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On perturbations of boundary value problems for nonlinear 
elliptic equations on unbounded domains 

L. SIMON 

Introduction 

In [1] it has been proved the existence of variational solutions of boundary value 
problems for the elliptic equation 

2 ( - 1 ) 1 * 1 / ) " / . ( * , « , . . . , D » « , . . . ) + 
{aĵ m 

+ 2 (-\)MirgAx,u, ...,D»u, ...) = F, x£Q 

where Q is a possibly unbounded domain in R"; |/?| Sm; I is an integer with the prop-
erty l<m—(n/p)(l—p+Q); p and q are real numbers such that p—1< 
< Q=P- Functions fa satisfy the same conditions as in [2] and gx satisfy (essentially) 

£«(-*> OL S 0, 

where £=(<!;', £") and <T contains those coordinates ^ of £ for which |j8|<m—(n/p), 

In the present paper we give some stability results for solutions of the above prob-
lem. These results are connected with [3] and with several works referred in [3] 
where perturbation of other boundary value problems and variational inequalities 
has been considered. 

1. Preliminaries 

Let i2cRn be a (possibly unbounded) domain, />> 1, m a positive integer. 
Assume that Q has the weak cone property (see [4]), and for all sufficiently large p, 
there exists a bounded Q^czQ with the weak cone property such that Q^z> (x€i2: 
|x|</i}. Denote by Wp

m(Q) the usual Sobolev space of real valued functions u 
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whose distributional derivatives of order ^m belong to LP(Q). The norm on Wp
m(Q) 

is defined by 
N = { 2 f ^uYdx}1'" 

where 
d a = (a l5 ..., a„), |a| = 2 a / > Dj = TwT> j=1 OXj 

IT = D\l...D'n". 

Let N and M be the number of multiindices a satisfying |a |Sm and 1, 
respectively. The vectors ¿; = (<!;0, ..., . . .)£R" will be written in the form 
£=(ri, 0 , where RM consists of those ^ for which 1. Assume that: 

I. Functions ftij: i 2 X R w - R ( | a |^m; j= 0 ,1 ,2 , . . . ) satisfy the Caratheo-
dory conditions, i.e. they are measurable with respect to x for each fixed £GR'V 

and continuous with recpect to £ for almost all x£ Q. 
II. There exist a constant c ,>0 and a function K ^ L ^ Q ) (where 1/p+l/q—l) 

such that 
\fx,j(x,Z)\ SCl|fl'"l + Ai(*). 

for all |a|=Sm, j= 0 ,1 ,2 , . . . , a.e. x € ß and all ¿leR*. 
III. For all (ti, 0 , (l, 0 € R " with ^ RM, and a.e. x £ ß 0 = 0 , 1, 2, ...) 

2 IAJ(X, i f , 0-fa,j(x, n, OKL-O > 0. 
|a| = m 

IV. There exist a constant c 2 > 0 and a function K ^ L \ Q ) such that for a.e. 
x £ ß and all {gR* 

2 /«..,(*,€)«. ^ CzW-K^x) \ j = 0, 1,2, ...). 
\x\Sm 

V. lim £U> = £(0) implies 

lim /„,,(*, {«>) = /„.„(*, {<«) 

for a.e. x £ ß and all |a|S/jj. 
VI. Functions pxj,rXtJ: G X R ^ - R 

( | a | ^ / , 7 = 0, 1 ,2 , . . . ) 

satisfy the Caratheodory conditions and 

VII. paij(x, and |/-a„.(x, ö l ^ W for all and a.e. 
x € ß where ha£Lple(Q), j= 0 ,1 ,2 , . . . . 
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VIII. There exist a continuous function K3 and C1£Lple(Q) such that 

\pXiJ(x, 01 s K3(0(C1(x) + |«rie) 7 = 0 ,1 ,2 , . . . 

for all |a|==/, £ = (<f, O C R " and a.e. x£Q (<f contains those Qp for which \p\< 
<m~(njp)\ p-l<Q^p, l<m-(n/p)(l-p+Q)). 

IX. lira = £(0> implies 

Hm pXiJ(x, = Px,o(x, t(0)), • lim rx,j(x, = rXi0(x, $<»>) J-TOO J-+-00 

for a.e. x£(2 and all 
X. V is a closed subspace of Wp

m(Q) with the property: v£V, <p£C~(R") 
imply that <pv€V. (By C~(G) is denoted the set of infinitely differentiable functions 
with compact support contained in G.) 

XI. Fj€V 0 = 0 , 1, 2, ...), i.e. Fj is a linear continuous functional on V and 

l im H^-'FOIIK, = 0. 
J - ™ 

Remarks . 1. Assume that I—IV, VI—VIII are fulfilled for j= 0, i.e. /a>0, 
gx_0 satisfy conditions of the existence theorem in [1]. Further suppose that f x j , 
g*,j (7=1 >2, ...) satisfy I, VI such that 

lim [sup \fa,j{x, £)- / a ,0(x, 01] = 0 for a.e. xfQ, 

sup I A j ( x , 0~f*,o(x, 01 S <PO) for a.e. x£Q 

where <p£Lq(Q), j= 1 ,2 , . . . ; 

lim [sup \gXlj(x, 0-g«,o(x, 01] = 0 for a.e. x£Q, 

sup |gX l J(x, 0-g*,o(x> 01 ^ <K*) for a.e. x£G 
sen" 

where i^Lp/c(i2), j = 1, 2, ... . 

Then I, II, IV—VIII are satisfied for fxJ, gxj(j= 1,2,...) with px,j:=ptttC, 
rx,j--=(gx,J—gx,o)+rll,0-

2. If there is a constant c>0 such that for a.e. x£Q, all (tj, Q, (q, 

2 if*,»(*> i, 0-/«.<>(*, r,, OKL-O ^ c\C-C'\p 
\a\ = m 

and 

I[/„;(*, 1, 0 - / a n , O - [/*,„(*, r,, 0 -/„«,(*, r,, C')]| =S 

s r f y l C - C r - 1 0 = 1 , 2 , . . . ) 

where lim d}=0, then fxJ satisfy III for sufficiently large j. 
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Lemma 1. Assume that m weakly in V and for any bounded domain coczQ 

(1.1) lim fhjdx = 0, 
0> 

where 

(1.2) A/*) = 2 [fatJ(x, uj, ..., DrUj, ..., D>uj, ...)-

- f x , j ( x , U j , ...,DyUj, ...)](/>*«,-

|y|< w, |/J| = m. Then there is a subsequence (ujJ of (uj) such that D^uJk~*Dpu a.e. 
in (2 for all p with and for any bounded coc Q, Uj --u with respect to the 
norm of Wp

m((o). 

Proof . Since uj—u weakly in V there is a subsequence (ujJ of (uj) such that 
for | y | cm 

Dyujk -* Dyu a.e. in Q 
and 

(1.3) lim ||DyuJk - Dyu}\Lp(a) = 0 
• 

for any bounded subdomain co of £2 (see e.g. [5] and [4]). Further, by assumption III 
feySO and so (1.1) and Fatou's lemma imply that hj—0 a.e. in co. Thus there exists 
©Oc:co of measure 0 such that for x£co\co0 

(1.4) \D^u(x)\ l^ iWI <«, <», 

(1.5) Dyujk(x) - Dyu(x) (|y| < m), hJk(x) - 0, k 

Set 

where \P\ = m. By assumptions II, IV, V and (1.4), (1.5) we have 

(1.6) hJk(x) S 2 fa,jk(x, Ujk, ..., DyUJk, ...,D«uJk, ...)D1UJk — 
| « | = m 

- , 2 I fa , J k Ax,U J k , ..., DyUjk, ...,Dl>uJk, ...)D*U\-

~ 2 I A J k ( x , u j k , ...,Dyujk, ...,DI>u, ...)(irujk-D*u)\^ |a|=m 

if x€co\co,j where |y|<m, = m. (For a fixed x£a>\(o0, DyUj (x) and 
f,jk(x, uJk, ..., DyUjk> Dfiu, ...) are convergent and thus they are bounded.) By 
(1.5) (hJx(x)) is bounded for a fixed x£co\a>0, thus (1.6) implies that (¿;w(x)) is boun-
ded, too. Consequently, for a fixed x£(o\a>0, (<^(t)(x)) contains a subsequence 
which converges to a vector £*(x). 
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Now we show that 

(1.7) № ) = {(x) = (...,D'u(x), ...)• 

Indeed, applying (1.2) to the subsequence of (hJk(x)) with k-+ <*>, by (1.5) and as-
sumption V we obtain 

0 = 2 [/«.o(*,•••>Wuix),...,rw)-
|«|=m 

which implies (1.7) in virtue of assumption III. 
So we have shown that all convergent subsequences of the bounded sequence 

tend to £(x). Therefore, Hm £ w (x)=£(x) if x€co\a>0 and thus, by (1.5) 
a.e. in a> for all p satisfying \fi\Sm. Since co is an arbitrary bounded 

subset of Q we have 

(1.8) D?uJk D<>u a.e. in Q if \p\ s m. 

By using notations 

*"*(*) = 2 f*,Jk(x, uJk, ...,DPujk, ...)D*ujk, 
|a|=m 

Fo(x) = 2 /«.o(*. u, D>u, ...)iyu, 
|a| = m 

from (1.1) one obtains that 

/Fkdx- 2 //«,yfc(*> uJk, ..., D?ujk, ..., Z>*«,t, ...)D"udx — 
a> kl = mo) 

- 2 ffa,jk(x,uJk, ...,DyUjk, ...,DI>U, ...)IT(ujk-u)dx + 0, 
\t\=m m 

i.e. 

(1.9) / F k d x - JF0dx— 
O CD 

2 / [L,Jk(x, uJk, ...,D?ujk, ...,D'uJk, ...)-
I«l=m ai 

- / a > 0 (x , u, ...,Diu, ...,D»u, ...))D*udx-

- 2 I fa,jk(x, UJK, ...,D?UJK, ..., D"u, ...)D*(uJk-u)dx~ 0. 
I«l = m to 

By assumptions II, V, (1.8), Holder's inequality and Vitali's theorem the third term 
in (1.9) converges to 0. Furthermore, (1.8), assumptions II, V, (1.3) and Vitali's 
theorem imply that 

f„jk(x,ujk ...,D>uJh, ..., Dfiu, ...) -/„„(*, u, ..., Dyu, ..., D^u, ...) 
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in the norm of Lq(a>). Since lim U)—0 weakly in LP(Q) one finds that the 
fourth term in (1.9) converges to 0, too. 

Therefore, from (1.9) it follows that 

(1.10) lim J Fkdx — f F0 dx. 
CO CO 

By assumption IV 
Fk(x) ^ c2 Z \DpUjk(xr-K2(x). 

\f\ =m 

Thus for functions Gk=Fk+K2, G0= F0+K2 we have 

(1-11) Gk(x) S c2 2 \DpuJk(x)\" s 0, \f>\ = m 
and by (1.10) 

(1.12) lim ¡Gkdx= J G0dx. 
(O CO 

(1.8) and assumption V imply that Gk^G0 a.e. in co, thus from (1.11), (1.12) it fol-
lows that 

(1.13) Gk - G0 in L\a>) 

(see [6]). Consequently, (1.8), (1.11) and Vitali's theorem imply that, for \P\ = m, 
D^Uj^—D^ in Lp(co), and the proof of Lemma 1 is complete. 

Assume that instead of III condition 

nr. 2 [/«.,-(*, 0 -Aj(X, ni(L- O > 0 

is fulfilled if 

An easy modification of the proof of Lemma 1 gives 

Lemma 2. Suppose that uj—u weakly in V and 

where 

= 2 [/«./(*, D"UJ' - ) - f * . j ( x , u, ..., DPu, ...)](D*UJ-DU). 
| x\Sm 

Then there is a subsequence (Uj ) of (uj) such that Uj —u with respect to the norm of 
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2. Stability results 

Theorem 1. Assume that conditions I—XI are fulfilled and ufiV is a solution 
of 

(2.1) 2 / f..j(*> »;> •••> ~)D*vdx + 
\a\Sm a 

+ 2 J8x,j(x< «j> ...,D*UJ, ...)D*vdx = <Fj, v) 
si 

for all v£V (j= 1,2, . . .) . 

Then there is a subsequence (uJk) of (uJ) which converges weakly in V to a solution 
V of (2.1) for 7=0. Moreover, Dfiujk—Dfu a.e.inQif |/?| ̂ m, and for arbitrary 

bounded coaQ, wJfc—m strongly in Wp
m(a>). 

If solution u of (2.1) for 7=0 is unique then uj—u weakly in V and strongly in 
Wp

m(a>) for any bounded oxzQ. 

Remark . According to [1], for any F f i V ' there exists at least one solution 
UjZV of (2.1). 

P roof of Theorem 1. Applying (2.1) to v=Uj, by assumptions IV, VI, VII 
we obtain that 

(2.2) c2 \\uj№ - J K2(x) dx- 2 IMlo'ho) W »j\\Lilm = II^jIIk' KIIk 

where qx is defined by i/(p/g)+l/qt = l. 

By an imbedding theorem (see e.g. [4]) fal-

lal ^ /(< m-(njp)(l-p + g)), v£Wp
m(Q) we have 

(2.3) W v l f r w ^ c M v m 

(c is a constant) because q^npfo—fa— l)p). Thus (2.2) and p> 1 imply that (u/) 
is bounded in V. Therefore, there exist a subsequence (uJt) of (uj) and u£V such that 

(2.4) uJk — u weakly in V, 

(2.5) D y u J k ^ D ? u a.e. in Q for \ y \ ^ m - l 

(see [5]). 
Consider an arbitrary bounded domain coci2 and a function 0£C~(R") 

such that 0 S O and 0(x)=l for x€co. By the theorems on compact imbedding 
(see e.g. [4]) it may be supposed that 

(2.6) D*uJk - D'u in LP(Qflsupp0) for \y\^m-l 
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and 

(2.7) D*ujk Dyu in Lq' (Q D supp 0 ) for |y| == /, 

where QT is defined by 1/(PIQ)+ l/tfi= 1 ( / < m - ( n / p ) { l - p + G ) ) . By a "diagonal 
process" the subsequence (uj ) can be chosen so that (2.6), (2.7) are true for any 
fixed 06C~(R"). 

In virtue of assumption X 0(uJk—u)€V and thus from (2.1) one obtains 

(2-8) 2 ¡Ajk(x,Ujk,...,Dl>Ujk,...)iy[(0(Ujk-u)]dx + 

+ 2 ¡8*,h(x> ujk>->^uJk, ...)D*[0(uJk-u)]dx = l«|3i n 

Since (uJk — u) — 0 weakly in V 

(2.9) 0(ujk-u) - 0 weakly in V. 

From (2.8) it follows that 

(2-10) 2 / [/«.,*(*, «jh, D'uJk, ..., D>uJk, ...)-
\a\ = m a 

-fa.Jk(x,Ujk, ...,D'UJk, ...,D"u, ...] 0Lf(uJk-u)dx = 

= 2 J f*,JK(X, UJK, ...,D*uJk, ..., D"u, ...)0D?(u-ujk)dx+ 

+ 2 J fx,Jk(x,Ujk,...,D?Ujk, ...,Dl>uJk,...) 2 cyD>(u-uJk)D*-y0dx + 
M = m n |j>|sm-l 

+ , , 2 ¡Ajk(x,fJk, • ••> D'Ujk, ...,Di>ujk, ...)Dx[0(u—uJk)] dx + Mam-I n 

+ 2 /g* , j k ( x ,u J k , ...,Dyujk, ...,Dl>Ujk, ...)IT[0(U-Ujk)]dx + 
!al—' o 

+ <F J K , 0 ( U J K - A)> (|Y| < M, |J5| = M). 

Now we show that all the terms on the right-hand side of (2.10) converge to 0 
as By (2.4), D a (u J k -u )^0 weakly in L"{Q). Furthermore, from (2.5) and 
assumption V we get 

(2.11) •••> •••) -

- < 9 / a > 0 ( * , U, ...,D?u, ...) 
a.e. in Q, and, consequently, by assumption II, (2.6) and Vitali's theorem (2.11) is 
valid in Lq(Q) norm, too. Thus the first term in (2.10) converges to 0. 

By assumptions I, II the functions 

f*.jk(x>ujk D'uJk,...,.Di>uJk,...) 
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are bounded in Lq(Q), hence (2.6) implies that the second and third terms in (2.10) 
converge to 0 as k— 

From assumptions VI—VIII it follows that 

g*.jk(x, Uu> D*uu> • >Di>uu> •••) 

is bounded in ¿" '"(f i f lsupp 0) , thus (2.7) implies that the fourth term in (2.10) 
converges to 0 as i - o o . Finally, for the last term we have 

\(Fjk,0(uJk-u))\ s \(Fjk~Fo,0(uJk-u))\ + 

+ |<F„©(«a-«)>| S \\Fjk-Fo\\y.\\0(ujk-u)\\y + \(Fo,Q(ujk-u% 

thus assumption XI, (2.9) imply that also the last term in (2.10) converges to 0 as 
fc-CO. 

Thus we have shown that the term on the left-hand side of (2.10) converges to 0 
as k— co. By assumption III and 0 S O we find that (1.1) is valid for a subsequence 
of (hj). Consequently, from Lemma 1 we obtain that (itjJ contains a subsequence 
(uj^) such that 

(2.12) D>uK _ Di>u a.e. in Q 

if \fi\^m, and for any bounded axzQ 

(2.12) and assumption V implies that 

f*.ii(x>uii> ->Dl,uji> ••) -/«. o(x,u, ..., D9u, ...) 

a.e. in Q. Therefore, assumption II the boundedness of Holder's inequality 
and Vitali's theorem imply that for any v€V 

By using assumption IX and (2.12) we find gxj^x, uyk, ..., ...)— 
—iTa.oC*' •••> •••) a e - i n ® and thus, by assumptions VI—VIII, (2.3), Holder's 
inequality and Vitali's theorem we find that for any V 

(2.13) (UF) - U in WP
M(CO). 

(2.14) lim 2 f /«*'(*, Uj,, ..., D«ujL, ...)D>vdx = 
* °° 14s« Q 

[ fx,o(x,u, ...,DHu, ...)D*vdx. 

lim 2 fg*.ti(x>uji>-,B>uJi, ...)D*vdx = 
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Thus from (2.1), (2.14), assumption XI it follows that u is a solution of (2.1) 
for 7 = 0 and, by (2.4), (2.12), (2.13), the proof of the first statement of Theorem 1 is 
complete. 

If solution u of problem (2.1) for j= 0 is unique but "uj—u weakly in V" is 
not true then there are G£V', a positive number e and a subsequence (u'j) of (uj) 
such that 

(2.15) \Gu'j-Gu\ > e, j = 1,2, ... . 

Applying the first statement of Theorem 1 to (u'j) instead of (uj) we find that there is 
a subsequence (u'j) of (u'j) which converges weakly in V to a solution of (2.1) for j= 0, 
i.e. uj—u weakly in V (because the solution of (2.1) for j= 0 is unique). But this is 
impossible because of (2.15). It can be proved similarly that then Uj-*u strongly in 
B£"(co) for any bounded (oczQ. 

Theorem 2. Assume that conditions I—II, III', IV—XI are fulfilled and Uj£V 
is a solution of (2.1). Then there is a subsequence (ujJ of (uj) which converges strongly 
in V to a solution u£ V of (2.1) for j—0. If the solution u of (2.1) for j= 0 is unique 
then (uj) also converges to u strongly in V. 

Proof . Assumption III' implies III thus all conditions of Theorem 1 are fulfilled. 
Consequently, by Theorem 1 there is a subsequence (ujJ of (u}) such that 

(2.16) uJk u weakly in V 

and 

(2.17) ^ujk -* Dfu a.e. in i2 for m, 

where u is a solution of (2.1) for j= 0. 
Now we show that the sequence (w^) satisfies the condition of Lemma 2. Since 

Ujk is a solution of (2.1) with j=jk, v=ujk and u is a solution of (2.1) with j—0, 
v— u, we have 

(2.18) 

2 f [/*.;>(*> ujk' -'^Ujk,...)-fXth(x, u, ...,Df>u, ...)](D*ujk-D*u)dx = 14am n* 
= 2 f u, ..., D"u, ...)(D*u-D*ujk)dx + |«fsm Q 

+ 2 J[f«,o(x,u, ..;DI>U, ...)-faiJk(x,uJk, ...,Dl>Ujk, ...)]D*udx + 

+ 2 f[gaAx,u, ...,D"u, ...)Dxu—gXijk(x, uJk, ...,D0u}k, ...)D"uJk]dx + 
l«|ai ¡i 
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Applying Vitali's theorem, Holder's inequality, assumptions I, II, V and (2.16), (2.17), 
we find that the first and second terms on the right-hand side of (2.18) converge to 
0 as k-»°=>. By assumption XI and (2.16) we have 

I ft» UJ*)~(F<>> u) | ^ | < F A - F „ wA>| + |<F„, uJk-u) | == 

S I I F ^ - F o M l n J v + KFo, uJk-u)| - 0 as k 

Furthermore, (2.17) and assumption IX yield 

P*,jk(x> uJk> •••> Di>uJk< •••)DXujk ^P*,o(x, u, ..., D»u, ...)D*u 

a.e. in Q. In virtue of Fatou's lemma and assumption VII we get the inequality 

(2.19) /p„,o(x , u, ..., D*u, ...)D*udx s 
n 

- HBlnf IP*.h(x> UJ«> • ••)DxuJkdx. 
si 

Assumptions VII, IX, (2.17), Holder's inequality and Vitali's theorem imply that 

¿"H IR'-J>(X> UJ*> •••>DPUJK> -WUSJX = 
n 

= frXy0(x,u, ...,DI>U, ...)iyudx. 
n 

Hence and from (2.19) it follows that 

limsup 2 f[g.,o(x>u>...)/>*«-
l«l*« a 

~ga.Jk(x, uJk, ..., Dhi]k, ...)D*uJk]dx = 

= limsup 2 [ [PZO(*> «» D*", . . . ) n * u -
\,\&i ¡i 

-Pa.jk(x,Ujk, -,DfiUjk, ...)D°uJk]dx S 

= 2 fp*,o(x,u, ...)D"udx + l«|si ^ 

+ , 2 ^msup J [~pa,Jk(x, uJk, ..., Dl>ujk, ...)D>ujk] dx =g 0. 

In virtue of (2.18) we have shown that 

Km sup 2 J lfa.jk(x, Ujk, ..., D^Ujk, ...) — 
|a| SBj) 

-fx,Jk(x, u, ...,D>u, ...)](lFuJk-iy*u)dx 0. 
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Hence by assumption III' it follows that (w^) satisfies the conditions of Lemma 2 
and there is a subsequence (u^) of (uJt) such that и^—и in Wp

m(Q). This completes 
the proof of the first statement of Theorem 2. The case when the solution и of (2.1) 
for j—0 is unique can be treated in the same way as in the proof of Theorem 1. 
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