On a geometric problem concerning discs

A. P. BOSZNAY and B. M. GARAY

Introduction

Let $(X, \|\cdot\|)$ be an *n*-dimensional real normed linear space, and let *d* be a metric defined on $B_X(0, 1) \equiv \{x \in X : \|x\| \le 1\}$ with the following properties:

(i) d is topologically equivalent with $\|\cdot\|$,

(ii) $d(x_1, x_2) = ||x_1 - x_2||$ for all $1 = ||x_1|| = ||x_2||$.

At first glance, one can conjecture that there will exist an $y^* \in B_X(0, 1)$ such that

$$\min_{\mathbf{x}\in S_{\mathbf{x}}(0,1)}d(y^*,\mathbf{x})\geq 1.$$

In case of n=1, this is an easy consequence of the triangle inequality.

The aim of this paper is to show that in general, this is not the situation. For arbitrary $n \ge 2$, we construct an example d and $(X, \|\cdot\|)$ for which

$$\max_{y \in B_{\mathbf{x}}(0,1)} \min_{x \in S_{\mathbf{x}}(0,1)} d(y,x) < 1.$$

On the contrary, we prove that

$$\max_{y \in B_X(0,1)} \min_{x \in S_X(0,1)} d(y,x) \ge \frac{1}{n}.$$

Results

Example. Let $n \ge 2$. Then there exists a metric d on the n-dimensional euclidean unit ball E(0, 1) such that d has properties (i) and (ii), and

$$\max_{y \in E(0, 1)} \min_{x \in S(0, 1)} d(y, x) < 1.$$

Received April 11, 1985.

Contsruction of d. Let us recall first that there exists a norm $\|\cdot\|$ on $\mathbb{R}^n \oplus \mathbb{R}$ with the following properties (here $|\cdot|$ denotes the euclidean norm in \mathbb{R}^n):

(a)
$$\|(x,0)\| = |x| \text{ for all } x \in \mathbb{R}^n,$$

(b)
$$||0, \lambda\rangle|| = |\lambda|$$
 for all $\lambda \in \mathbf{R}$,

(c) for any projection $P: \mathbb{R}^n \oplus \mathbb{R} \to \mathbb{R}^n$ onto, there holds

$$\|P\| = \sup \{\|P(x,\lambda)\| \colon x \in \mathbb{R}^n, \lambda \in \mathbb{R}, \|(x,\lambda)\| \leq 1\} \geq 1 + \delta_0$$

for some fixed $\delta_0 > 0$.

Several types of such norms can be constructed. For example, the existence of such a norm is a consequence of [1].

We shall define now the metric d_{α} on the set E(0, 1). For $y_1, y_2 \in E(0, 1)$, let

$$d_{\alpha}(y_1, y_2) = \|h_{\alpha}(y_1) - h_{\alpha}(y_2)\|,$$

where h_{α} : $\mathbf{R}^n \rightarrow \mathbf{R}^n \oplus \mathbf{R}$ is defined by

$$h_{\alpha}(y) = \begin{cases} \left(y, \frac{\alpha}{\alpha - 1} \left(|y| - 1\right)\right) & \text{if } \alpha \leq |y| \leq 1\\ (y, \alpha) & \text{if } |y| \leq \alpha \end{cases}$$

and the contant $0 < \alpha < 1$ is to be specified later. Clearly, d_{α} has the desired properties (i) and (ii).

We shall show now that for all $y \in E(0, 1)$

(1)
$$\min_{x \in S(0,1)} d_{\alpha}(y,x) < 1$$

provided that α is sufficiently small.

Firstly, let
$$|y| > \alpha$$
. For $x = \frac{y}{|y|}$, there holds $|x| = 1$ and
 $d_{\alpha}(y, x) = ||h_{\alpha}(y) - h_{\alpha}(x)|| = \left\| \left(y, \frac{\alpha}{\alpha - 1} (|y| - 1) \right) - \left(\frac{y}{|y|}, 0 \right) \right\| =$
 $= \left\| \left(0, \frac{\alpha}{\alpha - 1} (1 - |y|) \right) + \left(1 - \frac{1}{|y|} \right) (y, 0) \right\| \le$
 $\le \frac{\alpha}{1 - \alpha} (1 - |y|) + \left(\frac{1}{|y|} - 1 \right) |y| = \frac{1 - |y|}{1 - \alpha} < 1.$

Secondly, let $|y| \leq \alpha$. We have a $P: \mathbb{R}^n \oplus \mathbb{R} \to \mathbb{R}^n$ onto projection for which Ker $P = \{\lambda(y, 1): \lambda \in \mathbb{R}\}.$ By (c), there exists an $(x, c) \in \mathbb{R}^n \oplus \mathbb{R}$ satisfying

(2)
$$||(x, c)|| = 1, ||P(x, c)|| \ge 1 + \delta_0.$$

Clearly we have P(x, c) = (x - cy, 0), so

(3)
$$||(x-cy,0)|| = |x-cy| \ge 1+\delta_0.$$

For $z = -\frac{x - cy}{|x - cy|}$ there holds |z| = 1 and

$$d_{\alpha}(z, y) = \|h_{\alpha}(z) - h_{\alpha}(y)\| = \left\| \left(\frac{cy - x}{|x - cy|}, 0 \right) - (y, \alpha) \right\| =$$
$$= \left\| \left(\frac{cy - x}{|x - cy|}, 0 \right) - \alpha \left(\frac{y}{\alpha}, 1 \right) \right\| =$$
$$= \left\| -\frac{\alpha}{c}(x, c) + \frac{c - |x - cy|\alpha}{c} \cdot \left(\frac{cy - x}{|x - cy|}, 0 \right) \right\| \leq$$
$$\leq \frac{\alpha}{|c|} + \frac{|c - |x - cy|\alpha|}{|c|}.$$

At the last step, we have used (2).

In case of $0 < \alpha < \frac{|c|}{|x - cy|}$, we have by (3)

$$\frac{\alpha}{|c|} + \frac{|c-|x-cy|\alpha|}{|c|} = 1 - \frac{|x-cy|-1}{|c|} \cdot \alpha < 1 - \delta_0 \frac{\alpha}{|c|}.$$

SO

(4)
$$d_{\alpha}\left(\frac{-x+cy}{|x-cy|}, y\right) < 1-\delta_0\frac{|\alpha|}{|c|}.$$

Pick a $\beta > 0$. By elementary compactness arguments, $x \in \mathbb{R}^n$ and $c \in \mathbb{R}$ (satisfying condition (2)) can be chosen so that

(5)
$$c_1 < |c| < c_2$$
 and $|x-cy| < c_3$,

for some fixed $c_1, c_2, c_3 > 0$ whenever $|y| \leq \beta$.

It is clear that (5) implies (1) provided that

$$\alpha < \min \{\beta, c_1/c_3\}.$$

Theorem. Let $(X, \|\cdot\|)$ be a real n-dimensional linear space, d a metric on $B_X(0, 1)$ with properties (i) and (ii). Then there exists an $y^* \in B_X(0, 1)$ such that

$$\min_{x\in B_{\mathbf{X}}(0,1)}d(y^*, x)\geq \frac{1}{n}.$$

7

We shall need the following two lemmas.

Lemma 1. Let $(X, \|\cdot\|)$ and $(X_1, \|\cdot\|_1)$ be n-dimensional real normed linear spaces. Then there exists a $T: X \rightarrow X_1$ linear onto operator such that $\|T^{-1}\| \leq 1$, and $\|T\| \leq n$.

Lemma 2. Let $(Z, \|\cdot\|_{\infty})$ be the n-dimensional l_{∞} space, $Y_1 \subset B_X(0, 1)$ and let us assume we have a nonexpansive mapping $g: Y_1 \rightarrow \{z \in Z: \|z\| \leq r\}$ (r>0 arbitrary). Then there exists a nonexpansive

$$\tilde{g}: B_X(0, 1) \to \{z \in Z: ||z|| \le r\} \text{ with } \tilde{g}|_{B_X(0, 1)} = g.$$

(A special case of [2] p. 48. Theorem 11.2.)

Now, let us prove the theorem. First, by Lemma 1, there exists a $T: X \rightarrow Z$ linear onto mapping such that $||T|| \leq n$, $||T^{-1}|| \leq 1$. Let us introduce now the metric d^* on $B_X(0, 1)$ as follows:

(6)
$$d^*(y_1, y_2) = n \cdot d(y_1, y_2).$$

Clearly T=g restricted to the set $S_X(0, 1)$ is nonexpansive from (Y_1, d^*) to $Z_1 = \{z \in \mathbb{Z}: 1 \le ||z||_{\infty} \le n\}$. So, using Lemma 2, we have a

$$\tilde{g}\colon B_X(0,\,1) \twoheadrightarrow \{z \in Z \colon \|z\|_{\infty} \leq n\}$$

nonexpansive extension of g.

Since $T^{-1}\tilde{g}$ maps $B_X(0, 1)$ into itself and $T^{-1}\tilde{g}$ restricted to $S_X(0, 1)$ is the identity, it follows from Borsuk's nonrecractibility theorem that $0_X \in T^{-1}\tilde{g}$ $(B_X(0, 1))$. Consequently, $0_Z \in \tilde{g}(Y)$. Clearly,

$$\min_{z_1\in Z_1}\|0_Z-z_1\|_{\infty}\geq 1,$$

so, for arbitrary element y^* of $\tilde{g}^{-1}(0_z)$, there holds

$$\min_{z_1\in Z_1} d^*(y^*, \tilde{g}^{-1}(z_1)) \ge 1,$$

and this implies

$$\min_{x\in S_x(0,1)}d^*(y^*,z)\geq 1.$$

Using (6), we obtain the desired result.

Remark 1. Instead of 1/n we can write 1 in the Theorem provided that $(X, \|\cdot\|) = (Z, \|\cdot\|_{\infty})$.

Remark 2. Considerations similar to the ones used in the paper play an interesting role in the theory of Liapunov functions [3], and of metrics of Liapunov type [4]. Remark 3. The infinite dimensional analog of the Theorem does not hold. There exist examples d with

$$\inf_{x \in S_x(0,1)} \sup_{y^* \in Y} d(y^*, x) = 0,$$

for arbitrary $(X, \|\cdot\|)$ real, infinite dimensional, normed linear space, where d has properties (i) and (ii).

References

- [1] A. P. BOSZNAY and B. M. GARAY, On norms of projections, Acta Sci. Math., 50 (1986), 87-92.
- [2] J. H. WELLS and L. R. WILLIAMS, Embeddings and extensions in analysis, Ergeb. Math. Grenzgeb, Vol. 48, Springer-Verlag (Berlin-Heidelberg-New York, 1975).
- [3] B. M. GARAY, On dinamical systems in metric spaces: metrics as Liapunov functions, Nonlinear Analy., 8 (1984), 1033-1042.
- [4] B. M. GARAY and V. KERTÉSZ, Lozinsky's functional and the transformation of variables, Z. Anal. Anwendungen, 3 (1984), 87-95.
- [5] F. JOHN, Extremum problems with inequalities as subsidiary conditions, Courant Anniversary Volume (New York, 1948), 187-204.

BUDAPEST UNIVERSITY OF TECHNOLOGY FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF MATHEMATICS H--1521 BUDAPEST, HUNGARY

74

G