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Lattice ordered binary systems 

BRUNO BOSBACH 

By a groupoid we mean an algebra (G, • ) = : © of type (2). By a binary system 
we mean a groupoid weaker than a group. Special binary systems are semigroups, 
quasigroups, and loops. The notion binary system was introduced by R..H. BRUCK [13]. 

A binary system is called partially (lattice-) ordered if G is partially (lattice-) 
ordered by an order relation ^ satisfying: 

(0) a s b — xa S xb&ax ^ bx. 

If (G, •, S ) is lattice-ordered we call (G, •, briefly a lattice groupoid. By a 
lattice semigroup we mean a lattice groupoid satisfying (ab)c=a(bc). Analogously 
we speak of a lattice quasigroup if all equations ax—b and ya—b have unique 
solutions a\b in the first and b/a in the latter case. Accordingly by a lattice 
loop we mean a lattice quasigroup with unit 1. A loop is said to have the inverse 
property if for each x there exists an x_1 such that for any a the identities x~1(xa)=a 
and dually a=(ax)x~1 are valid. If (G, •) is an inverse loop we have in addi-
tion the equations ( x - 1 ) - 1 = x and as is easily checked by the 
reader. 

There is no lack of lattice quasigroups. To see this consider (Rn, s ) with 
respect to aob:=a+2b. Furthermore there is an abundance of lattice loops, since 
starting from a lattice quasigroup (Q, o, A, V) we get a lattice loop by putting 
a-b:=(a/x)o(y\b), where x, y are fixed elements. And, above all, it should be 
emphasized that any free loop admits not only a lattice but even a. total order [13,22]. 

Lattice-ordered binary systems are congruence distributive in any case and con-
gruence permutable in many cases. Thus the theory of lattice-ordered binary systems 
is rich from the purely algebraic point of view. On the other hand, however, there 
are not too many lattice groupoid results arising from order theoretic or combined 
apects although G. BIRKHOFF [5] and L. FUCHS[19] as well state problems of such 
type. Nevertheless, at least a fruitful lattice loop theory should be possible as indicated 
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already in [5], and even suggested by results of EVANS and HARTMAN [17] who had 
a first breakthrough after several contributions of different authors like ZELINSKY 
[41], [42], Kaplansky, Ingraham and Birkhoff (cf. [5]), and ACZEL [1]. 

An element a of a partially ordered binary system is called positive iff it sat-
isfies ax^x^xa (Vx£G). The subset C+ of all positive elements is called the 
(positive) cone. Dually negative elements and the negative cone are defined. Both 
the positive and the negative cone are closed under multiplication, join and meet, 
and if in addition a unit element is. present the positive cone C + coincides with 
{x | AfSl}, and the negative cone C~ is equal to the subset {x | x S 1}. 

The central structure of this paper is that of a divisibility semiloop, i.e. a can-
cellation groupoid with unit 1 whose carrier is semilattice-ordered such that ax^ 
Sb-*-3u: au=b and ya^b—3v: va=b. Hence a divisibility semiloop is a com-
mon abstraction of the lattice loop and the lattice loop cone. 

It is a folklore today that any lattice group is a quotient extension of its 
cone such that the structure of the whole is completely determined by the struc-
ture of the cone. This is quite different in the lattice loop case where not even a 
total and complete order yields any connection between the positive and the nega-
tive cone. To verify this the reader may consider the real line with respect to 
aob:=a+b if one of the components is not negative and aob:=a—ab+b other-
wise, [22]. Hence the situation seems to be hopeless. Nevertheless it is possible 
to prove a result shedding some light as far as isolated cones are considered, namely: 
The lattice loop cones are exactly the positive divisibility semiloops ( G = C + ) , and 
every lattice loop cone is the cone even of an inverse lattice loop. This extends a 
theorem and answers a question of J. v. NEUMANN (cf. [4]). 

Thus a chance might be given to settle general lattice loop problems via inverse 
lattice loops. 

Given a lattice ordered binary system the first order, problem to arise is the 
question what the descending chain condition (for closed intervals) is equivalent to 
from the purely algebraic point of view. Hence this question has been treated for 
different algebraic systems several times, especially for semigroups by ARNOLD [2], 
CLIFFORD [14], [15], LORENZEN [28] and others (cf. [20]), and for lattice groups by 
BIRKHOFF [4] and WARD [40]. But the problem remained open for lattice loops until 
EVANS [16] showed that lattice loops, satisfying the D.C.C. are abelian lattice groups 
with the prime factorization property (P.F.P.). This yields as a corollary that every 
lattice quasigroup with D.C.C. is the isotope of a free abelian group. See also TESTOV 
[38]. Therefore a similar investigation of divisibility , semiloops is motivated, and it 
is by no means surprising that an analogue of Evans' theorem remains valid. How-
ever it is not the result by which Section 3 is legitimatized in the author's opinion, 
but the method of proof that justifies this part. 

There are two natural generalizations of the D.C.C. and the P.F.P. respectively 
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namely completeness (for closed intervals) on the one hand and representability 
on the other hand, i.e. the property to admit a subdirect decomposition into totally 
ordered factors. 

As far as completeness is considered we shall prove that power-associative 
divisibility semiloops are associative and commutative thus carrying over IWASAWA'S 
theorem [27] to our structure. Furthermore it is shown in Section 4 that completeness 
combined only with mowassociativity is a too weak requirement with respect to the 
associativity or commutativity property. 

As another topic in the context of completeness we take up the problem of 
characterizing divisibility semiloops admitting a complete extension. This has been 
done for lattice group like systems several times and it seems to the author that 
ARNOLD [2] and VAN DER WAERDEN [39] were the first to settle a problem of this 
type in general, followed by others like LORENZEN [29], CLIFFORD [14], [15], and 
EVERETT and ULAM [18], the first to treat a noncommutative case. But no nonassocia-
tive analysis was given before 1972 when P. A. HARTMAN [22], [23] settled the prob-
lem for partially ordered quasigroups and loops. Of course, there are further results, 
consult for instance [5] and [19], above all the initial contribution of RICHARD DEDE-
KIND (cf. [5]). Hence characterizing divisibility semiloops with complete extensions 
is a most natural additional step according to a long lasting development (Sec-
tion 5). 

Finally we turn to representable divisibility semiloops. 
There are various results concerning lattice-ordered structures of such type, 

the historical one being Stone's celebrated decomposition theorem for boolean alge-
bras, afterwards extended to distributive lattices (cf. [5]), for instance: LORENZEN 
[28], CLIFFORD [15], RIBENBOIM [32] (abelian lattice-ordered groups); LORENZEN [29], 
SIK [34], BANASCHEWSKI [3] (arbitrary lattice-ordered groups); SWAMY [37] (abelian 
residuated lattice-ordered semigroups); BOSBACH [8], [10] (complementary semi-
groups) ; TH. MERLIER [30] (abelian lattice-ordered monoids); FUCHS [20] (general 
lattice-ordered algebras); FUCHS [21] (positive abelian lattice-ordered monoids); 
BIRKHOFF and PIERCE [6] (lattice-ordered rings); EVANS and HARTMAN [17] (lattice-
ordered loops). 

But a general solution is still outstanding and also special problems have re-
mained unsolved up to now although they were stated several times, like the lattice 
semigroup problem [19], [21] or the lattice groupoid and the lattice quasigroup 
problem [17]. Therefore Section 6 will be devoted not only to divisibility semiloops 
with a representation, but also to general lattice-ordered binary systems of this type, 
the principal result being a decomposition theorem that solves the problems men-
tioned above in a one cast, manner. 

The notation of this paper is standard in general, but sometimes : will stand 
for "such that" and a • be for a(bc). Consequently a • - b-cd f.i. will mean a(b(cd)). 
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The basic concepts of algebra and order theory are to be found in [5]. The later 
paragraphs are based only on Section 1. 

Finally we give a most important hint. There will appear dualities of various 
kinds, for instance right/left dualities or s / ^ dualities. Hence there will be proposi-
tions holding necessarily together with their dual. So the reader should realize this 
situation whenever it comes up. Nevertheless he will be requested from time to 
time to take that fact into account. 

1. Divisibility semiloops 

1.1. D e f i n i t i o n . By a divisibility semiloop we mean an algebra (5 := (G, A, 1) 
of type (2, 2, 0) satisfying 

(DSL 1) (G, •) is a cancellation groupoid, 
(DSL 2) 1 is unit of (G, •), 
(DSL 3) (G, A ) is a semilattice, 
(DSL 4) x(aAb)-y=xa-yAxb-y 

(observe that (DSL 4) requires right- and left-distributivity because of axiom 
(DSL 2)), 

(DSL 5) ax^b-*3u: au=b, ya^b^3v: va=b 

(observe furthermore that the negative cone of any divisibility semiloop is itself 
a positive divisibility semiloop with respect to V)-
Classical examples of a divisibility semiloop are the lattice loop and the lattice 
loop cone. Therefore the divisibility semiloop is a common abstraction of these 
two structures. 

For the sake of convenience we start from an arbitrary but fixed divisibility 
semiloop. 

1.2. Lemma. Va, b, x, y: a^b-*ax^bx&ya^yb and 

ax^bxv ya^yb^-aSb. 

Proof. Obviously we may confine ourselves to the left-sided cases. But these 
follow by a^b-~yai\yb=y(af\b) —ya for the left-right direction and from ya=yaA 
Ayb-»ya=y(aAb)-*a=aAb otherwise. 

1.3. Lemma, b^l&a"(aAc)=a^aAbc=(a"Ab)(aAc). 

Proof . b^l—aAbc—a"(aAc)AbaAbc=(a"Ab)(_aAc). 

As an immediate consequence of 1.3 we get. 
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1.3'. Lemma. x^bc&.b^\—x=x b x c :x b ^b&,x c -^c . • 

1.4. P r o p o s i t i o n . (aAi»)a'=a—foa'=sup (a, b)=:aVfc. 

Proof . Suppose (ai\b)a'=a^(al\b)\. Then we can infer a ' s l and thereby: 
ba'^a & ba'^b. On the other hand any c with c^a, b satisfies for some x the 
implication: c=bx & a={aAb){a' Ax)^a' —xAa' -*a' -^x-*ba'^bx=c which had 
to be proved. (Similarly one shows that ( a V b ) a ' = a & (a\lb)b'=b implies ab'=aAb. 
This is possible by means of (DSL 5):) 

1.5. Lemma. x(a\lb) • y=xa • y\/xb • y. 

Proof . Suppose xaVxb=(xa)c. Then by (DSL 5) there is an element u such 
that xu=xa\lxb from which follows u^aMb and thereby x(a\]b)=xa\Jxb. The 
rest follows by duality. 

1.6. Lemma. (aAb)a'=a&(aAb)b'=b^(aAb)a' • b'=(aAb)(a'Vb'). 

Proof . ( a A f c ) a ' - b ' = a b ' = a \ / b = ( a A b ) ( a ' V b'). 

1.7. Coro l lary . &Ac=l v W c = l — a b - c = a c - b = a • be. 

Proof . Indeed, bAc—l-*abAac=a and b y c = l — a b V a c = a . 

1.8. Coro l lary . aAb = l^-ab = aVb = ba. 

1.9. Lemma. ab=cd^ab=(aAc)(b\ld)=(a\]c)(bAd). 

Proof . ab=cd^absz(aAc)b\/(aAc)d=(aAc)(b\/d) 

&ab^a(bVd)Ac(b\ld)=(aAc)(b\ld). 

1.10. Coro l lary . a = ( l A a ) ( l V a ) = ( l V a ) ( l A a ) . 

1.11. D e f i n i t i o n . By the positive part of a we mean the element 1 \Ja=-.a+, 
by the negative part of a we mean the element 1Aa=:a~ . By a* we denote the 
uniquely determined element x satisfying a~x=1, and we define, dually a:, sat-
isfying a'a~ = 1. 

There is a series of crucial lemmata interlinking these notions. 

1.12. Lemma. ab=ab+• b~=ab~ • b+. 

Proof . Write ab=al •b=ab • 1 and apply Lemma 1.9. 

1.13. Lemma. a + A a * = l. 

P r o o f . a +=aa*&aa*Aa*=(aAl)a* = l. 

1.14. Lemma. c^l&bAc* = l—a • bc=ab • c=ac • b. 

Proof . 6AC* = 1-1AC6=(1AC)(C*A£) = 1AC by the dual of Lemma 1.3. Thus, 
if moreover c is negative, we may infer c=(cb)~ and b=(cb)+ from which we get 
a-bc=ab-c=ac-b by Lemma 1.12. 
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1.15. Lemma. uAa*=l-*a~uAl=a~-»lVa~u=u—uAa*=l. 

This implies nearly immediately 

1.13'. Lemma. y^l^x&xAy*=l&iXy=a-~x=a + &y=a~. 

Moreover 1.15 is essential for part (i) of the subsequent statement. 

1.16. Lemma, (i) (ab)+=( lVa+6") ( lVa~b + ) , (a&)-=( lAa- fe + ) ( lAa+b~) , 
(ii) ( a A b ) + = a + A b + h ( a A b ) - = a ~ A b 

(iii) ( aVt ) + =a + Vb + &(aVi>) - — 

Proof . Ad (i). By 1.14 we have 

ab = a+a--b+b~ = (a + -a-b+)b~ = (a + (l Vfl-fc+))((lAa-&+)fc-) = 

= ( ( lAa- i> + ) -a + 6- ) ( lVa- fc+) , 

from which (i) follows by repeating the method on the grounds of 

uAa* = 1 = uAb* - (lVa-tO(lVb-w) = uu = uV (,a~b~ • u)u. 

(We shall come back to this implication in Chapter 4.) 
Ad (ii) & (iii). l A x S l A a & l V x S lVa and (a~Ab~f = a*Vb* 

and (a~Vb~)* = a*Ab* by 1.9. 

1.17. Lemma. aAb:=l**aAb*~l. 

P r o o f . aAb:=l-»ab~Al = b~—a(b~b*)Ab* = l—aAb*=l. 

We now introduce two further operations. 

1.18. De f in i t i on , x is called the right complement a* b of a in b if (aAb)x=b. 
Dually we define the left complement b:a of a in b. 

Because of (aAb)(a*bAb*a)=aAb we get immediately a*bAb*a=\. Next 
we have 

1.19. Lemma. aAb=a/(b*a)=(b:a)\b and aVb=a(a*b)=(a:b)b. 

1.20. Lemma. 

Furthermore we obtain 

1.21. Lemma. a * ( b V c ) = a * b V a * c . 

P r o o f . a (a*6Va*c)=a(a*f>)Va(a*c)=aVi 'Vi iVc=aV(6Vc) . 

1.22. Lemma. (aAfc)*c=a*cVi>*c. 

P r o o f . (aAb)*cSa*cVi>*c&(aAf>)(a*cVi»*c)S(aAh)Vc. 

1.23. Lemma. a * ( f t A c ) = a # b A a * c . 
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Proof . We have a * ( b A c ) ^ a * b A a * c and 

(aAi>Ac)(a*i>Aa*c) ^ (aAb)(a*2>)A(aAc)(a#c) = bAc 

whereby a*6Aa*cSa*( feAc) . 

1.24. Lemma. (aV&)*c=a*cAfe*c. 

Proof . We have (aV&)*cga*cAft*c and 

(a\/b)(a*cAb*c) S a(a*c)V b(b*c) = aV&Vc 

whereby a * c A 6 * c S ( a V b ) * c . 

The reader should check that 1.21 through 1.24 remain valid if we replace 
* by\and : b y / , provided the "results" under consideration do exist. Now, applying 
Lemma 1.23 we are able to prove 

1.25. Propos i t ion. (G, A, V) is distributive. 

Proof . aV (bAc) = a(a *(bAc))=a(a *b)Aa(a *c)= (a\/ b)A(aV c) (and, alter-
natively, by applying 1.24, aA (frVc) = a/((bVc)*a) = fl/(t#a)Va/(c*fl) = 
= (flA6)V(aAc)). 

In the remainder of this section special situations are considered with respect to 
later paragraphs. 

1.26. Def in i t ion . We say that a covers b if a satisfies a>b and no element 
of G lies strictly between a and b. By an atom we mean any p which covers 1. 

1.27. Lemma. Every atom is prime, i.e. every atom satisfies the implication 
p ^ a + b + - *pSa + v p ^ b + . 

Proof . p^a + b+&p$b+-~p=(pAa+)(j>Ab+)=pAa + by (1.3). 

Recall that the standard meaning of p" is (• • • (S.PP)P)P' • •)• 

1.28. Lemma. Every atom p satisfies ap •pn=a-pp". 

Proof. ap-p"=a-qpn & p^q implies ap-p"—aq-p" because of Lemma 1.7, 
since ap • p" covers ap", whence q is an atom. 

1.29. Corollarry. The natural powers of any atom p form a subsemigroup. 

Proof. This is easily shown by induction on the grounds of 1.28. 

1.30. Lemma. Every atom satisfies px=l**xp = l. 
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Proof . We prove the left-right direction: 1 covers x and moreover we have 
xslS.p & xSxp^p whence we can infer 

1A xp = 1 — xp = 1 because of xp < p 

v 1A xp = x — IV xp = p xp = px = 1. 

We are now turning to rules relevant for Section 4. 

1.31. Lemma. Let the right inverses cf and br exist. Then aAb and aSJb are 
right invertible, too, and they satisfy the formulas 

(aAb)r = arVbr and (a\/by = a'Abr. 

P r o o f. aar=1 = bbr - ( a A b)(arV b')=1 - (a V b) (a' A V). 

Furthermore we shall need some implications for orthogonal pairs a, b, i.e. 
pairs with aAb = l+~\a±b. Here we obtain: 

1.32. Lemma. If © is positive, i.e. G=G+, then 

a b — a* be = b(a* c) & cb:a = (c:a)b. 

Proof . Making use of 1.3 and 1.7 we get 

a±b — (aAbc)(b(a*c)) = (aAc)(h(a#c)) = b-(aAc)(a*c) = be 

and the rest follows by duality. 

1.33. Lemma. If © is positive, then 

a±cab*c = b # c = ba#c&c:ab = c:b = c:ba. 

Proof . a±c~-(abAc)x—c-^(bAc)x—c by Lemma 1.3, and the rest follows 
by duality. 

1.34. Lemma. If © is positive, then 

a±b — xa*xb = b&bx:ax = b. 

Proof . a±b-+(xaAxb)y=xb-»x(aAb)-y=xb-»y=b, the rest following by 
duality. 

1.35. Lemma. If © is positive and associative then © satisfies 
(i) ab*c = 6* (a*c ) , 

(ii) a*(6:c) = (a*6):c , . ' o 
(iii) a*bc = (a*b)( (b*a)#c) . 

Proof . These formulas were developed already in earlier papers of the author 
but for the sake of selfcontainedness we give short proofs in spite of this. 
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Ad (i): abx s c bx s a # c x s fc*(a*c), 
Ad (ii): ax § b:c axe s b ** cx s a:b, 
Ad (iii): ax S be x = (a*b)y a(a*b)y = b(b*a)y § fee. 

Henceforth we consider (conditionally) complete divisibility semiloops. Here 
we obtain analogously to the finite case: 

1.36. Lemma. If <5 is complete then © satisfies the equation: 
(i) x(\Jat)• y = V • y)&*(Afl/)-y = Mxary), implying 
(ii) x\(VaJ = V (x\a,) & x\(Aa,) = A (x\a,) 

(iii) (\JaJ\x = A ( a , \ x ) & (Aa,.)\x = V (a , \x ) , implying 
(iv) a A = V (a A &,-) & a V = A (a V fy). 

Proof . The proof is left to the reader since it is analogous to the corresponding 
proofs of the finite cases. (Of course, (ii) and (iii) are valid as far as the objects under 
consideration do exist.) 

Finally we remark 

1.37. Lemma. © is already complete if its (positive) cone is complete. More 
precisely: AOV«,) • A(1 Aa,)=Afli-

Proof . This is an immediate consequence of x ^ a t if and only if 1 V x S 
at & ( lAx)*s( lAa i )* which implies for lower bounded sets a, ( /£ / ) the 

formula stated above. 

2. Lattice loop cones 

The structure of a lattice group is completely determined (up to isomorphism) 
by the structure of its cone. The question arises whether the same is true in the 
lattice loop case. Obviously the situation is pleasant as far as the underlying lattice 
is considered (1.31). But it was already shown in the introduction, that non-iso-
morphic lattice loops may have isomorphic cones. Hence the question is reduced 
to the problem whether it is possible to characterize those divisibility semiloops 
which admit some lattice loop extension. To this end we start from a positive divisi-
bility semiloop E. 

2.1. D e f i n i t i o n . By L we denote the set of all orthogonal pairs (a|6) (a±b, 
a,b£C). Furthermore £ will symbolize the structure (L, o, A) the operations of 
which are defined by 

(a\b)o(c\d) := ((a:d)(b * c)\(d:a)(c * b)) 
and 

(a\b)A(c\d):=(aAc\byd). 

3* 
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Obviously o is defined in a right left dual manner. This means: a proposition and 
its proof remain true if is replaced by and a*b by b:a,c\d by d*c. 
Furthermore by Lemma 1.3 o is an operation. 

2.2. Lemma. (L, A) is a semilattice. 

Proof . We have to show a±b & cA_d — aAc ± by d, which follows from 
(aAc)A(b\J d) =(ahct\b)\J(at\bf\d) 

2.3. Lemma. £ satisfies 

(a\b) S (c\d) - (a\b)o(x\y) (c\d)o(x\y)&(x\y)o(a\b) ^ (x\y)o(a\b). 

Proof . This is an immediate consequence of Lemma 1.20. 

2.4. Lemma. (a|h)o(c|d)=((a|b)o(c|l))o(l|d)=:(a|l)o((l|f>)o(c|ii)). 

Proof . By 1.32 and 1.33 

((a:i/)(b*c)|(d:a)(c*&)) = (a(b*c):d\(d:a)(c*bj)= 

. = (a(fc*c):d | (d:a(6*c))(c*6)) = (a( i*c) |c*&)o( l |d) = 

= ((a|5)o(c|l))o(l|d), 

the rest following by duality. 

2.5. Lemma. ((a|&)o(l|x))o(x|l)=(a|&) = (l|x)o((jc|l)o(a|b)). 

P r o o f . We have 

= ((a:x)((x:a)b*(x:a)(aAx))\(x:a)(aAx)*(x:a)b) = ((a:x)(jtAa)|Z>) = (a\b) 

by 1.34, the rest following by duality. 

2.6. Lemma. ((f l |6)o(*| l ) )o( l |*)=( f l |6)=(*| l )o(( l |*)o( a |6)) . 

P r o o f . We have 

(a(i>*Jt)|(jc*fc)o(l|x)) = (a(b*x):x\(x:a(b*x))(x*b)) = 

= (a(6**):(frAx)(3e*6)|((x:(f»*x)):fl)(je*6)) = (a\(xAb)(x*b)) = (a\b) 

by 1.34, the rest following by duality. 

. 2.7. Lemma. ((a\b)o(x\y))o(y\x)=(a\b)=(x\y)o((y\xMa\b)). 

P r o o f . We have 

((a\b)o(X\y))o(y\X) = ((((a | fc)oWl))o(l |j;))o(j | l))o(l |x) = 

= ((a|ft)o(*|l))on|*) = (fl|6), 

the rest folio ¡ving by duality. 
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2.8. Lemma. (a\b)o(x\y) = (c\d) and (u\v)o{a\b) = (c\d) have uniquely deter-
mined solutions. 

Proof . Apply Lemma 2.7. It follows that (x|>>)=((5|fl)o(c|£/)) in the first case 
and (u\v)=((c\d)o(b\a)) in the second case are the only solutions. 

2.9. Lemma. ( f l |6 )o( l | l )=(a |6)=( l | l )o( f l | 6 ) . 

P r o o f , (a: 111 *6)=(a|6)=(l*a|6:1). 

2.10. Lemma. (a | l )o (6 | l )=(ab | l ) and (a | l )A(6 | l )=(aA6| l ) . . 

Proof . Obvious. 

Hence summarizing the lemmata proven so far we get 

2.11. P r o p o s i t i o n . A partially ordered groupoid is the cone of some lattice 
loop if and only if it is a positive divisibility semiloop. 

2.12. D e f i n i t i o n . By an inverse loop we mean a loop having the inverse 
property, i.e. satisfying \/a 3<a-1: a~1(ab)=b=(ba)a~1. 

Obviously inverse loops satisfy x x - 1 = l =x~1x and furthermore one can infer 
since In general a 

lattice loop is far from being inverse. However we can prove 

2.13. P r o p o s i t i o n . Any lattice loop cone is the cone of an inverse lattice loop. 

Proof . We define Then the assertion is proven by Lemma 2.7. 

Let us consider now the extension £ of the cone We shall show that £ is 
uniquely determined up to isomorphism provided inverse lattice loops are con-
sidered. Furthermore we shall prove some other extension properties concerning 
congruence relations and order. 

2.14. P r o p o s i t i o n . £ is uniquely determined provided inverse extensions are 
considered. 

Proof . Let 3 denote an inverse lattice loop. Then by Lemma 1.16 we can 
infer ab~1 • cd~1=a(l\/b~1c) • (1Ab~1c)d and by the rules of lattice loop arithmetic 
we get 1 Ma~1b—a*b since a( lVa - 1 £>)=aVi , an<3 1 Vba~'1=b:a by duality. 
Thus lAa~1b=(l\/b~1a)~1=(b*a)~1 and 1 A b a ' ^ ^ a - . b ) - 1 by duality, whence 

ab-1 = ( lVafc- 'XlAaft- 1 ) = (a :&)(&: a)"1. 
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But applying these formulas and 1.16 we obtain 

a b ^ - c d - 1 = a O V b - ^ M l A f c - 1 ^ " 1 = a ^ c M c * * » ) " ^ " 1 = 

= (c*b)-l-(a(p*c)-d-1) = (c*6)" 1 - (ad- l . ( f c*c) ) = 

= (c * 6 ) • ((a: d) (d r a ) • (ft * c)) = (a: rf) (6 * c) • (c * &) - 1 (t/: a ) - 1 = 

^ ( a r d X ^ c H i d i a X c * ^ ) ) - 1 . 

Hence the function (a|6)—afi-1 is an isomorphism of 2 and 3 if the cone G is 
isomorphic to the cone of 3 . 

We now turn to elementary algebraic properties like associativity, commutativity, 
etc., the first result of this type being nearly obvious: 

2.15. Lemma. If<i is commutative then 2 is commutative, too. 

Proof . If £ is commutative then x:y is equal to y*x which yields 
(a\b)°(c\d) = ((a:d)(b*c)\(d:a)(.c*b)) = 

= ((b * c) (d * c)|(c * b) (a # d)) = (c\d)o(a\b). 

A loop £ is called monassociative if every a£L generates a subsemigroup of 
(L, •). A loop is called power-associative if every a£L generates a subgroup of 
(L, 

2.16. Lemma. Jf(£ is monassociative then 2 is power-associative. 

Proof . By Lemma 1.3 we get (a\b)n=(cf\bn) (w(EN) and by the inverse prop-
erty we have (fl|6)-"=((fl|6)_1)". 

2.17. Lemma. //"(£ is associative then 2 is associative, too. 

Proof . We show 

((a|l)o(c|d))o(l|r) = (a|l)o((c|d)o(l|»)), 

((m°(c\d))o(l\v) = (l|6)o((c|d)o(l|®)), 

(ty|6)°(c|d))o(«i|l) = (I|ft)o((c|iOo(«|l)). 

(Observe that line 3 can be considered as a dual of line 1, since putting a-b:=ba 
we get a dual divisibility semiloop with (a\b)*(c\d)={c\d)o(a\b). Hence line 3 
results from line 1 for the dual structure.) 

Equivalently 

((a:d)c:v\(v:(a:d)c) (d :a)) = ((a:(v:c)d)(c:v)\(v:c)d:a), 

((b*c):v\(v:(b*c))d(c*b)) = (b*(c:v)\(v:c)d((c:v)*b)), . -
and 

((b*c)(d(c*6)*«) |«*i /(c*&)) = {b*c(d*u)\(u*d)(c(d*u)*b)). 
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But lines 1 and 3 follow from Lemma 1.35 and its duals, and the left components 
of the second equation are equal because of 1.35, too. So it remains to show 

(v:(b*c))d(c*b)*(v:c)d((c:v)%:b) = 1, . 

(u:(b * c)) d(c*b):(v:c)d ((c :v)*b) = 1. 

Now, the second equation is the right-left dual of the first one. Therefore it suffices 
to settle the first case. Here we obtain: 

(v:(b*c))d(c*b)*(v:c)d((c:v)*b) = 

= d(c*b)*(((v:c)*(v:(b* c))) *d((c:v)* b)) — 

= d(c*b)*(((c:v)*(c:(b*c)))*d((c:v)*b)) = 

= d(c*b)*d(((c:r)*(c:(b#c)))#((c:t;)*&)) = 

= (c #(((c A fc) *(c: u)) *((c A b) * b)) = 

= (c*fe)*(((cAfe)*(c:u))#(c*b)) = 1. 

The second, third, and fourth equalities follow from 1.35, 1.32 and 1.19, 1.35, 
respectively. Hence the proof is completed by 

((a\b)o(c\d))o(u\v) = (((fl|l)o((l|fc)o(c|d)))o(M|l))o(l|i;) = 
= ((a|l)o(((l|b)o(C|d))o(H|l)))o(l|t;) = 
= (a|l)o((((l |b)o(c|d))o(«|l))o(l |y)) = 
= (a| l)o (((11 b)o ((c|d)o (m| l)))o (11 v)) = 
= (fl | l)b((l | i)o(((c|d)o(«|l))o(l |B))) = (a|fc)o((c|d)o(M|„)). 

We continue our investigation by two further results concerning the order 
relation. 

2.18. Lemma. If £ is totally ordered then £ is totally ordered, too. 

Proof . a^b-*(a\b)=(l\b) and a^b-*(a\b)—(a\\). Furthermore we get (a| 1) s 
s ( l | 6 ) for all a,b<iC. 

2.19. Lemma. If £ is completely ordered then £ is completely ordered, too, 

Proof . Apply Lemma 1.37. 

Finally we consider congruences. Here we can show 

2.20. P r o p o s i t i o n . The congruences of (C, • , * , :) are uniquely extended to Si. 

Proof . Let = be a congruence of (C, •, *, :). We define (a\b)={c\d) iff 
a = c & b=d. This provides a congruence on fl as is easily checked by the reader. 
On the other hand for any extension Q of = from (C, • , * , : ) to £ we get 
(a\b)Q(c\d)+*ad=bc which implies a=c & b=d because of Lemma 1.3. 
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3. The chain condition 

Obviously a divisibility semiloop satisfies the descending chain condition for 
any [a, b) iff it satisfies the ascending chain condition for any (a, b]. Hence we 
may speak of models with chain condition (C.C.). Suppose in this section that © 
has the C.C.-property. Then every positive element a is a product of atoms since 
otherwise there would be a minimal one to fail, a contradiction. Furthermore for 
every a=»l and arbitrary atom p there exists a maximal number p(a) such that 
pPW^a. Finally for any pair of different atoms p, q we get pm ]_q" (m, nÇN) because 
of 1.3, and thereby pm • qn=pmVq". This provides a uniquely determined prime 
factorization for any positive a£G (see f.i. [16]). 

The purpose of this paragraph is to show that C.C. implies commutativity 
and associativity. This is nearly obvious for C + and by duality also for C~ (con-
sult 1.29 and the remark above). But the general case requires some additional 
calculation. 

3.1. Lemma. Let q be the right inverse of q and let p, q be two atoms. Then 
every pm commutes with every qn. 

Proof . It suffices to prove />p = l— p"b-pm=l, because of 1.14, 1.30. But this 
is shown by induction since 1.28 implies pmp •ppm=pm(pp-pm). 

3.2. Lemma. If © satisfies C.C. then © is associative and commutative. 

Proof . By 3.1 and the distributivity laws we get a+ • b~ =b~ • a+ whence 
a+ -b—a+b+ -b~=b~ -b+a+—b-a+ and dually a-b~ =b~-a. Hence we obtain 
a-b=a~-a+b=ba+ -ar—ba. Furthermore we havè ab~ • c~ —a-b~c~. Thus we 
get ab • c={a+b+ • a~b~ • -c~)c+=c+(a+b+ •a~b~c~)=c+a+b+ •a~b~c~=a-bc. 

Summarizing the preceding remarks and results we get 

3.3. Theorem. A divisibility semiloop satisfies the chain condition for closed 
intervals [a, b] if and only if it is a direct sum of copies of (Z, + , min) and (№, + , min) 
respectively. 

4. Complete divisibility semiloops 

In this section we shall prove that power-associative complete divisibility semi-
loops are even associative and commutative. This was done for loops with the real 
line as underlying lattice by ACZÉL [1], and for totally ordered loops in general by 
HARTMAN [22]. 

4.1. De f in i t i on . © is called power-associative if any element a generates a 
subsemigroup and any pair a~, a* generates a subgroup of (G, •). 
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4.2. De f in i t i on . Extending the relation henceforth by uj_x we shall 
mean u+u*Ax+x* = l. Furthermore U1 will denote the set of all x satisfying 
u J_ x, where u is running through U. a 

It is easily checked by Lemma 1.16 and Lemma 1.31 that, U1^ is a multipli-
catively closed sublattice of G. 

4.3. Lemma. Let C^XG .̂ be a direct decomposition of (C+, A, V). Then 
is a direct decomposition of ©. 

Proof . We denote by G2 and C2 by G1. Then every element a is a product 
of type a2 where the indices indicate the components G l5 G2. To see this we con-
sider a~. There is a decomposition a*=a*a2 and we have a~a*^ 1 and a~a2^l 
whence there are elements a*1 and a2' with (a*1 • a*') -(a* •a*) = l. Hence a^'a*1 

is equal to a~ and by definition a*' and a2
l are contained in Gx and G2 respectively. 

But this yields 

a+a~ = afat • flfa?1 = af (a2+ • a?a?) = a}(a?-q}a?) = a} a?-eta? 

by means of 1.14, 1.17, 1.3, and, applying 1.14, 1.3, we obtain furthermore 

= h b z -* a f a t • a^a2 — b f b } • b^b2 — 

afa£ = b£b£ha^a2•= b^b2 a? = b?...a2 = 

since af a2 -a*a2 = l, which implies af a2 _L (a~ a~)*. 
Hence G may be considered as the cartesian product of Gx and G2. We now 

show that the operations • and A may be carried out pointwise. First of all we 
recall a1a2—a^a^ • a~ a2 which was stated above on the grounds of Lemma 1.14. 
This implies with respect to multiplication 

a • bxb2 = (a • bfbt) • bxb2 = (a • b^b?) • b2br = 

= (ab£ ' b£)bi • b2 — (ab? • bi)b£ • b2 •= abx • b2 = ab2•bx .. 

(in the third step 1.7 was applied), from which it follows that 

at a2 • bt b2 = («! a2 • bx) b2 = (ax bx • a2) b2 = ax bx • a2 b2. 

Recall now a^a2—ax\/a} and a~ a2 =ax Aa2 (1.8). One can infer: 

a1a2Ablb2 = (aiaiAbfb£)-(aia2Abibz) = 

= (atAbt)(.atAbt)-(arAbr)(a2Ab2) = 

= (a iAi 1
+ ) (arA6r) - (« iA6 1 +)(arA6r) = («iA61)-(a,A6a).. 

Thus out proof is complete. 

4.4. Lemma. Let © be complete and a^b & b^a. Then there is a direct 
decomposition © = ©1X©2 with a1sE1 &.a2^B2. 
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Proof. By Lemma 4.2 it suffices to verify the assertion for positive divisibility 
semiloops. In this case we define C!:=(a*b)x and C2'-=C^. Then Cx and C2 

are 1-disjoint and every c has a decomposition CjC2 with cx=Sup ( x | x s c & x i Q ) . 
(This idea seems to go back to RIESZ [33]. See also BIRKHOFF [4].) Observe: 
—Cx • (ciAy)—c1 • I. Furthermore this decomposition is unique and the operations 
may be carried out pointwise since af\b = l-*a-b=aNb. 

Now we are ready to prove: 

4.5. Theorem. A power-associative and complete divisibility semiloop 2 is asso-
ciative and commutative. But if a complete divisibility semiloop is only monassociative 
it need neither be associative nor commutative even though © should be a complete 
totally ordered loop. 

Proof. We shall verify our assertion by constructing a series of models and 
specializing the situation until ab-c^a-bc leads to a contradiction. 

By Lemma 4.3 we may start from a model ©x with ab-c*=a-bc for some 
triple a, b, c. Furthermore, by the same lemma, we may suppose that a, b and c 
are strictly positive or negative, and that {a, b, c} is totally ordered. We consider 
1 <t^d:=ab• c*a-bc and some 1. There exists a natural number n such that 
("Sx & since otherwise Sup (/"|M£N)=: Q would exist and satisfy Qt=Q, 
a contradiction. Hence in any case there exists a model (5X, with jc<?"+1 sat-
isfying a 5 - c < a - 5 c because of \-<x*f+1SaB-c*a -Be. 

Consequently we may suppose a model ©2 containing a triple u, v, w with 
uv • w^u-vw and l<ssuv'w*u-vw such that Z } f l (u, v, w} is totally or-
dered: Apply the method above successively to aVa*, bVb*, cVc*. None of these 
elements is equal to 1 and if for instance a is (strictly) negative, then according to 
(DSL 5) r:=IAa* is invertible whence we can continue the procedure with f sat-
isfying I < r s 2 . So in ©2 we have 1 <s^uv-w*u-vw~zs3 . But this implies that 
the proof is complete if we deduce 1 •cg*^xy-z*x-yz for some triple x, y, z in 
some model 

To this end we start w.l.o.g. from s"^u\fu*—:G<sn+1. This leads to 
1 < M * 5 " + 1 = : / < J and further to f(f*s)=s whence we get one of the three rela-
tions l-^pss or l < ( / A ( / * i ) ) 2 S J or f2^s & f_Lf*s. Obviously in the first 
two cases there is some fx in G2 satisfying the inequality \<f\^s in ©2. We now 
show that also the third case provides some model of this type. Indeed, f Lf*s 
implies s-^p since f ( f * s ) s f f would yield 1-=/*j</ . Hence we get 
and thereby a direct decomposition ©2=©2X<3>2 with / 2 S s in ©2 and 
in ©2- Suppose now .that J is equal to T. Then / is different from T and hence ©2 is 
a model s a t i s f y i n g / * S = / * S A / 2 = T whence we get f—s and thereby Q=s". Hence 
continuing the procedure with v or w in the role of u (above), in any case we arrive 
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at a direct factor ©' of © with Ycf'^^s'^u'v'•w'*u' -v'w'. Therefore starting 
from this new situation with / ' in the role of s we finally do obtain a model § with 
a triple x, y, z satisfying the inequality l<g* ^xy • z*x • yz, a contradiction. 

Hence © is associative and in the same manner one verifies that © is also com-
mutative. 

It remains to show that there are complete totally ordered loops which are 
neither associative nor commutative. To this end we consider the real line with 
respect to some derived operations: 

(i) Wedefine aob:—a+b except for the case asO^b, whereweput aob:—a+ 
+6/2 if a+6/2SO & aob:=2a+b otherwise. This provides a monassociative 
but non-associative and non-commutative complete and totally ordered loop. 
Observe: 

( ( - l )o2)o( -1 ) = - 1 * - 1 / 2 = ( - l )o(2o(-1)) . 

(ii) Wedefine aob\—a+b, except for the case a,bs 0, whereweput aob:=a— 
—ab+b [22]. This provides a commutative monassociative but non-associative 
complete and totally ordered loop. Observe: 

( l o ( - l ) ) o ( - l ) = - 1 JL —2 = lo((— l)o(— 1)). 

5. Completion 

The goal of this section is a characterization of divisibility semiloops admitting 
a complete extension. Nearly obviously such models have to satisfy for lower bounded 
subsets A the implications 

(i) x, y\,A &xVl^V - x = y, 
(ii) x, y\rA & A/x\A/y-~ x = y, 

(iii) A\,x, y&A\xtA\y -*x = y, 
(iv) A\rx, y & x/A\y/A — x - y, 

where and |r stand for left-divisor and right-divisor respectively; and | and t stand 
for coinitial and cofinal respectively. For instance (i) follows from 

A A=A X\A = A y\A =y\AA. 
Thus a characterization of models with complete extensions is given provided 

that (i) through (iv) guarantee such an extension. In order to verify this we start 
by giving some symbols and notions. Henceforth (A) will denote the set of all upper 
bounds of A and dually [̂ 4] will stand for the set of all lower bounds of A. Further-
more by p we shall mean a multiplication polynomial in one variable, i.e. a poly-
nomial of type ...at({ai(xad)a^.... (Recall that © has a unit.) Consequently p(A) 
will denote the set of all p (a) (a£A). 
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As an immediate consequence of (DSL 5) we notice that p~1(v) exists if there 
is an a such that v^p(a). 

5.1. D e f i n i t i o n . À subset A of G is called a t-ideal if A contains all elements 
c with v^p(A)—v^p(c). 

It is easily checked that /-ideals are lattice ideals. Furthermore the reader straight-
forwardly verifies that G is a /-ideal and that the intersection of all /-ideals con-
taining A is a /-ideal, too. This yields that there is a smallest /-ideal .4 containing 
AT±Q and moreover the definition Â-E—ÂB provides a unique multiplication 
since A=C & B=D implies v^p(AB)**v^p(CD). Henceforth we shall denote 
Â also by A. 

Let us suppose now that the set X of elements x with A x £ B is not empty. 
Then X=: A*B. is a /-ideal which follows from the following implication: 

v S p(X) — v ^ p(c) implies w £ ç(B) — w £ g (AX) — w S q(Ac), 

which implies A c ^ B . 

5.2. Lemma. <5 satisfies A =[(^4)]. 

Proof . Obviously A is contained in Furthermore any c£[(A)] satisfies 
the implication v^p(A)—p~1(v)^A-»p~1(v)^c->-v^p(c) whence each c of [(A)] 
is contained in A. 

5.3. Lemma. a:=a is equal to the set of all x below a. Hence © is embedded 
in the structure formed by the t-ideals with respect to • and inclusion. 

Proof . Left to the reader. 

5.4. Lemma. © satisfies A - X ^ b — A - ( A * b ) = b . 

Proof . By assumption A*b exists. We suppose A - ( A * b ) ^ c ë ô . Then there 
exists an element v with A • v^c^b, whence there is also an element W with ASM & 
us=b. But for any such u we get: 

us = b — As S b — As S c — A S. c/s = uc |( b. 

Hence for any u with A^u we find an uc with A^uc such that us=b implies 
ucs=c. But this means that the set U of all u with ASM & u\tb satisfies U\b\ U\c 
which yields c=b. 

5.5. Lemma. © satisfies A ^ B - A - ( A * B ) = B . 

Proof . Consider an arbitrary element b£B. Then the /-ideal Ab generated 
by all a/\b (a£A) satisfies Ab • X 6 = b for X 4 =A 6 *b. We consider the /-ideal X 
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generated by all Xb. Then A X 3 B is obvious and moreover for any pair a, x 
(a£A, x(iXb) we can infer 

(af\b)x S i - x ^ a*b a(a*b) = aV£>€B, 

whence A • X is also contained in B. 

5.6. Lemma, (i), ..., ( i v ) = » a - X ^ B - 3 Z ; a - Z = B . 

Proof . By 5.5 there is a /-ideal Y with (a - X) • Y=B, and for every pair x, y 
(x£X, j £ Y ) there exists an element z with (ax)y^az=b£B since ax£B & (ax)y£B 
implies (ax)(lVj)6B. Hence the /-ideal Z generated by these elements z satisfies 
a • Z = B . 

5.7. Lemma, (i), ..., ( i v ) = > s S i 4 & A - X = A - Y - X = Y . 

Proof. Suppose PSX . It follows A• u ^ A • j for all y£Y, and thereby 
A-(uVj>) = A - v = : B (5.2). But this yields B/v=B/(y\/v) whence we get v=yVv. 
It follows v ^ Y and thereby X 2 Y . Thus the proof is complete by duality. 

5.8. Lemma, (i), . . . , ( iv )^a-AX, = A(a-X,). 

Proof. By 5.6 there is a /-ideal Z with a • 2* = /\(a • X;) (/£/). Furthermore by 
5.2 the /-ideal generated by all a\/b (a£ A, ¿£B) satisfies {a\/b | a£A, ¿£B} = {A, B}. 
Consequently for upper bounded /-ideals A the following implication holds: A • X 
QA- Y — X g Y . Thus Z is contained in every Xf, which implies the assertion. 

Once more we emphasize that we consider a proposition to be proven once its 
dual has been verified. 

Up to now we have been concerned with /-ideals. But obviously there is a dual 
notion, called u-ideal, which is defined by writing (in 5.1) the symbol s instead 
of the symbol s . We shall denote u-ideals by A or A. The proofs, however, given 
here so far do not carry over in any case since the structure under consideration 
is not S/S-dual . Nevertheless the reader will easily verify that the part up to 
5.2 (excluded) can straightforwardly be dualized. Thus there is a product AoB —AB 
and a right-quotient A*B:={x |AxQB} (a left-quotient B:A:= {x|xA^B}). 

We now return to the /-ideal-extension of ©. We wish to show that (DSL 5) 
is valid. To this end we denote the principal /-ideal t also by /, the /-ideals in general by 
lower case greek letters. Furthermore we shall write (a) for {v\v£G & n^ot} and 
define [a] dually. Thus we consider an upper-continuous cut extension I of © sat-
isfying: 

xoc ^ p - P = xx&ocx S P p = Xx arid aAft - A(aPi)-

5.9. Lemma., There are no other (lower bounded) v-ideals of © than the subsets 
(a) of I , which means in particular that A=([v4]). 
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Proof. Consider a lower bounded A with /\A=a. Then AQ(a) is valid 
since I is a cut extension, and (a )^A follows from t^p(A)—tSp(a) (5.8)—/ё 
sp(c) (сёa) . 

5.10. Lemma. If В is contained in A then A is a left (right) divisor ofB. 

Proof . Consider a fixed b£B. Then, for C=AAb, A is equal to C. Let 
Xb be the set of all x satisfying АхшЬ and suppose Ьшс^АХь. We abbreviate 
Inf (A) by a. It follows Ax^b^ax^b—ax^c. But according to our previous 
remark there are elements /?, у such that afí=b & ay=c , whence x^/?—a.vsé— 
—ctx^c—x^y. This yields fi=y from which results b=c. Therefore any d with 
dsAXb satisfies d4b=b. Hence the ideal X generated by all Xb satisfies A o X = B . 

So far we have shown that the u-ideals form a lower continuous extension of 
© with respect to s := 3 . We shall now show that Z and the u-ideal extension are 
isomorphic. Doing this we shall implicitly verify, too, that there is a complete exten-
sion satisfying also axiom (DSL 5) which results from A BQC->-A BQc ( с й С ) 
(cf. 5.4) by lower continuity. 

5.11. Lemma. I satisfies Д(а)о Д(/0 = Л(а/0-

Proof . Define ао/?=у if (а)о(/?)=(у). Then ао d anda d are equal because 
of Lemma 5.8. Suppose now а a n d s^ab for all a, b£(a)X(P) and c=aoy. 
Then а о £ - ( = а с , ё а / ? — f o r all whence we get by assumption i á a o c ¡ 
and hereby furthermore s^aoy—c. 

5.12. Propos i t ion . A divisibility semiloop satisfying (i), . . . , (iv) has a cut 
extension isomorphic to the lower bounded v-ideal extension if S := as well as 
to the upper bounded t-ideal extension if S := с. 

Proof . By 5.11 [(Л)]—(A) is a homomorphism, and by definition this mapping 
is bijective. 

Thus summarizing we can state: 

5.13. Theorem. A divisibility semiloop admits a complete (cut-) extension if 
and only if it satisfies the conditions (i) through (iv). 

Let now © be a divisibility semiloop satisfying (i) through (iv), and let Z be its 
cut extension in the sense of above. Then we can show in addition: 

5.14. Corollary. If © is power-associative, then Z is power-associative, too. 

Proof . If с is equal to a product built by factors a¡ ( l S / ё и ) satisfying a,Sc( 
we can infer c s ( a i V - - V a n ) n - a " -
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5.15. Corollary. If & is a lattice loop then I is a lattice loop, too. If in addi-
tion © is inverse then S is inverse, too. 

Proof, asa & bsfi — tx(a\b)^P, and starting from a = \ / a t (i£l, at£G) 
we get: 

(bajar1 = b -ybathar1 = (ft^a"1 = b, 

from which the general inverse property follows by upper continuity. 
5.16. Corollary. A lattice group admits a complete extension if and only if it is 

archimedean. 
Proof. Obviously the condition is necessary. On the other hand, if © is a 

lattice group, (i) through (iv) are satisfied if Ax ¡A—x=1 and its left dual are valid. 
But this is a consequence of the archimedean property, since 

A t U S s - ^ - ' U l ^ - r ' S j - ' f l S x " ( a e ^ , « e N ) -

- (x*)B =5 s-1« &(x+)B S s~xa, 

by application of Lemma 1.3. Hence S is a complete lattice group since associativity 
follows from AoB =AB. 

6. Congruences 

In this section we are interested in cancellative congruences of an underlying 
divisibility semiloop ©. The reader will easily remember that there was given a 
first result already in Section 4, namely the direct decomposition extension result 
of Lemma 4.2. The main purpose of this section is to analyze under what conditions 
© is representable, that is, is a subdirect product of totally ordered factors. 

Observe that cancellative congruences are also *, : congruences. 

6.1. Lemma. If TJ is the positive part of the class 1= of some cancellative 
congruence then U is a multiplicatively closed convex subset satisfying 

(i) aU = Ua, (ii) ab-U = a-bU, (iii) U• ab = Ua• b. 

Proof. u£U implies a=au=va-»v=1, and 

ab = ab-u = a -bv -+ bv = bl — v = 1, ab = a-bu = ab-v -+...— v = 1, 

whence (i) through (iii) are satisfied, the rest being obvious. 

Every multiplicatively closed convex positive subset of G containing 1 and 
satisfying (i) through (iii) will be called a kernel. 
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6.2. Lemma. If U is a kernel then x=y (U) i f f x^yu & y^xv for some 
u, v(i U defines a cancellative congruence such that the positive part of 1 = coincides 
with U. 

Proof . Straightforward by definition. 

Thus we getas a first result. 

6.3. Propos i t ion . In every divisibility semiloop © the cancellative congruence 
relations = are uniquely represented by the kernels U via the following defihi tion: 
a=b ( U ) iff a^bu & bsau. 

Hint. a=b-~a^b(a*b\Jb*a) & bsa(a*b\/b*a) (a*b, b*a= 1). 

EVANS and HARTMAN [17] gave a characterization of lattice loops admitting a 
subdirect decomposition into totally ordered ones. This result can be extended to 
divisibility semiloops. To this end we consider two orthogonal elements a, b. By 
(DSL 5) they obviously satisfy the equivalence 

a A (bx • y)/xy = 1 — a • xyA bx • y = xy ((a • xy)!y)[xA b = 1. 
Hence requiring the first equality means requiring: « 1 « implies u and (vx• y)/xy 
are orthogonal, too. And the validity of the third equality means: if u, v are orthogonal 
then u and ((v • xy)/y)jx are orthogonal, too. So, if uAv = l and U=(u±)+, we 
can deduce from the validity of each of these equalities 

(Ux• y)/xy Q U, whence Ux- y Q U• xy, 
and 

(((U-xy)ly)/x) c u, whence U-xy g Ux-y. 

Similarly we get Ux=xU from uAv = l—uA(xv)/x = l. 
6.4. Theorem. A divisibility semiloop © is representable if and only if it sat-

isfies the conditions 
(i) (a * b) • xy A (b * a) x • y = xy, 

(ii) xy• (a*b)Ax-y(b*a) = xy, and 
(iii) x-(a#6)A(ft*a)-x = x. 

Proof . Obviously a and b are orthogonal iff a*b=b & b*a=a. Hence the 
conditions above require that the positive part of any ux forms a kernel. Suppose 
now that U is maximal in the set of kernels M$c. Then ®/U=: § is totally ordered 
since otherwise § would contain a pair p, q with p*q^l 9iq*p. But then 
U1:=((p*q)x)+ and U2:=(UX)+ would be two kernels satisfying U1f)U2 = { 1}, 
although Ux and U2 differ from {1} by construction. Therefore the conditions under 
consideration are sufficient. 

On the other hand our conditions are necessary as is easily checked by the 
reader. 
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By 6.4. the subdirect products of totally ordered divisibility semiloops are 
characterized in a classical manner. But it is obvious that this method relies strongly 
on (DSL 5) and a*b ±b*a. Hence, in order to find a method working also in more 
general cases, we have to leave orthogonality conditions and to look for • 
conditions. This will be done in the remainder of this section. 

Nearly immediately we get: 

6.5. Theorem. A divisibility semiloop © is representable if and only if it satisfies 
the condition 

(0) p(a)Aq{b) ^ p(b)Vq(a) 

for any pair p, q of multiplication polynomials. 

Proof . Obviously condition (0) is necessary. So let condition (0) be satisfied. 
Then putting ( c + x - y ) / x y : = c + 0 we infer for orthogonal elements a, b, 

aAbO s bMad aAbd = (aA60)A(&Va0) = 

= (aAb6Ab)V(aAbOAa6) = (lA60)V(aA 1) = 1, 

whence (i) is valid. And in an analogous manner one can deduce (ii) and (iii). 

We now show that the condition (0) provides a key for solving the problems 
stated by Fuchs and Evans & Hartman. To this end we shall leave the group oriented 
standpoint and exploit the lattice-order of the underlying structure. Moreover for 
the sake of economy we shall start more generally. 

6.6. D e f i n i t i o n . Let Qt:=(A, A, V,/ () be an algebra such that A and V 
provide a lattice order and the f are of arity n,. Then SI is called a lattice-ordered 
algebra if each operation is isotone at each place. If each operation even distributes 
over meet and join at each place we call 91 a distributive lattice-ordered algebra. 

Examples of lattice-ordered algebras are the lattice groupoids satisfying the • /A-
or the -/V-distributivity laws. Hence lattice quasigroups and thereby lattice loops 
and lattice groups are lattice-ordered algebras in the above sense. However, there 
remains an inaccuracy. For example, given a lattice group, what are the funda-
mental operations? Obviously - 1 is antitone. On the other hand lattice quasigroups 
satisfy 

x\(a A b) = x\a A x\b & (a A b)/x = a/xA b/x 
and 

x\(a\/b) = x\aVx\b & (aV b)/x = a / x V b/x. 

So we may regard lattice quasigroups, lattice loops, and lattice groups as lattice-
ordered algebras by defining lx(a):=x\a and rx(a):=a/x and considering © as 
an algebra (G, A, V, lx, rx) (x£G). 

4 
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6.7. De f in i t i on . Let 91 be a lattice-ordered algebra. A term is called linearly 
composed if it is a variable or if it is of the special type f ( x t , ..., q(x, yt,..., ym), ..., x„) 
where / is a fundamental operation and q(x, ylt ..., ym) is (already) linearly com-
posed. 

6.7 provides a set of terms with a "starting variable" x such that in the case 
of a distributive lattice-ordered algebra the arising polynomial functions p(x) of type 
p(x, clt ..., cn) (c^A) satisfy the distributivity laws p(aAb)=p(a)Ap(b) and 
p(aVb)=p(a)Vp(b). To emphasize that p(x) stems from a term built up without 
A and V we write also p(x). Now we are ready to show 

6.8. Theorem. A lattice-ordered algebra 91 is representable i f f it is distributive 
and satisfies 

(0) p(a)Aq(b)Sp(b)Vq(.a), 

which can be unified to the condition 
(0) p(a)Aq(b) == p(f>m(a). 

Proof. Obviously (0) is necessary and a fortiori (0) implies (0). Moreover (0) 
yields f(...aAa...)Af(...bAb...)sf(...aAb...)Vf(...bAa...), whence/distributes over 
meet, and join which is shown similarly. The reader should notice that (0) follows 
nearly immediately from (0) if © is distributive. Hint: write p and q as meets of joins 
of ~-functions. 

We now prove that distributivity together with (0) provides a representation. 
To this end we may start from r < s in order to construct a totally ordered homo-
morphic image A satisfying r<s . By Zorn's Lemma, we see that there is a maximal 
lattice ideal M, containing r but avoiding s. Furthermore it is well known that 
such an M is A-prime (aAb£M-~a(iMv b£M), since (A, A, V) is distributive. 
(Otherwise there would be a pair u, v with uAvdM & u, v^M which would lead to 
U:={x\xAv£M}, V:={y\uAy£MWu£U)} with b t u n V Q M . ) We define 

a = b :<=>p(a)£M +~p(b)£M. 

(Obviously we could define this congruence relation also by V:—A—M and it is 
easily checked by the reader that there is a dual proof w.r.t. this prime filter V.) 
This is a congruence as is easily shown in the groupoid case and analogously proven 
in the general case. Furthermore we obtain in § ! : = 9 l / = 

u S. v op(v)£M — p(u)£M 
since 

u ^ t; =>• u = uAv =>p(u)£M +*p(u)Ap(v)£M => 

=>p(v)£M -+p(uAv)£M -» p(u)£M 
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and 
p(v)£M - p(u)£M =>p(uAv)£M - p(u)£MVp(v)£M 

=>p(uhv)£M — =>U S D. 
Hence a and 5 are incomparable if and only if there are linearly composed polynomial 
functions p(x), q(x) satisfying 

p(a)$M, p(b)£M, q(a)£M, №)iM. ' 

But this is excluded by (0), since otherwise we could infer 

p(a)hq(b)iM & p(b)V q(a)£M, 

contradicting p(a)f\q{b)^p(b)\lq(a). Hence Ul is totally ordered. 

Theorem 6.8 yields a series of special results. 

6.9. Corollary. Art abelian lattice monoid 931 is representable if and only if 
the underlying lattice is distributive and if furthermore multiplication distributes over 
meet and join [30]. 

Proof . Since 501 is an abelian monoid we may confine ourselves to the proof 
of xaAyb^xbVya which follows by 

(xaAyb)A(xby ya) = (xaAybAxb)V(xaAybAya) = 

= (xaA(yAx)b)\/((xAy)aAyb) = xaA(xa\/ yb)A(xAy)(a\/b)A yb = xaAyb. 

(Obviously, all we need is a common unit for any pair a, b.) 

6.10. Corollary. A lattice semigroup <Z=(S, A, V) is representable if and 
only if the lattice (S, A, V) is distributive, multiplication distributes over meet and 
join and in addition £ satisfies the inclusion 

(SO) xayA ubv ^ xby\l uav, 

for each quadruple x, y, u, v taken from S1. 

Proof . The laws under consideration guarantee p(a)Aq(b)Sp(b)\/q(a) as is 
easily seen. 

6.11. Corollary. A lattice loop £ = ( L , •, A, V) is representable if and only 
if £ satisfies the equations 

(EH) x(,a*b)A(b*a)x = x, (a*b)• xyA(b*a)x• y = xy, 

xy-(a*b)Ax-y(a*b) = xy [17]. 

Proof. It was already shown in Section 1 that multiplication and join dis-
tribute over meet and join. Furthermore the conditions are necessary. So it remains 

3* 
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to show that they are sufficient. Obviously this was done already by 6.4. But we 
wish to give a direct proof of (EH)—(0). 

To this end we consider £ as a lattice-ordered algebra (L, •, A, V, ls, r j (s£L). 
We have to show 

p{a)hq(b) = p(b)V q(a). 

Here, by the rules of loop arithmetic we may suppose p to be the identity mapping 
and furthermore we can transform the general problem to the proof of 

(a:b)uA(b:a)9 S (b:a)uV(a:b)8 

where 9 is an inner mapping and u is equal to some (/-(l))r. So we may start from 
a±b,p(x)=xu and q(y)=y9, which leads to 

auAb9 ~~ xaxu:xa ^ a&.xu u, 

auAb9 = (xaAxaxu)(xuV 1) IV u ^ a9\Jbu 

since a±b9 and aO±_b. (Recall: if a±b implies a±b9 for the generating 
inner mappings 9 then a JL b implies a±b0 for all inner mappings 0.) 

On the grounds of the preceding theorem one can start from (EH) and prove the 
subdirect decomposition theorem for lattice loops by deducing (0) and applying 
Theorem 6.8. But one has to notice that the proof given above applies the inner 
mapping theorem which tells that the group of inner mappings is generated by 
((* • xy)/y)jx, xy\(x • y*) and (x • *)/x, see for instance [13]. 

Furthermore, applying 4.3 (and 1.29) we get as a special result 

6.12. Corol lary. Any complete divisibility semiloop (L, •, 1) is repre-
sentable, and if moreover the chain condition for closed intervals is satisfied, (L, 1) 
is a direct sum of atomic chains (recall 3.3). 

Lattice quasigroups or lattice rings are not lattice-ordered algebras in the sense 
of Definition 6.6. But sometimes a given structure can be turned to a lattice-ordered 
algebra as was shown for instance for lattice quasigroups by splitting right and left 
division into a set of operators. This idea might be fruitful also in other situations. 
For example, consider a lattice semigroup Then by splitting its multiplication 
into operators mx with mx(a):—xa any left congruence of S becomes a congruence 
of (S, A, V, mx) (x£S) and vice versa any congruence of (S, A, V, mx) (x£S) may 
be considered as a left congruence of <5. This enables us to develop also results 
based on left congruences, the most important being: 

6.13. Corol lary. Any distributive lattice monoid <5 is a lattice monoid of chain 
endomorphisms [9]. 
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Proof . Consider S as a lattice-ordered algebra (S, A, V, mx). This structure 
satisfies condition (0) which is shown by copying the proof of 6.9. Hence there 
are enough totally ordered residue systems which can be added to a chain C of 
left classes of S on which the elements of S act from the left. Thus S can be embedded 
into the lattice semigroup of all order endomorphisms of C. 

As an immediate consequence of 6.13 we get the celebrated theorem of HOL-
LAND [25]: 

6.14. Corol lary. Any lattice group is a lattice group of chain automorphisms [25]. 

We now turn to lattice rings. A ring is called partially ordered with respect to 
S if it satisfies 

a S b — x+a S x+b and 0 s a, b -» 0 ^ ab. 

A partially ordered ring is called a lattice ring if ^ defines a lattice order. Obviously 
multiplication is not isotone. On the other hand multiplication is completely deter-
mined once it is defined on the positive cone. Hence any homomorphic image is 
completely determined by the image of the cone. So it makes sense to consider a 
lattice ring 9? as an algebra (R, + , A, V, rx, lx) where rx(a):=ax+ and lx(a):=x+a. 
Then 5R is a lattice-ordered algebra but 91 need not be distributive since lx and rx 

need not distribute over A and V. (Consider for instance the ring of 2x2-matrices 
over the real field with respect to A^B if aik^blk, 1 1 To yield 
this we look for a further condition. Here we succeed by considering the positive 
cone of 9t. 

6.15. Lemma. Let 9t be a lattice ring. Then (R, +, A, V, lx, rx) is a dis-
tributive lattice-ordered algebra in the above sense i f f it satisfies 

(L) c+(a*b)Ac+(&*a) = 0 = (a*b)c+A(6*a )c + . 

Proof . Suppose that (L) is valid and that c is positive. Then we obtain, for 
example: 

caAcb = c((aAb)+a*b)Ac((aAb)+b*a) = 

= (c (a A c (a * b))A (c(aAb)+c(b* a)) = 

= c(aAb)+(c(a*b)Ac(b*a)) = c(aAb) and thereby 

caVcb = (ca+cb)—(caAcb) = c(a + b)-c(aAb) = 

= c((a + b)-(aAb)) = c(aVb). 
Hence, applying Theorem 6.8 we get: 

6.16. Corollary. A lattice ring is a function ring (is representable) i f f it satisfies 
the conditions (L) and (0), briefly (L, 0). 
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Corollary 6.16 characterizes the function ring along the lines of this paper. 
This was done by a different condition in a basic paper published by BIRKHOFF and 
PIERCE [6], and by a further condition in FUCHS [19] where also the equivalence of 
these two conditions is proved. To this equivalence proof we now add a further one 
by showing 

(BP) a±b-*c+a±b & ac+±b 

(Birkhoff—Pierce) and condition (L, 0) to be equivalent. 

6.17. Remark. There is a short direct proof of (BP)«-(L, 0). 

Proof . We shall treat the associative case. However, the reader should notice 
that associativity is by no means essential, only pleasant for the demonstration. 

Let 9i satisfy (BP). Then (L) is obvious. Furthermore it is easy to see that the 
polynomials in (0) are of type c*xc£ Hence, after some simple calculation (0) 
is reduced to 

(ciflCa + ^AdiMa S (c1bc2 + u)\/d1ad2 

for positive elements cx,c2,dx,d2 and orthogonal pairs a,b. But because of (BP) 
we may omit cxacz on the left side (apply Lemma 1.3). Hence condition (0) is sat-
isfied, too. 

Let now 91 satisfy (L, 0). Then (BP) follows by 

c+aAb ^ c+bVa c+aAb = (c+aAbAc+b)V(c+aAbAa) = 

= (c+(a Ab) A fc)V(c+a AO) = 0. 

We turn to complementary semigroups (S, • , * , :). Complementary semi-
groups were introduced in [7] as monoids satisfying aS=Sa in which for any 
pair a, b there exist uniquely determined elements a*b and b:a such that b\axo 
oa*b\x and b\xaob:a\x. Complementary semigroups are partially ordered with 
respect to a^b<=>: a\b, and a^b is equivalent to b*a=1 and to a:b = 1 as 
well. Furthermore (S, S ) forms a semilattice under aVb:=a(a*b)=(b:a)a. In 
addition the following distributivity laws hold: 

a(ftVc) = ab\/ac & (aVb)c = acVbc 
and 

a*(i>Vc) = a*fcVa*c & (aVh):c = a:cVb:c. 

Therefore, defining operators c* and c'x by c*(a)=x*a and c:
x(a)= a:x, any 

complementary semigroup may be considered as a distributive V-semilattice-ordered 
algebra (5, •, cx , c'x, V). However, we have to show that the congruences of 
(S, - ,c*,c'x) are congruences of (S, • , * , : ) as well. Here we succeed by the 
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formula a*(b:c)=(a*b):c which results from 

x £ a*(b:c) -«-«• ax £ b.c axe S i i ^ i S (a*t ) :c . 

To see this, let = be a congruence of (5, •, c*, c'x). Then we have 

a = b a*b = 1 = fc*a (-<- b:a = 1 = a:b) — a = a(a*b) = b(b*a) = b, 

and thereby 

a = b — a * b = 1 — (a*c):(6*c) = a*(c:(ft*c)) = 1. 

Hence, by duality we get (£>*c):(a*c) = l which leads to a*c=b*c. . 
Special complementary semigroups are the lattice group cones under a*b:= IV 

\/a~lb and b\a:=lMba~1 on the one hand, and the brouwerian semilattices on 
the other hand. 

Complementary semigroups need not be A-closed, but products of totally 
ordered complementary semigroups necessarily satisfy a*b±b*a which is equiv-
alent to a:b±b:a and also to a:(b*a)\/b:(a*b)=aAb. Moreover, in this case 
further distributivity laws hold, namely: 

a(bAc) — abAac & (aAfc)c = acAbc, 

a#(i>Ac) — a*f>Aa*c & (aAb):c = a:cAb:c, 
and 

aA(&Vc) = (aAfc)V(aAc). 

Therefore complementary semigroups with a representation may be regarded as 
distributive lattice-ordered algebras (S, •, c*, c^), and we get as an immediate 
consequence 

6.18. Corollary. A complementary semigroup is representable if and only if the 
following implication holds: 

(OV) x^p(a),q(b)~x^p(b)Vq(a)-

Proof. xs.a*b, b*a-+x^a*a\/b*b = 1. 

This corollary provides as a further characterization 

6.18'. Corollary. A complementary semigroup is representable if and only if it 
satisfies the equation 

(0C) (a*b)*xV(c*(b*a)c\/c(b*a,):c)*x — X [8]. 

Proof, (a) Axiom (0V) implies nearly immediately (0X) c*(a*b)c±b*aj_ 
J_c{a*b):c. Hence (0C) can be inferred from 

(0C') (a*bA(c*(b*a)c\/c(b*a):c))*x = x. 
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(b) Axiom (C) implies a*b±b*a whence (S , s ) is A-closed, and we ob-
serve that 

(i) x*yz ^ (x*y)z and zy:x s z(y:x) 
holds in any case, that 

(ii) caL = a x c 
holds according to (O1), and that 

(iii) any p(a) can be extended to some ...jc6((*g*(x1fl)x2:*4)-" • 
Hence we may start from a pair/»(a), q{b) with a±b. But, applying (i) and (ii) 
again and again this leads to p(a)Aq(b)Sa*p(l)Ab*q(l) with a*±b*, hence 

p(a)Aq(b) = xaxp = xbxq: xa =2 a*, xp 7sp( 1), xb S b*, xq =§ i ( l ) , 

which yields 

p(a)Aq(b) = (xaAxb)(xpVxq) =S¿(1)V£(I) S p ( b ) V q ( a ) . 

The method of proof shows that a lattice group is already representable if 
a L c ^ c a L . To see this look at (SO) in 6.10. Furthermore we see that (0C) is equiv-
alent to {a*c)*cLb & c:(c:a)±b, since a*bx^(a*b)((b*a)*x) & cb:aS 

v As an immediate consequence we get 

6.19. Corol lary . An abelian complementary semigroup is representable if and 
only if it satisfies a*b±b*a. 

Since 6.19 is a direct consequence no proof is needed. But it should be mentioned 
that in the commutative case a*6_l_6*a—(0V) has a short proof by the formulas 
(a*b)*(a*c)—(b*a)*{b*c) and ab*c=b*(a*c). 

Next, applying 6.19 to boolean algebras (B, V, *) (where a*b:=a'Ab), we 
can state the celebrated theorem of Stone: 

6.20. Corol lary . Any boolean algebra is a subdirect product of 2-element ones, 
and hence a field of sets [36]. 

In a similar manner one shows that normally residuated lattices [12] are distri-
butive lattice-ordered algebras whence 6.8 applies also to these structures. Further-
more one easily sees that dually residuated semigroups [37] may be regarded as 
extended complementary semigroups by adding a*b:=0\/b—a. Therefore we get 

6.21. Corol lary . A dually residuated (commutative) semigroup is representable 
if and only if it satisfies a—bAb—asO [37]. 

We consider cone algebras (C, *, :). They were introduced in [11] and turned 
out to be *, :-subalgebras of some lattice group cone (P, •, *, :). Any cone alge-
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bra is A-closed with respect to aAb:=a:(b*a)=(b:a)*b but a cone algebra need 
not form a lattice. However aMb is contained in C if {a, b) is upper bounded, 
and ab£C implies that the elements x and y with xa=ab—by are contained in C. 
So we may apply 6.18 once a prime filter is guaranteed containing b yet not con-
taining a, whenever a^b. But this is an easy consequence of maximality, since 
given a filter F maximal with respect to not containing a we get 

xVy£F-~ xA./i £ a & y A f 2 £ a - (x\/y)A(f1Af2) s a, 

a contradiction. Thus we are led to 

6.22. Corollary. A cone algebra is representee if and only if it satisfies 

(CO) a*b _L a:b. 

(Observe that this condition is equivalent to (aAb)2=a2Ab2 in lattice group cones 
and lattice groups as well, and observe furthermore that this equation is equivalent 
to aaAbb^abVab.) 

Proof . Any complementary semigroup satisfies cb:a=(c:(a:bj)(b:a), and the 
method of 6.18 works also in the present case which is shown by cone algebra tech-
nique. Hence by the last footnote it suffices to prove the implication a±b—a± 
JLc:(c:b). But this can be done as follows: a±b implies 

c:(c:a)*(aAc:(c:b)) ^ (aAc)A(c:(c:a))*(c:(c:b)) = 

= (c;a)*(c:b)A(c:a):(c;.b) = 1, 
whence 

aAc:(c:b) = aAc:(c:b)Ac:(c:a) S c:(c:(bAa)) — 1. 

Final remark. Obviously the principle of 6.8 works whenever a partially 
ordered algebra — this may be an arbitrary algebra with respect to = — has enough 
order ideals (order filters), i.e. o-ideals (o-filters), M satisfying 

(P) p(b)ZM&.q(a)£M-+p(a)ZMAq(b)£M 
If M is a prime ideal in the sense of (P) then A—M is a prime filter in the sense 
of (P) and vice versa, and we see nearly immediately that the set of prime ideals 
(prime filters) is closed under intersections and unions of chains of prime ideals 
(prime filters). 

Let us suppose now that 21 has enough prime ideals. Then the partially ordered 
algebra 91 is representable and hence admits an extension to some representable 
distributive lattice-ordered algebra SB. Therefore we should check how artificial this 
condition is. To this end we present some applications which lead to well known 
results. 

6.23. Example. Any partially ordered set is a subdirect product of 2-element 
chains, since any (a] is prime with respect to the identity operator. 
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6.24. Example. Any V-semilattice is a subdirect product of 2-element chains, 
since any (a] is prime in the sense of (P). 

6.25. Example. A partially ordered abelian group © is representable if and 
only if it is semiclosed, i.e. iff it satisfies, for any' ?z£N, the implication 

(SC) a" S 1 - a s 1. 

(The first proof of this result seems to be due to CLIFFORD [15]. Another proof was 
given by Dieudonne in 1941, cf. [19].) 

Proof . Obviously (SC) is necessary. Suppose now that (SC) is satisfied and 
a^b. The set N of strictly negative elements is closed under multiplication, and 
it is easily shown that abN and a~1b, N cannot both generate a submonoid 
(with respect to multiplication). Hence there is a maximal subsemigroup 3JI con-
taining N and w.l.o.g. ab'1 but not containing 1. We show that M is a prime ideal 
in the sense of (P). 

(i) M i s an o-ideal, since implies wi> - 1<l & u£Af from which it 
follows that (uv~1)v=u£M. 

(ii) M is prime, since ax, bydM and ay, bx^M would yield a N with 
a~ky~k,b~kx~k£M whence a~kbk and akb~k would both belong to M, a con-
tradiction. c 
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