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One-dimensional perturbations of singular unitary operators

N. G. MAKAROV

Introduction and results. Let T denote the unit circlé and m be the normalized
Lebesgue measure on T. Recall that a closed subset e of T is said to be a Carleson
set if

[log [dist (¢, &)] dm ({) > — e

These sets arise as sets of nonuniqueness for functions analytic in the unit disc and
smooth up to the boundary, see [1]. Also we introduce the class (C,) consisting of all
countable unions of Carleson sets.

This class plays a crucial role in the description of point spectrum of almost uni-
tary operators acting on a separable Hilbert space. It was proved in [3) that il U is a
unitary and K is a trace class operators, then

o,(U+ K)NTE(C,).

In the opposite direction, given e€(C,), there is a one-dimensional perturbation of
the shift operator f(z)~-zf(z) on L?=L2(m) with point spectrum equal to e.

It is not immediatly clear from the proof whether the appearing of an uncoun-
table point spectrum relies on the absolutely continuous properties of the unitary
operator. The question seems also natural from the viewpoint of spectral analysis
of general noncontractive operators (cf. [4]), and it was stated in [2] p. 120 as a reseach
problem. In the present paper we give an answer to this question.

A unitary operator is said to be singular if its spectral measure is singular with
respect to the Lebesgue measure.

Theorem 1. Let e€(C,). There exist a singular unitary operator U and an
operator K of rank one such that ecae,(U+K) and, moreover, each point { in e is
an eigenvalue of U+K having infinite multiplicity (i.e. for any positive integer n,

ker (U+K—{I)"+! = ker (U+ K—{I)").
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As an application, we consider a question concerning inner functions. By z
we denote the identity mapping of the unit disc and by H? the standard Hardy space.
Let ¢, and ¢, be two nonequal inner functions. On which subsets e of T can such
functions “coincide” in the sense that (z—{) (¢, —¢,)¢H® for all {ce? As it
follows from Theorem 2 in [3), e has to be of class (C,). On the other hand, e is at
most countable if, for instance, ¢,=1. One possible way to see this is as follows.

Assume, for simplicity, that ¢(0)=0, ¢=¢,. Let P denote the orthogonal
projection in H? onto H2©@H?. The point (€T is an eigenvalue of the unitary
operator

[ Pzf+{f, Zp)1

acting on H?Q¢H? if and only if (z—{)~'(¢—1)€ H2 Hence, the set of all such
points is at most countable.
By similar reasoning, we shall obtain from Theorem 1 the following result.

Theorem 2. Let e€(C,). There exist two nonequal inner functions ¢, and @,
such that for any {€e and any integer n, the function (z—{)7"(¢,—¢@,) belongs to H2.

At the same time, the author does not dispose of any explicit construction of
such functions. ’

The proof of both theorems appeals to some properties of almost unitary ope-
rators, and thus this work could be considered as an illustration to the theory pre-
sented in [4].

Proof of Theorem 1. Fix e€(C,). There exists a bounded analytic function h,
h(0)=—1, satisfying (z—{)~"h€ H? for all integer n and (€e. In case e is a
Carleson set, for h, one can take an infinitely smooth up to the boundary analytic
function which vanishes on e together with all its derivatives. For an arbitrary e€(C,),
one can consider an appropriate product of smooth functions, see [3] for a detailed
proof.

Let w=h+h and the operator Ly be defined on L? by the equality

Lof = zf+{f, D)w.
If {€e and nEN, then wg,=(z—{)""wecL? and

o = (e D ) = (o nza

{0, n=1
We n-1> n=2

Therefore,

Lo—E{Dwen =

and { is an eigenvalueé of infinite multiplicity. Remark that the operator L, is invertible,
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since otherwise the origin would be an eigenvalue of L, and hence (w,1)=—1;
on the other hand, by construction, (w, 1>_—2

Let E=span {ker (L,—{I)": {€e, ncN)}. Itis a hyperinvariant subspace of L.
Consider - the imbedding j: E—~L? and define the operator L on E by L=j*L,].
Obviously, L is invertible and any (€e is its eigenvalue of infinite multiplicity.
Also consider the one-dimensional operator K=(.,a)b with

¥z L*1g
T A VT
(Note that j*z#0 because {w;,,Z)=—1 for {€e and so Z is not orthogonal to
E) Let U=L—K. We shall prove that U is a unitary operator and that it is singular.
_If f€E, then '

Uf = L(f—{f, @)a)+(f, a)|L*'a| ' L*a.
Observe that the terms on the right are orthogonal. Hence
1UF 2 = ILU—{f, ey @)*+KKf, a)? =
= |f={f, al*+ (S, D> = | fI*

Since U is a Fredholm operator of index zero, it is unitary.
. To prove the singularity of U, it suffices to verify that for all fand g in E,

M (U= f—(U—-rnD)7f,g) -0 as r~1 forae €T,

cf. Proposition 6.7 and Remark 6.10in [4]. Let A¢o(L)UT and R, denote (L—AI)~%
Direct calculation gives (R;b,a)#1 and

(U—=A1)"1 = Ry+{-, Ra)(1—(R;b, a)) *R;b.

Consequentiy, (1) follows from the corresponding fact concerning L. But the latter
is obvious since linear combinations of root vectors of L are dense in E and for
feker (L—LI)°, (R,f,g) is a polynomial in (A—{)™.

Proof of Theorem 2. By Theorem 1, given e€(C,) there exists ‘an operatbr L,
one-dimensional perturbation of a singular unitary operator, such that any point
in e is its eigenvalue of infinite multiplicity. Without loss of generality, we can
assume that L is completely nonunitary, i.e. it has no reducing subspaces on which it
is unitary. (Otherwise, L is the direct sum of a unitary and a completely nonunitary -
operators, and we can take the latter instead of L. Obviously, all the required proper-
ties would persist.) Such an operator admits a representation

L=T+QAQ*
where T is a completely nonunitary partial isometry with two-dimensional defect
subspaces D=im (/-T*T) and D,=im (I-TT*), Q: C*~»D and Q. C*-D,
are some unitary operators and A is a (2 X2)-matrix, cf. [4] §3.

’
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Let @ denote the characteristic function of T. Sincé T is a finite-dimensional
perturbation of a singular unitary operator, @ is an inner function, see [4] §§ 5 and 6.
Since T'is partially isometric, ©(0)=0. Weshallreplace T by its functional model [5].
Thus we shall assume that T acts on Kg=H?(C*)© OH?*(C? by the formula Tf=
=Pzf where P is the orthogonal projection in H2(C?) onto Kg. In this model repre-
sentation, L is given by

() Lf = zf—(@—A)x,, x;={(zO*f, 1)€C=

Lemma. Let the operator L be defined on Ko by (2). If (€T, n€N and
ker (L—L{I)Y*=ker (L—{I)""Y, then ,

3) . (z—{)~"det (O —A)EH™.

Proof. If f#0 is in ker (L—{[I), then (z—{)f=(0@—A4)x, for some xl.;éO
in C2% Hence, (z—{)~Y(O@—A)x; =fc H3(C?). If fcker (L—{I)*\ker (L—{I), then,
for some x,, x,€C?,

z=0f—(O0—-A)x, = (L-IDf=(z-)"H(O-A)x, x #0,
(@ -D(z-072x,+(z -7 x,]€ HA(CY).

and

Proceeding by induction, we obtain
| O@—-Dz-D7"x+...+(z=)7'x,J€HX(C), x #0.
Let ¥V be an analytic matrix-function such that V(0 —A)=[det (@ —A4)]I. Then
(z=0)"det (O —A)[x+... +(z—0)""x,]€ HE(C?).

Because of x;#0, we have (3).

Now we are able to complete the proof of Theorem 2. Let §; denote det (@ — A4).
By the established lemma, the function (z—{)~"J, belongs to H? for any {€¢,and
neN. Fix a positive number C greater than sup |d,]. Then h,=8,4+C is an outer
function. Let 6 denote the inner function det @ and h the function det (I—A*@)+C5.
We have h,=6h. Consider the inner-outer factorization h=~hh, of the function h.
Since |hy|=|hol, we can assume that h,=h,. Hence 6h;'=h,h{* and

6—h; = hhi1(5,—-0y).

Therefore, (z—{)~"(6—h;) isin HEfor all {€e and n€N. It remains to observe that
dh;. Indeed, if it were not so then the last equality would imply that &,=const
(#0) and (z—{)"26,¢ H? for any (€T. The assertion now follows with ¢,=4 and
02=h;.
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