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On perturbations of boundary value problems for nonlinear
elliptic equations on unbounded domains

L. SIMON

Introduction

In [1] it has been proved the existence of variational solutlons of boundary value
problems for the elliptic equation :
> (—D)D*f,(x,u, ..., DPu, ..} +
. la|=m :
+ 3 (=D D*g(x,u,...,DPu,...) = F, x€Q
|al=1 '

where Q is a possibly unbounded domain in an; IBl=m; lis an integer with the prop-
erty /<m—(n/p)(1—p+¢); p and g are real numbers such that 1<p<e, p—1<
<g=p. Functions f, satisfy the same conditions as in [2} and g, satisfy (essentially)

8.(x, §)¢, =0,
lg2(x, O = K(ENC1(x)+1£719)
where ¢=(&, £¢”) and &’ contains those coordinates efﬁ of & for whxch 1Bl<m—(n/p),
C,€ Lrle ().
In the present paper we give some stability results for solutions of the above prob-
lem. These results are connected. with [3] and with-several works referred in [3]

where perturbation of other boundary value problems and var1at10nal mequahtles
has been considered.

1. Preliminaries

Let QCR” be a (possibly unbounded) domain, p>1, m a positive integer.
Assume that Q has the weak cone property (see [4]), and for all sufficiently large p,
there exists a bounded ,c Q with the weak cone property such that Q,> {x€Q:
|x|<p}. Denote by W,"(X2) the usual Sobolev space of real valued functions u
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whose distributional derivatives of order =m belong to L?(£2). The norm on W,"(2)
is defined by

al ={ 2 [1Duleax}
aj=m q

where

< 0
o=, ..., %), ld= >a; Df:a_’
Jj=1 XJ

D = Dt...Dy.

Let N and M be the number of multiindices o satisfying |¢|=m and [a|=m—1,
respectively. The vectors &=(&, ..., &, ...)ERY will be written in the form
&=(n,{), where n€RM consists of those £; for which |f|=m—1. Assume that: -

I. Functions f, ;: @XR¥=R (le|=m; j=0,1,2,...) satisfy the Carathéo-
dory conditions, i.e. they are measurable with respect to x for each fixed ¢RV
and continuous with recpect to & for almost all x€ Q.

II. There exist a constant ¢;>0 and a function K,€L%(Q) (where 1/p+1/g=1)
such that

[ fo 5%, O] = €17~ 4 Ky ().

for all [a|=m, j=0,1,2,..., a.e. x€Q and all é¢RY,
1L For all (5, 0), (1, )R with n€RM, (¢ and a.e. x€Q (j=0,1,2, ...

Va1 oy, DNE— 8D > 0.

1V. There exist a constant ¢,>0 and a function K,cIL'(Q) such that for a.e.
x€Q and all &<R¥

PFC BE, = ealelP—Ky(x) (i =0,1,2,...).
v. }’_{’3, ED = ¢O  implies
lim £, ;0% €9) = fo,o(x §9)

for a.e. x¢Q and all |a|=m.
VI. Functions p,, ;, 1, ;: @QXR¥=R

(Ial = 19j= 0, l, 2, ...)
satisfy the Carathéodory conditions and
ga,j - pa,j+ra’j.

VIL p, ;(x, =0 and |r, ;(x, O|=h,(x) for all |a|=], EcRY and ae.
x€Q where h,LP(Q), j=0,1,2, ....
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VIII. There exist a continuous function K; and C,€LP'¢(Q) such that

|26, 5(%; O = K(E)Cou(x)+1E71) j=0,1,2,...
for all |a|=/, {=(&, {")ERY and ae. x€Q (& contains those &, for which |f]<

<m—(nlp); p—1<g=p, I<m—(np)(1-p+0)).
IX. lim &9 = &9 implies

Jroo

hm pu,j(xa é(j)) = Pa,O(x’ 6(0))’ ) hm ra,j(x9 éu)) = ’a,o(x, 6(0))
l—b“ _I-»co

for ae. x€Q and all |¢|=/.

X. V is a closed subspace of W,"(Q) with the property: veV, ¢@€Cg(R")
imply that @veV. (By Cg°(G) is denoted the set of infinitely differentiable functions
with compact support contained in G.)

XL F;eV’ (j=0,1,2,..), i.e. F; is a linear continuous functional on ¥ and

lim |5~ Folly, = 0.
Remarks. 1. Assume that I—IV, VI—VIHI are fulfilled for j=0, ie. f,,,

8,0 satisfy conditions of the existence theorem in [1]. Further suppose that f, ;,
g&,; (j=1,2,..) satisfy I, VI such that

lim [gseulgv [fo, i &)= fro(x, O] =0 for ae. x€Q,

Jroo
:seuRgv | fo, i(% )= fao(x, O = @(x) for ae. x€Q

where @cl4(Q), j=12,...;
lim [éseulg' |82, (% &) = £ayo(x, O] = 0 for ae. x€Q,

{Sgligv |ga,j(xa 6)'—ga.0(xs é)l = I/I(X) .fOI' a.c. XEQ

where yeL?e(Q), j=1,2,....

Then I, II, IV—VIHI are satisfied for f, ;, g, ;(j=1,2,...) with p, ;:=p,,,
rz.j:z(ga,j_ga.0)+ra,0'

2. If there is a constant ¢>0 such that for a.e. x€Q, all (n,0), (4, {)ERY

| é' [f;,o(x’ s C) _f:z,o(xa n, C/)](éa - é;) = CIC— Cllp
and
e, 106 1 ©) =1, 506 1, O = Lo (s 11, O = foo (e 1, Ol =
=4;l(-0UP (G=1,2,..)

where jlirg d;=0, then f, ; satisfy III for sufficiently large j.
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Lemma 1. Assume that u;—~u weakly in V and for any bounded domain wcC Q

(1.1) fim jh dx =
where :
(1.2) hj(x) = laé’m [f;'j(x, uj, civy D"u}-, ceey Dpui, ...)—

—fauj(Xujs ..y DVuy, .o, DPu, (D7 u;— D*u),

[yl<m, |Bl=m. Then there is a subsequence (u;) of (u;) such that DPy; —»Dﬁu a.e.
in Q for all B with |Bl=m and for any bounded wCQ, u; U with respect to the
norm of W"(w).

Proof. Since u;—~u weakly in V there is a subsequence (u; ) of (u,) such that
for ly]<m
Diu; - D'u ae. in Q
and :
(13) ’!llzlo "D.’lljk—Dyll”Lp(w) =0

for any bounded subdomain w of 2 (see e.g. [5] and [4]). Further, by assumption I1I
h;=0 and so (1.1) and Fatou’s lemma imply that h;—~0 a.e. in @. Thus there exists
w,Cw of measure 0 such that for xcw\w,

(1.4) |DPu(x)] <oo, |Ky(x)] <o, |Kp(X)] <oo,
(1.5) DYu; (x) -~ D'u(x) (7]l <m), hj(x) =0, k —>eo.
Set
EB(x) = (..., DPu; (x), ...)
where |f|=m. By assumptions II, IV, V and (1.4), (1.5) we have

(1.6) hjk(x) = Z L,jk(x, ujk, veey D”ujk, ey Dﬂujk, ...)D"‘ujk——

laé’ [ fa s> (%5 55 ooy Dty oooy DPuy ) D%l —

——l IZ | fo (6 g5 oo DPutjp ooy DPu, ) (DPuy, — DPu)| =

= ¢ EV(X)|? — cy(X)[1 4 |E® (2)|P~2 + [EB (x)[]

if x€o\w, where [|y|<m, |Bl=m. (For a fixed x€w\w,, D'; (x) and
Sai Gty s Dy .» DPu, ...) are convergent and thus they are bounded.) By
Q. 5) (h;, (x)) is bounded for a fixed x€ @\ @y, thus (1.6) implies that (¢®(x)) is boun-
ded, t0o. Consequently, for a fixed x€w\w,, ((¥(x)) contains a subsequence
which converges to a vector ¢¥(x).
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Now we show that

(%)) E(x) = &(x) = (..., DPu(x), ...).

Indeed, applying (1.2) to the subsequence of (h jk(x)) with k-, by (1.5) and as-
sumption V we obtain

0= 2. [fuo(x, u(x), ..., DYu(x), ..., E(x))—
—faro(% (), s DPu(x), ..., SN E3(x) — Eu()]

which implies (1.7) in virtue of assumption III.

So we have shown that all convergent subsequences of the bounded sequence
(6% (x)) tend to &(x). Therefore, lim EM(x)=¢(x) if x€w\w, and thus, by (1.5)
Dfy, k—»D"u a.e. in o for all B satlsfymg |[Bl|=m. Since w is an arbitrary bounded
subset of Q we have .

(1.8) Dby, —~ Dfu ae. in Q if [fl=m.

By using notations
Fi(x) = 1 IZ’ SoiuC6 s ooy DPuy, ) DPuy,
x|=m

Fo(x)= 2 fuolxsu, ..., DPu, ..)D*u,
lal=m

from (1.1) one obtains that

kadA— 2 ff“k(x Wiy voes D'y ooy, DPuy ) DPudx—

" ffa (ot oo D'ty ooy DPu, ) Dty — ) dx — O,
ie.

(1.9) : [ Fudx— [ Fydx—

—laém f[f;,fk(xi ujks cory Dyujk’ seey Dpujk, ...)—‘

—faolxsu, ..., D'u, ..., DBy, . ) D*udx—
- fﬁ, o u o, Dy, ..., Dy, ...)D’(ujk—u)dx.—» 0.

laf= =m gy

By assumptions II, V, (1.8), Hélder’s inequality and Vitali’s theorem the third term
in (1.9) converges to 0. Furthermore, (1.8), assumptions II, V, (1.3) and Vitali’s
theorem imply that

S Xty ooy D'uy o ooy DPuy ) > fr (X, 1, ..., DYa, ..., D, )
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in the norm of L4(w). Since }‘P.l D’(ujk—u)—»O weakly in L?(Q) one finds that the
fourth term in (1.9) converges to 0, too.
Therefore, from (1.9) it follows that

(1.10) lim [ Fdx= [ Fyax.
By assumption IV
Fi(x) = ¢, mZ' | D2 u;, (x)|P — Ky (x).

Thus for functions G,=F,+K,, G,=F;+K, we have

1.11) Gi(x) = e > |DPu, (x)? = 0,
. Bl=m

and by (1.10)

(1.12) Tim mf G, dx = mj G, dx.

(1.8) and assumption V imply that G,~G, a.e. in w, thus from (1.11), (1.12) it fol-
lows that

(1.13) : G, —+ Gy, in L'(w)
(see [6]). Consequently, (1.8), (1.11) and Vitali’s theorem imply that, for |B|=m,

D”ujk—»D"u in LP(w), and the proof of Lemma 1 is complete.
Assume that instead of III condition

r. | é e, i (s &) = Sa 5%, ENE—~ &) = O
is fulfilled if &=¢'.
An easy modification of the proof of Lemma 1 gives

Lemma 2. Suppose that u;—~u weakly in V and
lim fizjdx =0,
2

Jeo

where 7
hy(x) = | r§ U s 5 ooy DPutgy )= fo (%, 1, <.y DPu, .. )|(D"u;— Dui).

Then there is a subsequence (u; ) of (u;) such that u; —~u with respect to the norm of
wm(Q).
p
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2, Stability results

Theorem 1. Assume that conditions I—XI are fulfilled and u;cV is a solution

of R

@.1) 5 [ faiCx ujs s DPuy, ) DPvdx+
la|=m &

fga i uj, o, DPu;, ) D*vdx = (F;, v)

[a]sl Q
forall veV (j=1,2,..).

Then there is a subsequence (u; ) of (u;) which converges weakly in V to a solution
u€V of (2.1) for j=0. Moreover, D”u ~Dlu ae. inQif |fl=m, andfor arbztrary
bounded wcQ, u; ina” Strongly in W"‘ (w).

If solution u of (2.1) for j=0 is unique then u;—u weakly in V and strongly in
W (w) for any bounded wC Q.

Remark. According to [1], for any F;€¥”’ there exists at least one solution
u, €V of (2.1). »

Proof of Theorem 1. Applying (2.1) to v=u;, by assumptions IV, VI, VII
we obtain that

(2.2) e llujllp — f Ky(x)dx - [Zz I1all e/eqor D% wjll gy ) = I1Fllv littslly
Q ap= :
where ¢, is defined by 1/(p/g)+1/q,=1.
By an imbedding theorem (see e.g. [4]) for
lof = I(< m—(n/p)(1—p+@)), vEW™(Q) we have
(23) "Da U“qu(_q) =c ”1)” W)

(c is a constant) because q,<np/(n—(m—1I)p). Thus (2.2) and p=1 imply that (u;)
is bounded in V. Therefore, there exist a subsequence (« ik) of (u;) and u€V such that

2.4 u; ~u weaklyin V,
2.5) D'uj ~ D'u ae.in Q for [pl=m—1
(see [5))- '

Consider an arbitrary bounded domain wcQ and a function OeCy (R
such that =0 and @(x)=1 for x€w. By the theorems on compact imbedding
(see e.g. [4]) it may be supposed that

(2.6) D'u; — D'u in LP(QNsupp®) for |y =m—1
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and

2.7 D'u; -~ D'u in LY(QNsupp®) for |y| =/,

where ¢, is defined by 1/(p/e)+1/g,=1 (I<m—(n/p)(1—p+g)). By a “‘diagonal
process” the subsequence (ujk) can be chosen so that (2.6), (2.7) are true for any

fixed @cCy (RY).
In virtue of assumption X O(u jk—u)EV and thus from (2.1) one obtains

(2.8) gm [ fu i s s DBy, ) DP(O(uj — )] dx +
|| y S [ 8anx Jk,...,D”’u-,...)D‘[@(ujk-—u)]dx=
, < Jk’ ll)>
Since (u; —u) ~ 0 weaklyin V'
2.9) O(u;, —u) - 0 weakly in V.
From (2.8) it follows that
2.10) o > [ Ui ttjs oo D'ty ooy DPuy, )~

—foiX s ., D'y, ..., DPu, ...]OD(u; — u)dx =
[ fosts, ooy Duy, ..., Dy, ) @D (u—uy,) dx +

lal=m g
+ [2 [ funxttiys ooy D'y, .., DP u,k,...)l]z; ¢, D'(u—u;, ) D*~70 dx +
a yl=m-1
| 1 [ fos 6 thys oo D0y oy DPuy, ) DO (u—uy)] dx+
aSm—lg
S [ 8ai (st ooy DYuy, ., DPuy, ) DF[O (u—~uy ) dx +

Ial__

< .Ik’ —ll)> (l')’l < m, |ﬁ| = m).

Now we show that all the terms on the right-hand side of (2.10) converge to 0
as k-~ By (24), D*(u; —u)—~0 weakly in LP(Q). Furthermore, from (2. 5) and

assumption V we get
(2.11) Ofy i (X, 5 oo, D'ty 5 ..., DPu, L) —~
- Of olx, ty ..., Du, ..., DPu, ...)
a.e. in ©, and, consequently, by assumption 1I, (2.6) and Vitali’s theorem (2.11) is

valid in L*(2) norm, too. Thus the first term in (2.10) converges to 0.
By assumptions I, II the functions

Son (s uys .oy D'uy, .., DPuy , L)
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are bounded in L(Q), hence (2.6) implies that the second and third terms in (2.10)
converge to 0 as k— oo,
From assumptions VI—VIII it follows that

ga,]k(x’ ujk9 arey Dvujka seey Dﬂujk, ...)

is bounded in LP¢(QNsupp @), thus (2.7) implies that the fourth term in (2.10)
converges to 0 as k—. Finally, for the last term we have

KEI& > @(u]k - u)>| = KFik — Ky, @(ujk - u)>| +
+|(Fo» Oz, — )| = |Fj,— Folly 10 (j, — )lly + KFo» O (s, —w),

thus assumption XI, (2.9) imply that also the last term in (2.10) converges to 0 as
koo, _
Thus we have shown that the term on the left-hand side of (2.10) converges to 0
as k—oo. By assumption IIl and @=0 we find that (1.1) is valid for a subsequence
of (h;). Consequently, from Lemma 1 we obtain that (ujk) contains a subsequence
(w;) such that

(2.12) Duy; .. DPu ae. in Q
if |B|=m, and for any bounded wcCQ
(2.13) () ~u in Wr(w).
(2.12) and assumption V implies that
JajiCowrs s DPur, ) — foo(%, 4, ..., DPu, L)

a.e. in Q. Therefore, assumption II the boundedness of llgzlly, Holder’s inequality
and Vitali’s theorem imply that for any v€V

(2.14) lim = ﬂff,,,.k,(x, Uy ooy DPuy, ) Do dx =

k—+eo la
= z [ fuoltsuy oy DPu, ) D70 dx.
la|=m g

By using assumption IX and (2.12) we find g, (x,uy, ..., Doy, ..)~
=g, 0(X, 4, ..., DPu, ...) a.e.in Q and thus, by assumptions VI—VIIL, (2.3), Hélder’s
inequality and Vitali’s theorem we find that for any veV

lim 3 [g, (e, ... DPuy, .. )DPvodx =

k= laj=1 Q

= &ao(X 1, ..., DPu, ... )D*vdx.
|¢é‘ 0 .
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Thus from (2.1), (2.14), assumption XI it follows that u is a solution of (2.1)
for j=0 and, by (2.4), (2.12), (2.13), the proof of the first statement of Theorem 1 is
complete.

If solution u of problem (2.1) for j=0 is unique but “u;—~u weakly in V> is
not true then there are GEV’, a positive number ¢ and a subsequence (u;) of (u;)
such that

(2.15) |Gu;—Gu| =¢, j=1,2,....

Applying the first statement of Theorem 1 to () instead of (u;) we find that there is
a subsequence () of () which converges weakly in ¥ to a solution of (2.1) for j=0,
ie. uj—~u weaklyin ¥ (because the solution of (2.1) for j=0 is unique). But this is
impossible because of (2.15). It can be proved similarly that then u;—~u strongly in
W™ (w) for any bounded wcQ. :

Theorem 2. Assume that conditions I—II, III, IV—XI are fulfilled and u;cV
is a solution of (2.1). Then there is a subsequence (u jk) of (u;) which converges strongly
inV to a solution ucV of (2.1) for j=0. If the solution u of (2.1) for j=0 is unique
then (u;) also converges to u strongly in V.

- Proof. Assumption III’ implies III thus all conditions of Theorem 1 are fulfilled.
Consequently, by Theorem 1 there is a subsequence (ujk) of (u;) such that

(2.16) u; —u weakly in V
and
(2.17) DPy; —~ DPu ae.in Q@ for [B| = m,

where u is a solution of (2.1) for j=0.
Now we show that the sequence (u; ) satisfies the condition of Lemma 2. Since

u;_is a solution of (2.1) with j=ji, v=u; and u is a solution of (2.1) with j=0,

v=u, we have

(2.18)

é,,. nf U 1, (6 g5 oy D2ty yoo ) —fo 5 (0 1, ooy DR, )} (D0, — D*u)dx =
= ;aém gjfa,,.k(x, u, ..., DPu, .. )(D*u—D*u; ) dx+

la

+ > f[fa,o(x, Uy .oy DPu, ) —fo, 5. (% 15,5 oo, DPuy,, L)) DPudx +

laj=m g
+ [ [gan(x, t ooy DPu, ) D= g, (X, 4y, ..., DPuy, ) DPuy ) dx +
al=l g
+ {<Eik’ u1u>— <EJ’ u>}‘
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Applying Vitali’s theorem, Holder’s inequality, assumptions I, 11, V and (2.16), (2.17),
we find that the first and second terms on the right-hand side of (2.18) converge to
0 as k—oo. By assumption XI and (2.16) we have

KE» 10— (Fo» )] = KBy — Fo, i, )|+ KFo, uj,—u)| =
= ||Fj, ~ Folly-luyllv + KFo, wj— )] ~ 0 as  k —oo.
Furthermore, (2.17) and assumption IX yield
Pa (X Ugs ooy DPuy , . )D*uj, — po(x, 4, ..., DPu, ...)D*u

ae. in Q. In virtue of Fatou’s lemma and assumption VII we get the inequality

(2.19) fpa,o(x, U, ..., DPu, . .)D*udx =
Q2
= liginf f'pa,,-k(x, U s oo DPuy , ...)Duy, dx.
o

Assumptions VII, IX, (2.17), Holder’s inequality and Vitaii’s theorem imply that

,}llg fra,,-k(x, Uy ..o DPuy , .. )Duj dx = ,
Q
= fra,o(x, U, ..., DPu, .. )D*udx.
2

Hence and from (2.19) it follows that

limsup > f[g,, (x,u, ..., DPu, ..)D*u—

ke o=t g
~ 8, 5 (X Uz ooy DPuy ) D?uy ldx =
= hmsup f[p,, (x,u, ..., DPu, ..)D*u—

ke oz
= Da, 3 (%5 Uy oy DPuj, ) D%uy ) dx =
5 [Pao(® s ..., DPu, .. )D*udx+

|¢|§l Q

+ Z’ llmsup f[ Pa, 5 (X Uy ooy DPuy , ) DPu;ldx = 0.

lal=t
In virtue of (2.18) we have shown that
lil"‘nsup f[f, n(x up oo, DPuy )~

—fa 5 (5 Uy ooy DPu,  (D*u,, — D*u)dx = 0.
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Hence by assumption IIl” it follows that (u; ) satisfies the conditions of Lemma 2
and there is a subsequence (u;) of (u; ) such that u;—~u in W(Q). This completes
the proof of the first statement of Theorem 2. The case when the solution u of (2.1)
for j=0 is unique can be treated in the same way as in the proof of Theorem 1.
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