf*b\ xkn(w), :v tn(w))-tl-x fcH(iv)2]-iX 

X[a-b+(a + b+2)xin(w)]KMa-"\ xkn(w), xto(w))| ^ 

- Knw{xkn{w))~1[\ —^i„(w)2]-1/2 ... .;: 

for l ^ k ^ n and Inequalities (4.19) and (4.20) enable us to conclude 

\g{xkn{w))K'n(w, Xkn(w), *ta(w))-[-l-xUwfnx 

X[a-b+(a + b+2)xkn(w)]Kn(w^b\ xkn(w), xkn(w))\^ 

^Knw~i(xkn(w))(i-Xkn(wy)-v* ; • 

for \S:kSn and ngN. Now we apply Lemma 4.2 with weights vvx=w and 
w2 = \v(a-b). We obtain - S 

^„'(^^„(wX^iw))-!!-^^)2]-^ . 
X[a-b+(a+b+2)xkn(w)]Kn(w,xkn(w),xkn{w))\^r , ,, 

•2 KmV-%xkn(w))(\-xkn(Wy)-v* 

for l^k-^in and «6N. Since K„=A ~1 so that K'JKn=—k'JXn, and since the 
right-hand side here is precisely of order kkn (w)-1 (cf. (4:8)), the'latter inequality 
is equivalent to (4.18) what we had to prove. 

Freud's formula (3.9) and Lemma 4.3 immediately yield 

Lemma 4.4. Let w=gw(a,b^ be a generalized Jacobi weight. Then 

K ( w , x ) - l - [ l - ^ n ( w ) 2 ] - 1 [ a - 6 + ( a + f c + 2 ) x ) i n ( w ) ] ( x - x t n ( i v ) ) | ^ ' 

uniformly for JCG[— 1, 1] , l^k^n and n£ N . 

The following three purely technical lemmas deal with Lebesgue function type 
estimates. 

Lemma 4.5. Let w=gw(a,b) be a generalized Jacobi weight, and let cgR. Then 
the asymptotics 

(4.21) 2 [1 -xM]-c[x-xkn(wWfin(w, x)> 
k=1 

-pliw, x) 
n-1 for a—c+2 >0, 
/i"1 log n for a—c+2 = 0, 
„2(c-<.-5/2) jo r a _ c + 2 o, 
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h o l d s u n i f o r m l y f o r ri6N a n d xER. I n a d d i t i o n , a n a l o g o u s e s t i m a t e s h o l d w h e n 

[1 —xfc„(n>)]~c
 i s r e p l a c e d b y [1 +x t n ( i f ) ] _ c

 i n t h e l e f t - h a n d s i d e o f (4.21). 

P r o o f . By (3.6) we have 

[ 1 - x k n ( w ) ] - c [ x - x k n ( w ) ] 2 f l , ( w , x ) p ~ 2 w , x ) = 

= ( y n - i ( » v ) / y „ ( H ' ) ) 2 [ l - x M V ' k ^ w f p l . A w , x k n ( w ) ) -

Since lim [y„_1(w)/v„(iv)] = l/2 (cf. (4.11)), we can use (4.4) and (4.8) to obtain 

~ n - \ l - x k n { w ) ] - < + ° W [ \ + x k n ( w ) \ b + * l 2 

for ;I€N , and then ( 4 . 2 1 ) follows from ( 4 . 1 ) via routine estimates. 

L e m m a 4.6. L e t w = g w { a , b ) b e a g e n e r a l i z e d J a c o b i w e i g h t f u n c t i o n , a n d l e t 

0«=e< 1. T h e n 

' • n 
(4.22) sup max 2 H - x k n ( w ) } - c \ v k n ( w , x ) \ f t n ( w , x ) • , . 

n s l 

for c^a+3/2 and 

(4.23) lim max 2 [1 - x k n ( w ) ] - < \ x - x k n ( w ) \ r k n ( w , x ) = 0 

for c<f l+5/2. 

P roo f . First let c=0 . For c = 0 formula (4.23) was proved in [24, Lemma 4, 
(36), p. 40]. The proof of (4.22) with c = 0 is based on 

n 
(4.24) sup max 2^ ln (w, x) <«= 

nsl 

which was verified in [24, Lemma 4, (35), p. 40]. We write 

(4.25) 
n 

2 \ v k n ( w , ( w , x ) = 2 \ V k n ( w , x ) \ t l „ ( w , x ) + . 2 • K O ^ x ) \ < ? l n ( w , x ) . 
k=l 2 | x , J c l + c 2 ] x f c n | £ l + £ 

By Freud's formula (3.9) and by Lemma 4.3 (cf. (4.18)), | v k n ( w , x)j ^ K for 2 | x J < 
< 1 +e and - e S x S e . Hence (4.24) can be used to estimate the first sum on the 
right-hand side of (4.25). For 2 | x t n | ^ l + e and - c S x S i we can apply again 
(3.9) and (4.18) to obtain \ v k n ( w , x ) \ - x k n ( w ) 2 ] - \ Now, in view of (4.4) and 
(4.8), t-kn(w)pl-i{w> ^tnO^Hl— •Xikn(M')2]-1~«~1- Therefore, the Gauss—Jacobi 
quadrature formula (cf. [32, Theorem 3.4.1, p. 47]), (3.6) and (4.11) yield 

2 k „ ( w , x ) \ a , ( w , x ) , s K n ~ 1 p „ ( w , x ) 2 == 

S K n - y n ( w , X ) 2 . . = . K n - i p l i w , x ) f w 

H 
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for —eSJC-Se and m£N. By (4.3) the generalized Jacobi polynomials are uniformly 
bounded for —s^x^e . Therefore, the second sum on the right-hand side of ( 4 . 2 5 ) 

converges to 0 as N—°° uniformly for - S S X S E . Consequently ( 4 . 2 2 ) and ( 4 . 2 3 ) 

hold for c = 0 which naturally implies their validity for all c < 0 as well. The ex-
tension of ( 4 . 2 2 ) and ( 4 . 2 3 ) to all permissable values of c is done via Lemma 4 . 5 as 
follows. We write 

i[i--xkn(W)]-c\vkn(W,xMn(w,x)= 2 [i-xM]~c\vkn(w,x)\nn(w,x) + 

To prove (4.22), we can estimate the first sum on the right-hand side here by (4.22) 
applied with c—0, whereas for the second sum Lemma 4.5 can be used in the fol-
lowing way. First, we can assume that c > a + l . Second, we do not need to con-
cern ourselves with pl(w, x) since by (4.2) it is uniformly bounded in the interval 
[—e, s]. Thirdly, we note as before that \vkn(w, — ̂ „(w)2] - 1 (cf. (3.9) and 
(4.18)). Thus applying (4.21) with c+1 instead of c, inequality (4.22) follows. 
Formula (4.23) can be proved in a similar way from (4.21) applied with c and then 
from (4.23) applied with c=0. 

Lemma 4.7. Let w=gwi"'i) be a generalized Jacobi weight function, and let 
— I <£< 1. Then for every nonnegative c we have 

(4.26) sup max (1 -xf 2 [1 ~xkn(w)]-^ln(w, x) 

if c—5/2<a<c, 

(4.27) sup max (1 - x f 2 [1 - x M ^ - ^ x - x M ^ U w , x) 
NSL "S.XS1 K = 1 

if c—3/2^a<c, and 

(4.28) lim max (1 -x)c 2 [1 ~xkn(w)]~c\x-xkn(w)\fin(w, x) = 0 
n-*<x> c^x::• 1 ^- | 

if c — 5 /2<a<c . 

Proof . Unfortunately, we were unable to find a nontechnical proof, not even 
one with partially soft features. On the other hand, the computation yielding (4.26)— 
(4.28) is totally routine, and thus we can (and must) save the reader from the details. 
Instead, we provide a few hints and instructions as to the nature of the computa-
tions. Thus, let c s O satisfy the appropriate conditions. First, by Lemma 4.6 we 
can assume £=1/2. Second, in view of Lemma 4,5 and inequality (4.2), one needs 
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to consider only those values of k in (4.26)—(4.28) for which xkn (if) is positive! 
Third, since 

/L(W, X) rs Xmn(w) 2 x)Xkn{w)-^ = X^X-Hw, X) 
k =1 

(cf. (3.3) and [7, formula (1.4.7), p. 25]), we have by (4.1), (4.7) and (4.8) 

sup max (1 -x)c[l-xmn(w)]~cf2
mn(w, x) 

„2:1 HSXSI 

sup max ( l - x ) c [ l - . ^„ (w)] - e - 1 |x -xm„(w)\r;nn(w, x) <«> nsl eaxsl 
and 

lim max (1 - x ) c [ l -xmn(iv)]~c\x-xmn(w)\£2
mn(w, x) = 0 

rt-»oo F. A - I 

for all nonnegative c. Here (and in what follows) m is the index of one of the zeros 
xiu,(w) which are closest to x. Hence it is sufficient to estimate the sums in (4.26)— 
(4.28) for which xS l / 2 , xkn(w)>0 and k^m. For such values of x and x tn(w) 
we can use (4.1) to verify (1 —x)^K(m/n)2, (1 —xkn(w))~(k/n)2 and |x—x t„(w)|~ 
~|m2—k2\rt~2. Moreover, in view of expression (3.6) for the fundamental poly-
nomials £kn{w), we also need inequalities for yn-1(w)/y„(w), Xk„(w), \pn^(w, xtn(vv))| 
and \p„{w,x)\. The required estimates are given by formulas (4.11), (4.8), (4.4) 
and (4.2), respectively (cf. (4.1) as well). Putting all the pieces together, the proof of 
the lemma is reduced to showing 

(4.29) sup max /n- 2 a + 2 c - 1 y fc2o-2c+3|/M2-A:2|-2 <oo 
„gllSm==n k = 1 

k^m 
if c—5/2<a<c, 

(4.30) sup max 2 kia-2c+1\mi-k2\-1 <=° 
nsl ISmmn t = 1 k^m 

if c-3/2ga<c, and 

(4.31) lim max y fc2a-2c+3|m2-fc2|-1 = 0 
n-*oo 1 m n k:l 

k^m 
if c—5/2<a<c. Estimating sums such as the ones in (4.29)—(4.31) is a routine 
exercise, and it is easily accomplished via splitting up the range of the index k into 
four subsets given by the inequalities l^k^[m/2] , [m/2]</c<w, m<Jfc<2w and 
2 m s i s « . Or, as an alternative, one can apply [19, Lemma 6.3, p. 109] from which 
(4.29)—(4.31) follow immediately. 
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5. Underlying ideas (Part I) 

Even though a significant portion of results concerning Hermite—Fejér inter-
polation is proved via hard analysis, such an approach is not always capable of 
producing the right result. For instance, if one tries to prove the uniform boundedness 
of the Hermite—Fejér interpolating polynomials associated with the zeros of Legendre 
polynomials in [—1,1] by splitting up the interpolating polynomials and by at-
tempting to prove the uniform boundedness of 2 \x~xkn\(l—xkn)~1^kn(x) a r |d 
2 tkn(x) which comes to one's mind when examining (3.7) and (4.17) with a=b—0, 
then, one is. destined to fail since the maximums of the latter two expressions are 
of precise order log n, and thus they are unbounded. In other words, Proposition 1.2 
with a=b=0 holds for more delicate reasons. These reasons are of the soft variety 
related to the positivity of the operator sequence {.ff„(w(0'0))}. Since for generalized 
Jacobi weights of the form w=gw^0,b) both sequences 

2 |.v-A-tn(w)|(l ~xkn(wy)-^l(w, X) 

and 2 ¿Li», x ) a r e a ' s o unbounded on [a, 1], one is forced again into finding a 
more sensible and sensitive approach to estimating {Hn(w,f)}. This is the subject 
of this section, and we will accomplish it via soft analysis which is based on some 
quasi-positivity properties of the former sequence. 

Theorem 5.1. Let w=gw(0 '6) be a generalized Jacobi weight function, and let 
- 1 < 2 < 1 . Then 

sup max | H n ( w , f , x)| < « 
nslC3X31 

for every function f bounded in [—1,1]. 

Proof . According to (3.7) we have to prove 

n 
(5.1) sup max 2 Kn(w, x)|¿2

kn(w, x) 
netesxslk=1 

Step 1. Here we will show quasi-positivity of vkn(w) in some sense which helps 
to reduce the Lebesgue function in (5.1) to an expression which can be subjected to 
rougher handling without ruining its essential behavior. Our main tool is Lemma 4.4 
applied with a = 0 according to which 

(5.2)' vkn(w, 1) s (1 + b)(l-xkn(w))( 1 +xkn(w))-*-K{l-xkn(w)). 

Hence there exists d£[—1,e) such that vk„(w, l ) S l for — 1 <xkn(u>)^d. But 
vkn(w) is a linear function which takes the value 1 at xkn(w). Consequently, 

(5.3) ^„(w, x) s 1 for - 1 < xif„(w) s 4 and x€[s, 1]. 
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If d<xkn(w)< 1 then by (5.2) 

vkn(w, l)^-K{l-xkn(w)), 

and by (3.9), (4.8) and (4.10) we have \v'kn(w, x)\^K{\ - ^ ( w ) ) " 1 . Therefore 
we obtain 

Vkn(YV, x) s -K{ 1 -xt„(tv))-

(5.4) - ^ ( l - j c J i l - X t a C w ) ) - 1 for ¿ < x * „ ( w ) < 1 and x€[e, 1] 

with an appropriate positive constant K. Now by (5.3) and (5.4) we have 
n 

2 \vkn(w, x)| £\n(w, x) = 2 I v k n ( w , x)\rkn(w, x)+ 2 \»kn(w, x)| ¿\n(w, x) 
*=1 xk„^i xkn>d 

S 2 vkn(w,xy2
k„(w,x)+ 2 vkn(w, xy2

kn(w, x)+ 

+ 2K 2 (1 -Xkn(w)yi(w, x) + 2K(l-x) 2 (1 W ) - V f „ ( W , x) = 

= 1 + 2 K 2 (l-xkn(w))tl(w,x)+2K(l-x) 2 (l-xkn(W))-^l(W,x) 

since Hermite—Fejér interpolation preserves the constant function. Using the 
asymptotics for the Cotes numbers (4.8) we obtain from here 

(5-5) 2 *M„(w, x) =§ 1 +Kn_1 2 (1 -xkn(w)r'V.kn(W)-^l(w, x) + 
k=1 k=1 

+Kn~H 1 -x) 2 (1 x) 
k=1 

which is the inequality we were to establish in the first step of the proof. 

S tep 2. The first sum on the right-hand side of (5.5) can be estimated by 
applying the same techniques that led to (4.26) in Lemma 4.7. However, 
we will proceed in a different way which consists of evaluating the sum 
2 (1— Xicniw))^^)'1^^, x) in a closed form. We have 

¿ ( l - ^ ( w ) ) 4 „ ( w ) - V L 0 v , i ) = ( l - i ) 2 hn(w)-Hl(w,x) + 
k = 1 . . . k—1 

+ 2(x-xk,Xw))).kn(wr^l(w, x). 
k=l 

Here the first sum on the right-hand side equals A~1(w, x) (cf. [7, formula (1.4.7), 
p. 25]), whereas the second one can be obtained from (3.6) and the Lagrange inter-
polation formula. We get 

n • ' 

2 0 x ) = (¡=1 

= (1 -x)X^1(w, x)+(yn_1(w)/y„(w))p,1(w, x)p„.1(w, x). 
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Thus, applying (4.2), (4.7) and (4.11) we obtain 

n 

sup max n'1 2 (1 -*fcn(w))4„(w)-Vfn0v, x) 

from which the inequality 
a 

(5.6) sup max « - 1 2(l-x t n(M'))3 /2A t n(w)-Vfn(w,x) <o° 
n S 1 ISlSl lt=l 

follows as well. 

Step 3. The uniform boundedness of the second sum on the right-hand side 
of (5.5) was established in Lemma 4.7 (cf. (4.26)). This can also be shown via re-
placing computations by some properties of Christoffel functions as follows. By 
Cauchy's inequality 

. [ i (1 - x k n ( w ) ) - ^ ) _ k n ( y V ) - ^ l n ( w , X ) f 2 A*„0v)-Vf„(w, x)x 
* = 1 fc=l 

X ¿ ( 1 -xMY^kM-^Uw, X) = ?.n-,{w, x)X„.r(w, X) 
k=1 

(here w is defined by w(,x:)=(l —x)iv(x)) where we used two identities involving 
Christoffel functions (cf. [7, formula (1.4.7), p. 25], [6, Lemma 2, formula (15), 
p. 251] and [19, Lemma 6.1.4, p. 59]). Since both w and w are generalized Jacobi 
weights, we can use (4.7) to obtain 

(5.7) sup max n ^ l - x ) 2 (1 x) 
nsl k = 1 

Inequality (5.1) follows from (5.5)—(5.7), and so does the theorem. 

6. Underlying ideas (Part II) 

Here we will be concerned about the connection between uniform convergence 
of Hermite—Fejér interpolation and its behavior at one single point. In other 
words, we look behind the scenes that govern the phenomenon described in Theo-
rem 5.1. 

For s nonnegative integer define the function us by . ws(x)=(l— x)s. Then it 
turns out that under certain circumstances it is more convenient to approximate 
/£C[—1,1] by usH„(w,fuJ1) then by Hn(w,f). Since the former vanishes at 
x=l for i > 0 , it can only approximate such functions / which also vanish at 
x—l. What is against H„(w,f) is that if iv(l)=0 then the sequence of the cor-
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responding Lebesgue functions becomes unbounded at 1 and thus lim Hn(w,f)=f 
cannot be expected at the point 1 or uniformly in a neighborhood of 1. What 
u.H^wJu-1) does-is that it tempers the quick growth of p„(w) in such a way 
that and operator UsHn(\v)U~x (where U'1 is the multiplication operator defined 
by the formula Us(g)=usg) becomes appropriately balanced with the right 
choice of s. 

The real role of usHn(w,fuJx) is that it is the principal term in the Hermite— 
Fejér type interpolating polynomial H„ s(w,f) defined by 

H„,s{w,f, xt„(w)) = f(xkn(w)), H'n<s(w,f xkn(w)) = 0, 

k=1, 2, ..., n, and 
fJíiKwj, 1) = o 

for j=0, 1, ..., s— 1. The closed formula for Hn<s(w,f) is.given by 

(6.1) Hn,s(w,f) = usHn(W,fu-') + uMwJ[u-'Y) 

(cf. (3.7) and (3.11)) which is easy to verify directly (cf. [38, Section 3.2, p. 88]). 
It was E. EGERVÁRY and P. TÚRÁN [3] who first realized how H n A (w,f ) can be 
used to investigate uniform convergence of H„(w,f) for the Legendre weight func-
tion n'=w(0,0). The process H„ s (w i a ' b \ f ) was fully investigated in [38] where 
it was shown that it can be used to prove necessary and sufficient conditions for 
uniform convergence of Hermite—Fejér interpolation at zeros of Jacobi poly-
nomials. The reason-for the usefulness of WsflnOt',/«^1) and Mn s(w,f) lies in the 
representation 

. (6.2) 

Hn(w,f x) = H„,s{w,f, x)+pl (w, x) 2(1 //c\)[Hn(w,f, 1 )/>»->, l)]w(*-l)* 
fc=o 

which provides a direct link between Hn{w,f),usH„(w,fuJi), p„(w) and H„(w,f, 1). 
The verification of (6.2) is again easily done by checking out the interpolation con-
ditions. The following is not only a tool necessary for proving one our main results 
(cf. Theorem 2.5) but the special case s= 1 is also a de facto solution of P. Turán's 
Problem XXVII in his collection of "On some open problems of approximation 
theory" (cf. [35, p. 47]). 

Theorem 6.1. Let w=gw{a'h) be a generalized Jacobi weight function, and let 
— l < e < l . Let f be continuous in [—1,1] such that / (1)=0. Let a^O, — 1, 
and let s be a fixed positive integer such that a£ [í— 1, s). Then 

(6.3) lim max \f(x)—us(x)H„(w,fuJl,x)\ = 0 eSiSt 
and 
(6.4) lim max \f(x)-U„tS(w,f, x)| = Ü. 

H f v s 
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Proof . In view of (3.11), (6.1) and Lemma 4.7 we have 

lim max \Hn¡s(w,f, x)-us(x)Hn(w,fur1, x)\ = 0 

so that it is sufficient to prove (6.3). 

Step 1. First we prove (6.3) for the special case when the function/is given by 
/ (x)=l—x. Then 

f(x)-Us(x)Hn(w,fu~\X) = Uj (-X) [ 1 -Us_i(x)H„(w, (MS-X)"1 , X ) ] 

so that applying (6.1) and (6.2) with / = 1 and 5—1 we obtain 

f(x)-us(x)H„(w,fur\ x) = K1(x)[l-//n,s_1(1v, 1, x) + us^1(x)jen(w, [wr-i]'» *)] = 

= Ul(x)pA"',x) i'Olk\)[pn-t(w, L ) ] ( , L ) ( X - l)"+«1(x)[« s_1(x)^,(W , [u^]', X)J. 
k=0 

Here the first term on the right-hand side can be estimated using (4.2) and (4.6), 
while the second one by Lemma 4.7 (cf. (3.11) and (4.28) applied with c—s). This 
proves (6.3) for /== u,. 

Step 2. Now let / b e continuous and / (1)=0. The point is that the sequence 
of operators from C[—1, 1] into C[s, 1] given by /"•ws//n(w,/M¡"1) is uniformly 
bounded by (3.7), (3.9), (4.8), (4.10) and Lemma 4.7 (cf. (4.26) and (4.27) applied 
with c=s). Therefore we can finish the proof in the routine fashion as follows. 
Given ¿ > 0 there exists a polynomial P such that P(1)=0 and |/(x)—P(x)| =5 
for x 6 [ - l , l ] (cf. [34, Theorem 2, p. 259]). Write P=u,Q. With this polynomial 
P we have 

(6.5) f(x)-us(x)Htt{w,fu~\x) = [f(x)-P(x)]-us(x)Hn(w,(f-P)ur\x)-

-us(x)Hn(w, [ e - e W l K - J - 1 , x) + Q(x)[u1(x)-us(x)H„(w, h ^ " 1 , x)]. 

By (3.7), (3.9), (4.8), (4.10) and Lemma 4.7 (cf. (4.28) applied with c=s) 

lim max |us(x)H„(w, IQ-Qix)]^]-1, x)| = 0 n-»o= e s i s l 1 '' 

since \Q(xk„)—Q(x)\^K\xkn—x|, whereas the last term on the right-hand side 
was taken care of in the first part of the proof. Therefore letting n —• in (6.5) 
we obtain 

lim sup max \f(x) — us{x)HAw,fu~i,x)\ á Kd 
n-*<*> esxsl 

from which (6.3) follows. 
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7. The proofs 

On the basis of the results in Sections 4—6 this can be accomplished virtually in 
a few lines. 

P roof of Theo rem 2.1. This follows from Lemma 4.6 applied with c=0 . 
The details are as follows. By (3.7) and (4.22) the sequence of Hermite—Fejér inter-
polating polynomials is a bounded sequence of operators from C[—1,1] to 
C[—e, s]. By (3.10), (3.11) and (4.23) it converges for polynomials, that is for a dense 
set of function in C[— 1, 1]. 

P roof of T h e o r e m 2.2. This was de facto proved in [24, Lemma 5, formula 
(46), p. 43] where it is given with n - 2 a replaced by np~2(w, 1). However, in view of 
(4.3), they are of the same order. 

Proof of T h e o r e m 2:3. First let it>(l) = °°. Then by (3.7), (3.9), (4.2), (4.8), 
(4.10), Lemma 4.5 and Lemma 4.7 (cf. (4.26) and (4.27) applied with c=0) the 
Hermite—Fejér interpolating polynomials are uniformly bounded in [e, 1] 
(here inequality (4.2) and Lemma 4.5 are needed to estimate the expression 
2 [I +xk„(w)]-1[x-xkn(w)y2

kn(w, x)). If 0< w(l)< then this is given in Theo-
rem 5.1. The necessity of the condition «'(1)^0 follows from Theorem 2.2. 

P roof of Theo rem 2.4. If n>(l)=°o then by formulas (3.7), (3.10), (3.11) 
and Lemma 4.7 (cf. (4.28) applied with c=0) the Hermite:—Fejér interpolating 
polynomials Hn(w, P) converge uniformly in [e, 1] for every fixed polynomial 
P. Thus Theorem 2.3 yields convergence for every continuous function. The neces-
sity of the condition M>(1) = OO for uniform convergence in [e, 1] follows from 
Theorem 2.2. 

P roo f of T h e o r e m 2.5. If Mm H„(w,f)=f uniformly in a left neighborhood 
of the point 1 then by Markov's theorem (cf. [16, § VI.6, p. 141]) the r-th derivative 
of H„(w,f) is o(n2r) in the same interval for every /"=1, 2,... . On the other hand, 
if we have information concerning, the behavior of H„(w,f) at 1 then we can use 
Theorem 6.1 (either of (6.3) and (6.4)) and formulas (6.1) and (6.2). First, we can 
assume without loss of generality that / (1 )=0 (cf. (3.7), (3.10) and (3.11)). We 
need to prove 

lim maxp 2(w, x) (l/k\)[Hn(w,f, 1 )p~\w, 1 ) ] « ( * - 1 ) ' = 0; 
"-«> [e,l] k=0 

This follows immediately by straightforward application of inequalities (4.2), (4.6) 
and the conditions H%\w, f , l) = 0(n2r), r=0, 1, ..., s. 

P roof of Theo rem 2.6. We use an observation by G. FREUD in [9, formula 
(2), p. 176] according to which since H'a(w,f) vanishes at the zeros of p„(w) we 
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have H'n(w,f)=pn(w)Qn_2 where ö„_2 is a polynomial of degree at most n—2. 
Thus by orthogonality 

J H'n(w, f , t)[w(t)(l + t)]dt=0, 

and integration by parts yields 

H„(w,f, 1) = (2w(l))-i / Hn(w,f, t) d[wm + t)] 
- I 

(cf. [9, formula (4), p. 176]). Now we can use Proposition 1.6 applied with u=w 
to pass to the limit of the integral which together with Theorem 2.5 proves Theo-
rem 2.6. 
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