Acta Sci, Math., 52 (1988), 349—371

| Absolute summability of double orthogonal series

F. MORICZ and I. SZALAY

Dedicated to Professor B. Sz.-Nagy on his 75th birthday

1. Introduction: Summability of numerical series

We consider a quadruply infinite matrix
T={3:ikmn=0,1,..}

of real numbers such that

(1.1) i‘Z' |(f1] <o (myn=0,1,..).
=0
Condition (1.1) is trivially satisfied if the matrix T is such that for each m and n there
exists an integer x,, with the property that 7;"=0 whenever max (i, k)>%,,. In
this case T is called generalized triangular. In particular, T is called triangular if for
each m and n we have #j;"=0 whenever at least one of the relations i=m and k>n
is satisfied. ‘
With every double series
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of real numbers, we associate a double sequence {6,,,} given by

(1.3) Cpn = S’ Z”' Uy, (mn=0,1,..),
i=0k=0

provided the double series on the right converges in the sense of Pringsheim. This is
the case if (1.1) is satisfied and the terms u;, of series (1.2) are bounded. We note that
in this case the series on the right (1.3) is even absolutely convergent.

The authors are indebted to the referee for valuable hints. -
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If 6, tends to a finite limit s as min (m, n)—c> we say that series (1.2) is T-
summable to the sum s. The o, are called the T-means of (1.2).

We introduce the following notation:
(1‘4) Amn = O~ Om=1,n—Om,n-1FO;m-1,n-1
with the agreement that .
(1.5) 0'_1,', = om,—l = 0'..1' -1= 0 (m, n= 0, 1, ...).

We say. that series (1.2) is absolutely T-summable (shortly: |T|-summable) if

(1.6) mﬁ 5 14y] <oo.

Clearly, |T|-summability implies T-summability. In addition, |T|-summability
also implies that o,,, converges as n— o foreach m=0, 1, ... and that o, converges
as m-o for each n=0, 1, ..

2. Main results: Summability of orthogonal series

Let o={pu(x): i, k=0, 1, ...} be a real-valued orthonormal system (in abbre-
viation: ONS) defined on a positive measure space (X, &, p). We consider the double
orthogonal series

'(2- 1) ‘ § Ay Pulx),

"MR

where {a,:i, k=0,1,...} is a double sequence of real numbers such that

af <o,
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The T-means of series (2.1) are defined according to (1 3):

o,,,,,(x) = 2 2 :’Ilcnaxk(/’tk(x) (m’ n=0,1, )

If conditions (1.1) and (2.2) are satisfied, then ¢,,,(x) is well défined p-a.s. for
each m and n. In fact, it follows from (2.2), via B. Levi’s theorem, that

lim  ayou()=0 pas,

max (i, k)-»co

and, a foriori, the terms a; ¢, (x) are bounded p-a.s.
We introduce the following notation:

(23) t:‘:ﬂ = ﬂ"—tﬂ-l'"—tﬂ‘"-l-}-tﬂ_l'"_l
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with the agreement that _
24 = l=13b"1=0 3, k, m,n—O 1 ...).
Theorem 1. If conditions (1.1), (2 2) are satzsﬁed and

2.5

n[\43
"[\48

5 { =S' mn]z a?k}llz <oo,

then series (2.1) is |T|-summable p-a.e. on X.

The surprising fact is that condition (2.5), under a mild assumption on T, is
not only sufficient but also necessary for the p-a.e. {T|-summability of series (2.1)
if all ONS ¢ are taken into consideration. 7

To be more specific, let (X, &, p) be the familiar unit square

U={x=(x,x):0=x;=1. for j=12}

with the Borel measurable subsets as & and with the planar Lebesgue measure as p.
We remind that the ordinary one-dimensional Rademacher system {r;(x,)} is defined
as follows

ri(x,) = sign sin (2nx,) (i=01,..;0=x,=1)

(see, e.g. [1, p. 51] or [15, p. 212)).
Theorem 2. Assume that conditions (1.1), (2.2), are satisfied and
(2.6) g; ;’)Irm <o (L,k=0,1,..)
If condition (2.5) is not satisfied, then the two-dimensional Rademacher series

oo

2.7 | S 2 ageri(x1) 1y (x2)

i=0 k=

(-]
(=]

is not |T|-summable a.e. on U.
Putting Theorems 1 and 2 together, we obtain the following

Corollary 1. Assume that conditions (1.1), (2.2), and (2.6) are satisfied. Then
series (2.1) is |T'|-summable a.e. for every double ONS ¢ defined.on U if and only if
condition (2.5) is satisfied.

The corresponding results for single ONS defined on the unit interval
I={x;: 0=x,=1} were proved by LEINDLER and TANDORI [8].

As an application, we will conclude a number of results on |C, «, f|-summability
of double orthogonal series for a>—1 and f>—1. As is known, (C, a, f)-sum-
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mability is defined by means of the triangular matrix T={/}"}:

Af,,_, A,,_k for i=0,1,....m;k=0,1,...,n
2.8) mr = T4, AP ) mn=0,1,..;
0, otherwise.
Here
4 = (a+m] _ e+ (e+2)...(a+m)
Som m m!

(m=0,1,..; a>-1)

is the binomial coefficient.

3. Proofs of Theorems 1 and 2

Similarly to (1.4) and (1.5), we set
(€RY By (X) = Gpn(X) = 01,0 (%) = Opn, -1 (%) + 01,51 (%)
with the agreement that
oy (X)) =0y 1(x) =0_;,1;(x) =0 (myn=0,1,..)
for every x in X.

Proof of Theorem 1. By Minkowski’s mequahty, orthogonality, and (2.5),
we get in turn that

{12 ZMutlduf = 3 3{ [ st du}” =

2 [ Paf!/? <o

k=0
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This means that

|A,,,,,(x)|eL2(X Z, 1)

]
-3

Ms
“[\48

and, in particular, series (2.1) is |T|-summable p-a.e.
The proof of Theorem 1 is complete.
In the proof of Theorem 2 we need the following auxiliary result proved in [9].

~Theorem A. Given any measurable set E (CU) of positive measure, then ’
there exist an integer n, and a constant C,=>0 such that for every finite sum

Plx,, x,) = 2 Z ayr;(xy) ()

i=mk=n
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with max (m,n)=n,, M=m=0 and N=n=0 we have

ff |P(xys X0)} dxy dx2 =G 2 2 af .

i=mk=n

We note that this is an extension of a result due to OrLicz [10] from the one-
dimensional Rademacher system to the two-dimensional one.

Proof of Theorem 2. We will prove that if series (2.7) is {T|-summable on
a subset of U with positive measure,. then condition (2.5) necessarily holds.

To realize this goal, then by Egorov’s theorem there exist a constant C, and a
subset E (cU) of positive measure such that

(32) Z Z IAmn(xl, xz)| = C2 fOI' (xla x2)€E9
m=0 n=0

where this time' 4,,,(x,, x;) is defined by (3.1) in the case of the two-dimensional
Rademacher functions and x=(x;, X5).

We are going to apply Theorem A formulated above. To this effect, we must get
rid of the functions r;(xy), r,(x;) in the definition of 4,,(x,, x,) for which
max (i, k)<ny. Therefore, we set

. {a,-k if max(i, k) = n,,
% =10 if max(, k) < n;

and denote by 4,,(x;, x,) the corresponding difference of the T-means for the
“truncated” double series

(33 2 3 ar(e) rx).

Since |r;(x;)r.(x2)|=1 for every x;, x,, an elementary estimation shows that

2 2 IAmn(xl’ x2)|_ é' Z Igmn(xla xﬂ)l

m=0 n=0
min (m, ny—1) min (a1, n,—1)
= 22X 2 [t aul =
max (m, n)=n, i=0 k=0

ng-1 ny—1 np—1 oo

=32 |a.k|{2 S+ §§_+ S Y=

m=i n= =ny m=m0n=no

ny—1 ny—1

=35 5 lad 3 3l <o

the last inequality is due to (2.6). Consequently, the |T|-summability of series (2.7)
and (3.3) are equivalent for every x;, x,.
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So, we may assume without loss of generality that a;,,=0 in (2.7) for i, k=
=0,1, ..., ny—1, and use the notations a; and 4,,(x,, x2) rather than &, and
Apn(%1, X5). On the one hand by (3.2),

(3.4) ,Ea ?{, S Va1, %2)| dxydx, = Cop(E),

1 being the plane Lebesgue measure here. On the other hand, applying Theorem A
yields

(3.5) S 2 [f 1m(rs, x| drydry =
0n=0"g R

=a 3 5(5 Suwrap

=0 k=0

Combining inequalities (3.4) and (3.5) results in (2.5) to be proved.

4. Application of Theorem 1: Sufficient conditions
for |C, o, B|-summability of orthogonal series

The next seven theorems will be consequences of Theorem 1. We make the
following convention: by 2! we mean O in this paper.

Theorem B. If a=1/2, f=>1/2, and

w e 9P—1 29—

@.1) S35 Sape<s,

Pp=04g=0 i=2P-1f=29-1

then series (2.1) is |C, &, B|-summable p-a.e.

This theorem was proved in [9] by the first named author, extending the relevant
results of TANDORI [14] (@=1) and LEINDLER [5] (¢>1/2) from single to double
orthogonal series. The proving method in [9] is a direct one. Nevertheless, it is ins-
tructive to present here how Theorem B can be deduced from Theorem 1. Since the
same technique will be used in the proofs of Theorems 3—8 below, we enter into
full details.

Proof of Theorem B. We will prove that condition (4.1) implies (2.5), and
a fortiori, Theorem 1 implies Theorem B.

To this end, we introduce the notations
4.2
and

43 A ={ Sg” [CRai} (m,n=0,1,..).

21 if g=1,2, ..,
" “{o if g=0;
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'fhus, the left-hand side of (2.5) can be rewritten as follows

(4'4) {2; g mnlz 2}1l2 = d00+ 2d0n+ deo'*' 2 den

m=1 n=1

||[\43
||[\48

According to this, the proof is divided into four parts.
Part 1. By (2.3), (2.4) and (2.8)

4.5) =1 and ¥ = 0 otherwise,
whence
(4-6) . doo = ldool-

Part 2. By definition, for n=1,2, ...

A Ay

T A7 if k=0,1,...,n—1;

if k=n;

and =0 if i>0 or k>n. Using the relevant estimates in [5], we have, for
ﬂ -= ls

Op(kn=t2(n+1-k)f-1) if k=0,1,...,n
“7n U= { - o .
0 if i=0 or k>n (n=1,2,...).

By the Cauchy inequality,

LTS n

Sdw= {2 P} = 3 > {Z[hPd)r=
n=1 n=1 k=0 4=0n=n_+1 k=0

oo Ba+1 n
= 2 {(nq+1_nq) 2 [18;]2 agk}l/2 =
q=0 n=n_+1k=0

had LT n—1 )
=0(1) J {(nge1—n,) l 2 KEn~*-2(n—k)¥-2g3 112 +
q=1 n= 1 k=0

+om = {(nger—n) 3 n#ag} = O(1)(5,+5,), say.
q= n-=n¢+1

Since-
(4.8) Ngri—n,=n, (g=1,2,...),

it immediately follows from (4.1) that Z,< eo.
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Now we turn to Z;. A simple computation gives that

> LPFeY q min(n, ,,,n)—1 .
= 2 {(nq,,1 -n) 2 2 > kzn'”"z(n—k)”‘?a%,‘}l/? -
=1 n=n,+1 r=0 k=n, : . ) -
"r+l_1 LRy

M-ﬁ

= qg; {(nq+1 —n,) k2n—28-2(p _k)2ﬁ—2a(2’k}1/2 =

r=0 k=n, n=max(n,k)+1
—2 M 41—l Pauy

o q
= 3 (=) S ken 2 (n— k)P -2al e 4

r=0 k=n, n=n_+1

+2(nq+1—n)1/2n" AP R A e
=q—1 n=max(ng, k)+1

= 211+212, say.
It is easy to see that

4.9 'gl (n—k)*—2 = O(n2¥-1)

n=max (n,k)+1
. y 1}
f n_,=k<ny [q =1,2..:8 >5)'
Consequently, (4.1) and (4.8) yield Xj,<co,
Now we treat Z,,. It is not hard to check that
4.10 (n—k)¥=2 = 4(n,—n,,)*?

if npg<n=ngyn=k<n,;

r=0,1,..,9g-2;9g=23,...; B >%.
Using this inequality together with '

(uto+.. M2 =u2ro24+ ... (uz=0,0v=0,..),
we find that

ol Maer @—=2 8411
Zu= 3 {(n1-n) kzn'”"z(n—k)z”‘?aﬁk}‘/z =
q=2 n=n,+1r=0 n=n. .

h]

oo

= 2 (g1 —n )2 ng P {(ng1—ny) qz_' (n,—nyp)?P2 2 k2 2 = '
< 2

S q--2 n..=-1 '
= 0(1) qz; (nq+1_nq) n;ﬂ—l Z:) nr(nq—nr+1)p~l{ IcZ a(z)k}l/2 =
= r= =n,

—O(I)Zn,{ 2 aOk}lfz Z (=) N(n—m = 5, say.

r=0



Ly

Absolute summability of double orthogonal series

It is easy to see that K
@.11) (1= 1r42)P =2 = O(nf ™)

1
if g=r+2;r=0,1,...; /3>7.

Using this, (4.1) and (4.8) we can conclude that

i L hd eo  Npyy—1 . :
@1 =om a3 ayr 3 =00 3{'S apn <o
r=0 k=n, q=r+2 r=0 k=n,

r

Consequently, Z;<oo, Z;<eoo, and

(4.13) Sy, <

n=1

357

Remark. A careful examination of the method used just above shows that if

{C,: k=0, 1, ...} is a sequence of nonnegative numbers, then

where O,(1) does not depend on {C,} and as before n,=2""1.

In a similar way, we can obtain that for every sequence {B;: i=0,1, ..

nonnegative numbers we have

4.15) g {. ;"; [15'50]53,.}1/2 - 0,(1)2; {:;2"‘_1 BY-.
Part 3. According to (4.15), ,

(4.16) ' ,,.ZZ Ay <.

Part 4. It remains to prove that

4.17) S Sty <o
m=1 n=1
To this end, first we observe that
(4.18) =1 (GLk=0,1,...;mn=12..).

In particular, this implies that

=0 if i>m or k>n
Then setting

(4.19) Co= 5[mPal, (k=0,1,..)
i=0 .

.} o.f'
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and
R4yl

(4.20) Bl' = Z a,g,, (i == 0, 1, ...),
k=n,

we can proceed as follows

mgi'l ng. ‘dmn - mgi'l ng. {1=2"(: kg"(') mo 8212 i }l/ 2 g {kgn' Ton]zc }1l2 -
. o oo By—1 m & o m
- Oﬁ(l 2 Z{ =20v[ 0243 k}l/z = 0,,(1) g;'g(; {,=Z0' m0]2B}1/2 =

=0,0.0 3 3 { =2 2’ <

—n

the last inequality being (4.1). This proves (4.17).
Combining (4.4), (4. 6) (4.13), (4.16) and (4.17) completes the proof of Theo-

rem B.
Now we introduce the following notations:

{2Vﬁ if ¢g=12,..,
m =

4.21) 0 if g=0;
4.22) i, =pY¢=" if p=0,1,..;
(4.23) k,=q¥20) if ¢=0,1,...
We agree that if u and v are real numbers, u=v then by Zv' we mean the sum

n=u
extended for all integers n such that u=n=o.

Theorem 3. If

pu -1 Mas1™ -1
(4.24) 2 Z’ 2 a,?,‘}l/2 < oo,
p=0 4= i= m k=mg,

then series (2.1) is |C, 1/2, 1/2{-summable p-a.e.
Theorem 4. If 0=a<1/2, 0=f<1/2, and

$pe=1 kg yy—1
{ P e }1/2<‘._,°
ik )

iSi, k=k,

Ms
M3

(4.25)

0q

[
)

p

then series (2.1) is |C, a, B|-summable p-a.e. -

Theorems 3 and 4 are the extensions of the corresponding theorems of LEINDLER
and SCHWINN [7] from single to double orthogonal series.

Conditions (4.26) and (4.27) below imply the fulfilment of conditions (4.24)
and (4.25), respectively, through an appropriate grouping and the Cauchy inequality
(cf. [6]). In this way we obtain the following two corollaries.
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Corollary 2. If

(4.26) 2 =Zm{(p+1)(q+l) _;llktg‘ak}"2<“

then series (2.1) is |C,1/2, 1/2|-summable p-a.e.
Corollary 3, If 0=a<1/2, 0=8<1/2, and

o 2P—-1 29-1
Z {zp(l—za) 24(1—28) 1-; %*_l k_é'-n a'?k}llz < oo,

(4.27)

u[\/_lg

then series (2.1) is |C, a, B|-summable p-a.e.

Corollaries 2 and 3 as well as Theorem 5 below are the extensions of the cor-
responding theorems of LEINDLER [5] from single to double orthogonal series.

‘Theorem 5. If —l<a<0, —1<f<0, and condition (4.27) is satisfied, then
series (2.1) is |C, a, Bl-summable p-a.e.

Proofs of Theorems 3 and 4. We follow the scheme of the proof of
“Theorem B, changing it only at the reference numbers indicated by % or # %. Ins-
tead of (4.1), (4.2), (4.8)—(4.12) we have to take (4.24), (4.21), (4.8*)—(4.12*) and
(4.25), (4.22)—(4.23), (4.8**)—(4.12**), respectively, and the proofs run along the
same line as the proof of Theorem B. The % estimates below are valid for f=1/2,
while the * % estimates are valid for 0=f<1/2, but some of them remain valid for
p=—1 too.

The appropriate estimates are the following:

* L m, )
(4.8%) Mgsy—my = 0 (log o
and :

(4.8*%) kys1—k, = Oy(k2#)

(this latter estimate holds true for B> —1);

(4.9% - nmx(ém oy (1R = 000gm)
and *

| kqﬂ
49%) (n—K)?=2 = 0,(1);

n=max(k°.k)+1

(4.10%) (n—k)=(m—m, )"
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and
(4.10**) - (n—ky#-2 = (kq—kr+l)2p_2;
2ri4(g—1—r)""2mE if r42s=g=sr4rh,
(4.11%) (mg—m, )72 S{Zm—llz . £ i g
and
(4.11%%) (k,—k, )P {Oﬂ(l) (q—1-rfkBEL-Y if ri2=g=2r+],
‘ g~ Rr+1 =

Oz(1) k&1 if 2r+1<gq;
finally, for f=1/2, ,

oo m, -1 oo
4.12% z=0Q1) > m,{ 2> aﬁ,‘}l’2 2’ mg P (m,—m, ) M2 log™im, =
r=4 k=m, q=r

4rife

oo m, =1
— 0(1) 2 r1/4m}/2{ 2 aOk 1/2 2' m—l/z(q l_r)—llzlog—lm +
r=4 k=m,

m, -1

=Z'm adJ? 3 mllog7im, =

k=m, a=r+rt/141

+0(1)'§ m, {

o Zrn {3 apr s gy

._.m’

+o) Sm S a3 mytlogm, <o,
r=4 k=m_ g=r+1
while for 0<f<1/2,

[ kr4q—1
(4.12**) 5= O,,(l) 2 kr{ 2 a2 }1/2 kﬁ l(k —k +1)ﬁ—1 —
r=1 k=k, ‘1—-'
had kr-&l =1
= 0y(1) J KEGE-D{ 3 af i 2 (q 1-ryf14
r=1 k=k, g=r+
©o "r-n—l ©o
+05(1) S k{2 aft 3 k<
. r=1 k=k, q=2r+2
and for B=0,
(4.13*%) S o= 2 {go 82 ag 2= 2 lag] <.

These inequalities completes the proof of Theorems 3 and 4.

Proof of Theorem 5. We use notation (4.2) and follow the pattern of the
proof of Theorem B again. By (4.8) and (4.27),

fg+1

oo "q+l . hind
Iy= 2 {(nﬁl_nq) 2 n—ZFagn}llz =2 {(nq+1 n)ngif a‘z’"}llz =
q=0 n=n,+1 q=0 n=n,+1

o 29
= 0p() 3 {20070 5 ag}i<e
q=0

n=2a-141
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and
hoid Pas1 g min(n, ,,n)~1
L =2 {(”q+1—‘ ng) 2 2 kz”'-ﬁ-z(”—k)w_zagk}ll2 =
q=1 n=n,+1 r=0 k=n,

= 0,(1) Z’ {2-eu+2p Zq- "'2' - ka, }"' (n—kyP=2jise =

r=0 k=n, n=max(ng,k)+1

-1

Prs 27
= 0,1 3 {2 S5 a3 (nery-iny
n=29-141

r=0 k=n,

+0ﬂ(1)2{2—q(1+2ﬂ) Z' 224 Z aOk}1/z-

k=n,

b 9-2 Ppya—1
= O,,(l)(l +3 {2—«(1+2ﬁ) > > a(z,izq(aﬁ—l)}lla) =
q=2 r=0 k

oo n -1 ©o
= Op(l)(l +'§o 2'{*_2"' aﬁk}”" 42 2_') < oo,

These calculations show that (4.13) is satisfied.
In the above manner (cf. Remark in the proof of Theorem B), we can conclude
that if {C,: k=0, 1,...} is a sequence of nonnegative numbers, then

(4.14*) ”g { é" [ng]z Ck}1/2 —_ Oﬁ(l) 'é') {zr(l—zﬂ) :rg_ Ck}llg

and if {B;: i=0,1,...} is a sequence of nonnegative numbers, then
e m : o LS Tt
(.15 3 { SErBY = 0,1 3 (e 5 By,
m=1 "i=0 _ r=0 i=n,

The latter inequality implies the fulfilment of (4.16).
As to the fulfilment of (4.17), we use notation (4.19) and set

Byl
(4.20%) B= 3 K% (=01..).

We proceed as follows (cf. (4.18))

né; .é; Fn = ...Z:; ,.g {é’ [ Z [Pag ) =
= 0,(1) 3 3 {2 A Paj e =
m=1 ¢q=0 [y %o

Q

= Oﬂ(l) Z 2 {Z’ [xpo)e 1“2"—1 k-2 ga e =

m=1 =0 ng
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n, 1
= 0,,(1)0 1 2 2 {2P(1—2a) 2 92 k128 g2 }1/2 =
=n, k—nq P

" p=04=0

g41—1
= 0,(1)0,(1) 2 Z'{zp(l za)2q(1 ) 2 2' GANR <o,
i= l‘lp q

completing ‘the proof of Theorem 5.
The following three theorems cover the so-called “mixed” cases. We remind

notations (4.2), (4.21)—(4.23).
Theorem 6. If a=>1/2, B=1/2 ‘and

npyy—1 mq+l_1

Sd=ny

(4.28) g j’-{ G2 < oo,
p=0 4=0 " i=n, k=m.ff S
or if a>1/2, 0=p<1/2 an
b Ll 2t ~1 kq+171 o : ., c
(4.29) Z 2{ 2 Z ajn<e
p=0 4=0 " i=n, k kq ) ‘ o
orif a>1/2, —1<p<0 and '
' . o - co PpaiTl B y— )
. (4.30) Z Z{un 2B) 2 2' 2}1/2 < oo,

then series (2. l) is |C, a, Bl-summable p-ae
Theorem 7. If a=1/2, 0=0<1/2 and
(431) ' S 3(5 S apyn<e,

or if a=1/2, —1<B<0 and

(4.32) 2 2{2«1 o) 2‘ -

then series (2.1) is |C, a, B|-summable p-a.e.
Theorem 8. If 0=a<1/2; —1<f<0 and .

ip41—1 "q+1"‘1 . )
azk}llz < oo,

w 3 Som

then series (2.1) is |C, «, ﬁl-summable p-ae.

i=i, k=n,-

Combining the proofs of Theorem B and Theorems 3—5 yrelds Theorem 6,
combining those of Theorems 3 and 4 yields Theorem 7, whrle combmmg those of
Theorems 4 and 5 yields Theorem 8. . . I
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As an example, we sketch the proof for the case «>1/2 and f=1/2. Similarly
to (4.14), for any sequence {C,: k;Oz 1, ...} of nonnegative numbers we have

(4.14**) \ ' S { 2 [10;;_]2 c,‘}lfv2 = oﬂ(l)'{:‘g_ c,,_}llz..

Furthemore we have (4.15).
Assume (4.28) is satisfied. First, setting C,=aj, and B =a?, we can derive

(4.13) and (4.16). Second using notation (4.19) and setting

mq,H -1 A
(4.20**) a?,‘

k=m : .
we can conclude (4.17). So, applying Theorem 1 prov1des the first statement in Theo-
rem 6. : :
The next two corollaries of Theorems 6 and 7 can be deduced via the Cauchy
inequality.

Corollary 4. If oc>1/2, B=1/2 and

2P—1 20—1

4.34) Z’ Z’{(q+1) 2’ Z' 2}1/z<°°

p=04d=0

orif a=>1/2, —1<B<1/2 and condition (4 30) is satisfied, then series (2 1)is IC o, Bl-
summable p-a.e.

Corollary 5. If a=1/2, —~1<pBf<1/2 and

2P—1 29-1

(4.35) g’ g{(p+1)2q(1—zn)' > 3 ai)r<e,

=2P~1 g=29-1

orif —l<a<1/2, —1<p<1/2 :and condition (4 27) is satisfied, then series (2.1) is
IC, a, B|-summable u-a.e.

Corollaries 4 and 5 as well as Corollaries 2 and 3 Were'pro§/ed by PONOMA-
~ RENKO and TimMaN [11] for the two- dimensional trigonometric system. :
We remind that a'double sequence {4;: i, k=0,"1, ...} of numbers is said to
be nondecreasing if
Ay = min {'1-+1 ks At ka1)
-and ‘to be nonincreasing if »
dig = ma‘)‘(v{.li+1,k’ li,.k+1} (i,k=0,1,..).
In Corollaries 6 and 7 below, let {4} be a nondecreasing sequence of positive numbers
such that
oo oo 1
4.36 —_——————— <oo,
(436) 2% GF DG+ D

i=0k=0
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or equivalently,

Applying the Cauchy inequality to series (4.1), (4.26), (4.27) and then to series (4.34),
(4.30) and (4.35) results in the following two corollaries.

Corollary 6. If a=>1/2, B=>1/2 and

._2:”‘% af Ay <oo,
or if a=1/2, B=1/2 and
é’)kzc" ahdalog(i+2)log (k+2) <o,

or if —l<a<1/2, —1<p<1/2 and

"l\dﬂ

S a8 A i+ 125 (k4 11728 < oo,

then series (2.1) is IC, o, ﬂl-summable u-a.e.

Corollary 7. If a>1/2, =1/2 and

u[\43

j a2, log (k+2) <o,

or if a=1/2, —1<ﬂ<1/2 and

nMs

i ab (ke + 1) < oo,

or if a=172, ;1.<ﬂ<1/2 and

llMg

2”, ajy Ak + 1)1—” log (i+2) <,

then series (2.1) is IC, o, ﬂl-summable u-a.e.

Corollary 6 is the extension of the corresponding results of UL’JANOV [15, pp.
46—37 and 51—52] from single to double orthogonal series.
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5. Application of Theorem 2: Necessary conditions
for |C, a, f]-summability of orthogonal series

The sufficient conditions (4.24), (4.25) and (4.27)—(4.32) are the best possible.
To see this, we consider the special case where the double sequence {ayl:
i, k=0, 1, ...}° is nonincreasing. Then (4. 24) is equlvalent to (4.26), and both are
equlvalent to the condition

(5.1 Si= 3 Z(p+1)"2(q+1)1’22”’22‘”2[02» 21 <oo3

p=0g=0

while (4.25), (4.27) and (4.33) are also equivalent to each other, and each of them is
equivalent to the condition '

(5.2) S; 2 22a-9200-B) |y | <o (—1 <, B < 1/2).
p=0d= .

* Similarly, in the special case where {|a,|} is nonincreasing in k for each fixed i
both (4.28) and (4.34) are equivalent to the condition

(5.3)

||[\43

g'(q+l)1/224/2{ Z' az }1/2<°°

i=2pP-1

while both (4.29) and (4.30) are equlvalent to the condition

. oP 1 .
(5.4) = 3 Sa0n ¥ @ <e (—1<f<1]2),
p=04= o i=_zP-1 ’
Furthermore, in the special case where again the double sequence {|a,|} is -
nonincreasing, each of the conditions (4.31), (4.32) and (4.35) is equivalent to

(5.5) Z Z(p+1)1/22p/22q(1 Plags, gl < oo (—1 <f<1/2. ©

p=04=0
" As an illustration, we show the equ1valence in two cases.

Case 1. The equivalence of (4.24), (4.26) and (5.1). We remind notation (4.21).
First, we show that (4.26) implies (4.24) without any restriction. By the Cauchy
inequality,

mp+l_1 mq+

>{ gyn=2 3 2(m+1)1/2(n+1)1/z><

9=0 " i=m, k—m m—o n=0

Ms

I
<

p

mpeq—1 Mmyyq—1

x{ = > 2 al ),

p:2m-iz=m <2m q:on-l=n <2® i=m, k=m,
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since for every m=1,2, ... the number of those integers for which 2"~1=m,<2"
is less than 2m. Taking into account that the quadruple sum in the last square root
does not exceed the double sum

gm+i_1 on+i_)

2
Aiks
i=2m=-1 g=2n-1

we get implication (4.26)=(4.24).
Second, if we use the monotonicity of {|a,[} we can immediately see that

2 g{(ﬂ'*'l)@‘l'l) :2:1 242_' atk}llzs

= S' 2”' (p+1)2(q+1)V22P12 292 |ggp s gq-1],
p=0 9=0

which shows implication (5.1)=(4.26).
Third, we show implication (4.24)=(5.1) in the monotonic case. Again by the
Cauchy inequality,

2P—-1 29-1

=00 F 3 3 3 lamlx

0m=2P-1 p=29-1

X(m+1)"Y2(n+1)"12]log"2(m+2) logl’z(n+2) =

=0(1) 2 Z’la,,,,,l(m+1) l/2(n+1)"1/"’log1/2(m+2)logl/z(n+2)—

- 1 1 o
e oo Mp=kmg,,—
=oH 2 > 2 |l X
p=0g=0 m=m, n=m, -

X(m-+1)"V2(n+ 1)~Y2log!2 (m+2) log!/2(n +2) =

67 ’ © oo Mpu—lm,,,—1
=0 3 >{ A PRy
where by (4.8%),

mpyy—1lmg -1

= { . (m+ 1)'1(n+'1)-1 log (m+2) log (n+2)}1/2 =

m=m, n=mg
= {(mp+1 _'mp) (mq+l q) (m + 1)—1(m + 1)_11’1/2 q1/2}1/2 0(1)
This proves implication (4.24)=(5.1).

Case 2. The equivalence of (4.29), (4.30), and (5.4). This time we use notation
(4.23).
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First, we show that (4.30) implies (4.29) without any restriction. By the Cauchy

inequality,
2P—1 kg1

oo o0
Sa=2 2 { > 2. aj )t =
p=01n=0 @:2"~I=k <2 "i=20-1 k=k,
o oo 2P—1 kq“ -1
2 1/2X 1/2.
é';{ —é’ 2nizplk k, a} { 2"-lsk<2” }

Since the number of those integers ¢ for which 2*~1=k,<2" is 0,(2"*~*) thus

P—_1 on+l_3]
Se=0,(1) 2 2{2"‘1 w > Vs af 2.
=0 n=0 i=2P-1 g=2n-1

This proves implication (4.30)=(4.29).
Second, using the monotonicity of {|a,|} we can easily get 1mp11cat10n G.9H)>
(4.30) as follows

Z Z {24(1 28) .

1}1/2
29-
p=0q= i= 2P-lk 2¢-1

Third, we show implication (4 29)=(5.4) in the monotonic case. By the Cauchy ine-
quality again, :

91

22 a2 = 2 5’24(1—11){

i= 2P-1 %

291

S' S*zq(l—ﬁ){ 21‘12 }1/2 0,,(1)2 2 k- ﬂ{ Z a2}1/2._.
p=04=0 i=2P- 0 k= 2'1—1 =27-1
e oo oo oo kgiq—1 2P —1
=0(1) 3 > k*{ S ayr=o,m 3 35S k{3 ahpir=
p=0k=0 i=2P-1 P=04=0 k=k, - i=gP-1
kq+1_1 P—-1 kq+l_1
=0, 3 {5 kwpn{ > S aye.
p=0g=0 " k=k, =2P-1 k=k,

Since (4.8**) holds true for f=>—1 we have

kgyr—1
kg k= = (kg42— q)k;zp = 04(1),
. proving implication (4.29)=(5.4).

After these preliminaries, the point is that if {|a,|} is nonincreasing in a certain
sense indicated above, then conditions (5.1)—(5.5) are not only sufficient, but also
necessary for the a.e. |C, «, f|-summability of series (2.1), for a fixed pair of @ and
in the appropriate domain, if all ONS ¢ are considered.

To go into details, the case min (o, §)=1/2 was studied in [9] without any
additional restriction on {|a;|}. Theorem C obtained there extends the corresponding
results of BILLARD [2] (#=1) and GREPACHEVSKAJA [4] (a=>1/2) from single to double
orthogonal series.
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Theorem C. If a=1/2, B=1/2 and condition (4.1) is not satisfied, then the
two-dimensional Rademacher series (2.7) is not |C, a, B|-summable a.e.

The following theorems cover various cases in the domain —~1<min (¢, )=1/2.

Theorem 9. If the double sequence {|ay|} is nonincreasing and condition (5.1)
is not satisfied, then series (2.7) is not |C, 1/2, 1/2|-summable a.e.

Theorem 10. If —l<a<1/2, —1<p<1/2, the double sequence {layl|} is
nonincreasing, and condition (5.2) is not satisfied, then series (2.7) is not |C, «, B|-
summable a.e.

Theorems 9 and 10 are the extensions of the corresponding results of GRE-
PACHEVSKAJA [4] from the one-dimensional Rademacher system to the two-dimen-
sional one. Theorem 10 for two-dimensional trigonometric series was proved by
PoNOMARENKO and TiMAN [11], assuming that {a;} is a nonincreasing sequence of
nonnegative numbers.

~ Serving as a pattern, we present here the proof of Theorem 9. In this case, /5"
is defined by (2.8) for a=p=1/2.

First, we check that condition (2.6) is satisfied. This is simple by the means of
estimates (4.18), (4.7), and the corresponding estimate on 70 all applied in the case

a=f=1/2.

Second, we verify that condition (2.5) is not satisfied. Thus, we can apply Theo-
- rem 2 and conclude the statement of Theorem 9. In fact, again by (4.18), (4.7) and its
symmetric counterpart as well as by the monotonicity of {ja,l},

(5.6)  Su= 3 3202 plagilg,, o) =
. p=14g=1
o oo 2P—1 29-1
=03 3 3 3 lamim i 172 logh2(m + 1) log2(n+ 1) =
= g=1m=2P-1 p= 29-1

o) 3 2|a A m=V2n=12logt2(m+ 1) log3(n+ 1) =

m=1n=1

= 0(1)2 2 |@al M~%2 0 '3’2{ Z' #(m+1—i)7? 2‘ kz(n-l—l—k)—1}1/2~

=1n=1

=0( Z:' g{zzn;'znvak,z "3(m+l—i)'1)(

XKn=3nt1-k) e =00) 3 3 o,

m=1 n=1

(cf. notation (4.3)).
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Similarly, we can obtain that

(5.7) Su= 2 29212 |a, 0| = O(1) 2, o
q= n=
and .
(5.8) S10= 2;2"/2P1/2|02P,o| = 0(1) 21 Ao
p= Com=

Collecting (5.6)—(5.8) we find that

Sy = |agel + So1+S10+ S = o) Z Z‘Q{mn

m=0 n=0
(see also (4.6)). Since, by assumption S;=c= condition (2.5) cannot be satisfied
either. Applying Theorem 2 gives the statement of Theorem 9. .
The last two theorems in this Section are concerned with the “mixed’ cases.

Theorem 11. Assume that the sequence {|a;|} is nonincreasing in k for each
fixedi. If a=>1/2, B=1/2 and condition (5.3) isnot satisfied, or if a=1/2, —1<f<1/2
and condition (5.4) is not satisfied, then series (2.7) is not |C, a, B|-summable. a.e.

Theorein 12. If a=1/2, —1<p<1/2, the sequence {la,|} is nonincreasing,
and condition (5.5) is not satisfied, then series (2.7) is not |C, a, p|-summable a.e.

Theorems 10—12 can be proved in a similar fashion to as Theorem 9 is proved
above on the basis of Theorem 2.

6. Generalized |C, o, f|,-summability of orthogonal series

Let /=1 be a real number. Following FLETT [3], series (2.1) is said to be
IC, «, Bl;-summable at x if

S S(m+1)- Hn+ 1) AL <o,

m=0 n=0 :
where 4% (x) is defined in (3.1) with the matrix given by (2.8). The case /=1 gives
back the ordinary |C, «, f|-summability. Using the same techniques which occur in
the proofs of Theorems 3—12 and Corollaries 2—7, we can derive both necessary
and sufficient conditions on the a.e. |C, a, f],-summability of series (2.1). Here we
present only three samples of these extensions. We use the notation m,=2°~"""",

Theorem 3* If 1=/=2 and

. @ oo m‘,“ =1mgy—1
(6.1) 2 2 { T ah)n <o,
p=0 4= k=m

q

then series (2.1) is |C, 1/2, l/2|,-summab1e p-a.e.
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Corollary 6* Let 1=I/=2 and {A;} be a nondecreasing. sequence of positive
numbers satisfying the condition

= o 1
©2 B EEDEIDE =
If a=1/2, f=1/2 and

=2: S'a?kltgk—'<

i k=0

or if a=1/2, f=1/2 and

<"=Ms

2 a% A% log (i+2) log (k+2) < oo;

orif —l<a<1/2, ~1<B<1/2 and

!':Ma

3t e Y <,

then series (2.1) is |C, a, B|,-summable p-a.e.
We note that in case /=2 condition (6.2) can be dropped.

Theorem 9*. Let 1=I/=2. If the sequence {|ay|} is nonincreasing and condi-
tion (6.1) is not satisfied, then series (2.7) is not |C,1/2, 1/2|-summable a.e.

Theorems 3*, 9* and Corollary 6* are the extensions of the corresponding theo-
rems of the second named author [12] and SpEvakov [13], respectlvely, from single
orthogonal series to double ones.

On closing, we mention that our results.can be extended in a natural way to d-
multiple orthogonal series with 4=3, too.
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