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One-dimensional perturbations of singular unitary operators 

N. G. MAKAROV 

Introduction and results. Let T denote the unit circle and m be the normalized 
Lebesgue measure on T. Recall that a closed subset e of T is said to be a Carleson 
set if 

/ log[dist(£ , e)]dm(Q 

These sets arise as sets of nonuniqueness for functions analytic in the unit disc and 
smooth up to the boundary, see [1]. Also we introduce the class (C„) consisting of all 
countable unions of Carleson sets. 

This class plays a crucial role in the description of point spectrum of almost uni-
tary operators acting on a separable Hilbert space. It was proved in [3] that if U is a 
unitary and K is a trace class operators, then 

ap(U+K)f]Te(Ca). 

In the opposite direction, given e£(Ca), there is a one-dimensional perturbation of 
the shift operator f(z)>—zf(z) on L2=L2(m) with point spectrum equal to e. 

It is not immediatly clear from the proof whether the appearing of an uncoun-
table point spectrum relies on the absolutely continuous properties of the unitary 
operator. The question seems also natural from the viewpoint of spectral analysis 
of general noncontractive operators (cf. [4]), and it was stated in [2] p. 120 as a reseach 
problem. In the present paper we give an answer to this question. 

A unitary operator is said to be singular if its spectral measure is singular with 
respect to the Lebesgue measure. 

Theorem 1. Let e^(Ca). There exist a singular unitary operator U and an 
operator K of rank one such that eczap(U+K) and, moreover, each point ( in e is 
an eigenvalue of U+K having infinite multiplicity (i.e. for any positive integer n, 

ker(£M-£-C/) ' , + 1 k e r ( U + K - C I ) " ) . 
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As an application, we consider a question concerning inner functions. By z 
we denote the identity mapping of the unit disc and by H2 the standard Hardy space. 
Let <pi and <p2 be two nonequal inner functions. On which subsets e of T can such 
functions "coincide" in the sense that (z—()_1(<?>i—«PsK-^2 for all As it 
follows from Theorem 2 in [3], e has to be of class (C„). On the other hand, e is at 
most countable if, for instance, <p1 = l. One possible way to see this is as follows. 

Assume, for simplicity, that <p(0)=0, cp = (p2. Let P denote the orthogonal 
projection in H2 onto H2Q<pH2. The point ££T is an eigenvalue of the unitary 
operator 

f~pzf+(f,z<p) 1 

acting on H2Q(pH2 if and only if (z—Q-1(<p— l)£H2. Hence, the set of all such 
points is at most countable. 

By similar reasoning, we shall obtain from Theorem 1 the following result. 

Theorem 2. Let ed(C„). There exist two nonequal inner functions (p1 and cp2 

such that for any and any integer n, the function (z — Q - " ^ — (pz) belongs to H2. 

At the same time, the author does not dispose of any explicit construction of 
such functions. 

The proof of both theorems appeals to some properties of almost unitary ope-
rators, and thus this work could be considered as an illustration to the theory pre-
sented in [4]. 

Proof of Theorem 1. Fix e£(C„). There exists a bounded analytic function h, 
h(0)= — l, satisfying (z—0~nh£H2 for all integer n and £€<?. In case e is a 
Carleson set, for h, one can take an infinitely smooth up to the boundary analytic 
function which vanishes on e together with all its derivatives. For an arbitrary ed(Ca), 
one can consider an appropriate product of smooth functions, see [3] for a detailed 
proof. 

Let w=h+R and the operator L0 be defined on L2 by the equality 

LJ = z f + ( f z ) w . 

If and n£N, then w^n=(z-Q-"wZL2 and 

-v / zh A / z-^h A f - 1 , n = 1 
^ • " ' ^ ^ X T i ^ ' V + X T r ^ r ' 1 ^ ! 0, n s 2 . 

Therefore, 

IT r n i°> n = l 

and C is an eigenvalue of infinite multiplicity. Remark that the operator L0 is invertible, 
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since otherwise the origin would be an eigenvalue of L0 and hence (w, 1) = — 1; 
on the other hand, by construction, (w, 1> = —2. 

Let £ = s p a n {ker (L0—£/)": w£N}. It is a hyperinvariant subspace of £ 0 . 
Consider the imbedding j: E-»L2 and define the operator L on E by L=j*L0j. 
Obviously, L is invertible and any is its eigenvalue of infinite multiplicity. 
Also consider the one-dimensional operator K=(-,a)b with 

j*z . L*-la 
a \\j*z\\ ' La ||L*_1a|| * 

(Note that j*z?±0 because (wCil, ! ) = — 1 for and so z is not orthogonal to 
E.) Let U=L—K. We shall prove that 17 is a unitary operator and that it is singular. 

. If / £ £ , then 

Uf = L ( f — { f , a)a)+</, a)\L*-ia\\-iL*-ia. 

Observe that the terms on the right are orthogonal. Hence 

\\UfV = \\L(J-(f, «>«)li2 + l</, fl>|» = 

= II / - ( /> fl)all2+K/> a ) l 2 = ll/ll2-
Since U is a Fredholm operator of index zero, it is unitary. 

To prove the singularity of U, it suffices to verify that for a l l / and g in E, 

(1) ( ( U - r r i i y V - i U - r - ^ I ) - 1 / , g > - 0 as r - 1 fora.e. T, 

cf. Proposition 6.7 and Remark 6.10 in [4]. Let ?4<J(L)UT and Rx denote (L-A/)"1. 

Direct calculation gives (Rxb, and 

Consequently, (1) follows from the corresponding fact concerning L. But the latter 
is obvious since linear combinations of root vectors of L are dense in E and for 
/<Eker(L-i/)n , (RJ,g) is a polynomial in ( A - Q - 1 -

Proof of Theorem 2. By Theorem 1, given (C„) there exists an operator L, 
one-dimensional perturbation of a singular unitary operator, such that any point 
in e is its eigenvalue of infinite multiplicity. Without loss of generality, we can 
assume that L is completely nonunitary, i.e. it has no reducing subspaces on which it 
is unitary. (Otherwise, L is the direct sum of a unitary and a completely nonunitary 
operators, and we can take the latter instead of L. Obviously, all the required proper-
ties would persist.) Such an operator admits a representation 

L = T+Q^AQ* 

where J is a completely nonunitary partial isometry with two-dimensional defect 
subspaces D = i m (I-T*T) and S ^ i m ( / - I T * ) , Q: C a - 2 > and G*: C 2 - D + 

are some unitary operators and A is a (2x2)-matrix, cf. [4] §3. 
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Let 0 denote the characteristic function of T. Since T is a finite-dimensional 
perturbation of a singular unitary operator, 0 is an inner function, see [4] §§ 5 and 6. 
Since Tis partially isometric, 0(0)=0. We shall replace T by its functional model [5]. 
Thus we shall assume that Tacts on Ke=H2(C2)Q 0H2(C2) by the formula Tf= 
=Pzf where P is the orthogonal projection in H2(C2) onto K0. In this model repre-
sentation, L is given by 

(2) Lf = zf—(0—A)Xf, xf = (z0*f, 1)€C2. 

Lemma. Let the operator L be defined on Ke by (2). If £6T, w6N and 
ker (L—£/)" ker (JL—£/)" ~ \ then 

(3) ( z - O - " á e i ( 0 - A K H 2 . 

Proof. If fr¿0 is in ker (L-(I), then (z-Qf=(0-A)x1 for some x l 5¿0 
in C2. Hence, (z-Q~1(0-A)x1=f^H2(C2). If /6ker (L-C/ ) 2 \ker ( £ - £ / ) , then, 
for some x l 5 x2ZC2, 

(z-Qf-{0-Á)x2 = (.L-U)f= (z-Q~í(0-Á)xí, Xl * 0, 
and 

( 0 - ^ ) [ ( z - C ) - 2 x 1 + ( z - Q - 1 x 2 ] 6 / i 2 ( C 2 ) . 

Proceeding by induction, we obtain 

{0-A)[(z-Q-nx1+...Hz-Q-1xa]iH*{C% Xl*0. 

Let V be an analytic matrix-function such that V(0—A)=[det (0—A)]I. Then 

( z - 0 - d e t ( 0 - A ) [ X l +... +(z-Qn - 1x„]6i / 2 (C 2 ) . 

Because of x ^ O , we have (3). 
Now we are able to complete the proof of Theorem 2. Let Sx denote det (0—A). 

By the established lemma, the function (z—C)~"¿i belongs to H2 for any C£^and 
«£ N. Fix a positive number C greater than sup [<5XJ. Then h1=51+C is an outer 
function. Let d denote the inner function det 0 and h the function det (I—A*0) +C5. 
We have h1=5R. Consider the inner-outer factorization h=h¡h0 of the function h. 
Since |/iil = |/i0l. we can assume that h1=h0. Hence Sh^1—^ h*1 and 

Therefore, (z—i)~"(<5—/¡¡) is in H2 for all and n£N. It remains to observe that 
d&hi. Indeed, if it were not so then the last equality would imply that <5!=const 
(¿¿0) and ( z—Q^S^H 2 for any Í6T. The assertion now follows with (Pi=S and 
<p2=/i,. 
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