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Addendum to "The lattice variety DoD" 

DAVID KELLY and GEORGE GRATZER 

In our paper, this Journal, vol. 51 (1987), pp. 73—80, the Corollary to Theo-
rem 4 in Section 3 (referred to in the Introduction) was inadvertently left out. 

Corol lary. Let P be a set of odd prime numbers. Let MP denote the set of all 
modular lattices not containing any finite projective geometry over GF(p) as a sub-
lattice where p£P. Then MP is a lattice variety closed under gluing. There are con-
tinuumly many distinct varieties of the form MP . Thus, there are continuumly many 
lattice varieties V such that VoD is a variety. 

Proof . R. Freese (see reference [1] in our paper) proved that, in the class of 
modular lattices, any finite projective geometry over GF(p) is projective. It follows 
immediately, that MP is a variety, and MP obviously determines P. 

MP is closed under gluing. Indeed, if L is formed by gluing A£MP and B£MP 

over & (S is a dual ideal of A, and an ideal of B) and £ contains the finite projective 
geometry G, then we can assume that the zero, 0, of G is in A—B while the unit, 
1, of G is in B—A. If two of the atoms of G are in B, then so is their meet, 0, a 
contradiction. So all but one of the atoms of G must be in A, and then so is their 
join, 1 a contradiction. Thus MP is a lattice variety closed under gluing, and by 
Theorem 4 of our paper, M P o D is a variety. This completes the proof of the Cor-
ollary. 

We would like to point out a misprint: in Section 4 (p. 80), "Theorem 4" should 
read "Theorem 5". 
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