On perturbations of boundary value problems for nonlinear elliptic equations on unbounded domains

L. SIMON

Introduction

In [1] it has been proved the existence of variational solutions of boundary value problems for the elliptic equation

$$
\begin{aligned}
& \sum_{|\alpha|>m}(-1)^{|\alpha|} D^{\alpha} f_{\alpha}\left(x, u, \ldots, D^{\beta} u, \ldots\right)+ \\
+ & \sum_{|\alpha| \leq 1}(-1)^{|\alpha|} D^{\alpha} g_{\alpha}\left(x, u, \ldots, D^{\beta} u, \ldots\right)=F, \quad x \in \Omega
\end{aligned}
$$

where Ω is a possibly unbounded domain in $\mathbf{R}^{n} ;|\beta| \leqq m ; l$ is an integer with the property $l<m-(n / p)(1-p+\varrho) ; p$ and ϱ are real numbers such that $1<p<\infty, p-1<$ $<\varrho \leqq p$. Functions f_{α} satisfy the same conditions as in [2] and g_{α} satisfy (essentially)

$$
\begin{gathered}
g_{\alpha}(x, \xi) \xi_{\alpha} \geqq 0 \\
\left|g_{\alpha}(x, \xi)\right| \leqq K\left(\xi^{\prime}\right)\left(C_{1}(x)+\left|\xi^{\prime \prime}\right|^{\gamma}\right)
\end{gathered}
$$

where $\xi=\left(\xi^{\prime}, \xi^{\prime \prime}\right)$ and ξ^{\prime} contains those coordinates ξ_{β} of ξ for which $|\beta|<m-(n / p)$, $C_{1} \in L^{p / e}(\Omega)$.

In the present paper we give some stability results for solutions of the above problem. These results are connected with [3] and with several works referred in [3] where perturbation of other boundary value problems and variational inequalities has been considered.

1. Preliminaries

Let $\Omega \subset \mathbf{R}^{n}$ be a (possibly unbounded) domain, $p>1, m$ a positive integer. Assume that Ω has the weak cone property (see [4]), and for all sufficiently large μ, there exists a bounded $\Omega_{\mu} \subset \Omega$ with the weak cone property such that $\Omega_{\mu} \supset\{x \in \Omega$: $|x|<\mu\}$. Denote by $W_{p}^{m}(\Omega)$ the usual Sobolev space of real valued functions u

[^0]whose distributional derivatives of order $\leqq m$ belong to $L^{p}(\Omega)$. The norm on $W_{p}^{m}(\Omega)$ is defined by
$$
\|u\|=\left\{\sum_{|\alpha| \leq m} \int_{\Omega}\left|D^{\alpha} u\right|^{p} d x\right\}^{1 / p}
$$
where
\[

$$
\begin{gathered}
\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \quad|\alpha|=\sum_{j=1}^{n} \alpha_{j}, \quad D_{j}=\frac{\partial}{\partial x_{j}} \\
D^{\alpha}=D_{1}^{\alpha_{1}} \ldots D_{n}^{\alpha_{n}}
\end{gathered}
$$
\]

Let N and M be the number of multiindices α satisfying $|\alpha| \leqq m$ and $|\alpha| \leqq m-1$, respectively. The vectors $\xi=\left(\xi_{0}, \ldots, \xi_{\beta}, \ldots\right) \in \mathbf{R}^{N}$ will be written in the form $\xi=(\eta, \zeta)$, where $\eta \in \mathbf{R}^{M}$ consists of those ξ_{β} for which $|\beta| \leqq m-1$. Assume that:
I. Functions $f_{\alpha, j}: \Omega \times \mathbf{R}^{N} \rightarrow \mathbf{R}(|\alpha| \leqq m ; j=0,1,2, \ldots)$ satisfy the Carathéodory conditions, i.e. they are measurable with respect to x for each fixed $\xi \in \mathbf{R}^{N}$ and continuous with recpect to ξ for almost all $x \in \Omega$.
II. There exist a constant $c_{1}>0$ and a function $K_{1} \in L^{q}(\Omega)$ (where $1 / p+1 / q=1$) such that

$$
\left|f_{\alpha, j}(x, \xi)\right| \leqq c_{1}|\xi|^{p-1}+K_{1}(x) .
$$

for all $|\alpha| \leqq m, j=0,1,2, \ldots$, a.e. $x \in \Omega$ and all $\xi \in \mathbf{R}^{N}$.
III. For all $(\eta, \zeta),\left(\eta, \zeta^{\prime}\right) \in \mathbf{R}^{N}$ with $\eta \in \mathbf{R}^{M}, \zeta \neq \zeta^{\prime}$ and a.e. $x \in \Omega(j=0,1,2, \ldots)$

$$
\sum_{|\alpha|=m}\left[f_{\alpha, j}(x, \eta, \zeta)-f_{\alpha, j}\left(x, \eta, \zeta^{\prime}\right)\right]\left(\xi_{\alpha}-\xi_{\alpha}^{\prime}\right)>0
$$

IV. There exist a constant $c_{2}>0$ and a function $K_{2} \in L^{1}(\Omega)$ such that for a.e. $x \in \Omega$ and all $\xi \in \mathbf{R}^{N}$

$$
\sum_{|\alpha| \leqq m} f_{\alpha, j}(x, \xi) \xi_{\alpha} \geqq c_{2}|\xi|^{p}-K_{2}(x) \quad{ }^{\prime}(j=0,1,2, \ldots) .
$$

V. $\lim _{j \rightarrow \infty} \xi^{(j)}=\xi^{(0)}$ implies

$$
\lim _{j \rightarrow \infty} f_{\alpha, j}\left(x, \xi^{(j)}\right)=f_{\alpha, 0}\left(x, \xi^{(0)}\right)
$$

for a.e. $x \in \Omega$ and all $|\alpha| \leqq m$.
VI. Functions $p_{a, j}, r_{\alpha, j}: \Omega \times \mathbf{R}^{N} \rightarrow \mathbf{R}$

$$
(|\alpha| \leqq l, j=0,1,2, \ldots)
$$

satisfy the Carathéodory conditions and

$$
g_{\alpha, j}=p_{\alpha, j}+r_{\alpha, j}
$$

VII, $p_{\alpha, j}(x, \xi) \xi_{\alpha} \geqq 0$ and $\left|r_{\alpha, j}(x, \xi)\right| \leqq h_{\alpha}(x)$ for all $|\alpha| \leqq J, \xi \in \mathbf{R}^{N}$ and a.e. $x \in \Omega$ where $h_{a} \in L^{p / e}(\Omega), j=0,1,2, \ldots$
VIII. There exist a continuous function K_{3} and $C_{1} \in L^{p / \rho}(\Omega)$ such that

$$
\left|p_{\alpha, j}(x, \xi)\right| \leqq K_{3}\left(\xi^{\prime}\right)\left(C_{1}(x)+\left|\xi^{\prime \prime}\right|^{e}\right) \quad j=0,1,2, \ldots
$$

for all $|\alpha| \leqq l, \xi=\left(\xi^{\prime}, \xi^{\prime \prime}\right) \in \mathbf{R}^{N}$ and a.e. $x \in \Omega\left(\xi^{\prime}\right.$ contains those ξ_{β} for which $|\beta|<$ $<m-(n / p) ; p-1<\varrho \leqq p, l<m-(n / p)(1-p+\varrho))$.
IX. $\lim _{j \rightarrow \infty} \xi^{(j)}=\xi^{(0)} \quad$ implies

$$
\lim _{j \rightarrow \infty} p_{x, j}\left(x, \xi^{(j)}\right)=p_{\alpha, 0}\left(x, \xi^{(0)}\right), \cdot \lim _{j \rightarrow \infty} r_{\alpha, j}\left(x, \xi^{(J)}\right)=r_{\alpha, 0}\left(x, \xi^{(0)}\right)
$$

for a.e. $x \in \Omega$ and all $|\alpha| \leqq l$.
X. V is a closed subspace of $W_{p}^{m}(\Omega)$ with the property: $v \in V, \varphi \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ imply that $\varphi v \in V$. (By $C_{0}^{\infty}(G)$ is denoted the set of infinitely differentiable functions with compact support contained in G.)
XI. $F_{j} \in V^{\prime}(j=0,1,2, \ldots)$, i.e. F_{j} is a linear continuous functional on V and

$$
\lim _{j \rightarrow \infty}\left\|F_{j}-F_{0}\right\|_{V^{\prime}}=0
$$

Remarks. 1. Assume that I-IV, VI-VIII are fulfilled for $j=0$, i.e. $f_{\alpha, 0}$, $g_{\alpha, 0}$ satisfy conditions of the existence theorem in [1]. Further suppose that $f_{\alpha, j}$, $g_{\alpha, j}(j=1,2, \ldots)$ satisfy I, VI such that

$$
\begin{gathered}
\lim _{j \rightarrow \infty}\left[\sup _{\xi \in \mathbf{R}^{N}}\left|f_{\alpha, j}(x, \xi)-f_{\alpha, 0}(x, \xi)\right|\right]=0 \quad \text { for a.e. } \quad x \in \Omega, \\
\sup _{\xi \in \mathbf{R}^{N}}\left|f_{\alpha, j}(x, \xi)-f_{\alpha, 0}(x, \xi)\right| \leqq \varphi(x) \quad \text { for a.e. } \quad x \in \Omega
\end{gathered}
$$

where $\quad \varphi \in L^{q}(\Omega), \quad j=1,2, \ldots$;

$$
\begin{gathered}
\lim _{j \rightarrow \infty}\left[\sup _{\xi \in \mathbf{R}^{N}}\left|g_{\alpha, j}(x, \xi)-g_{\alpha, 0}(x, \xi)\right|\right]=0 \quad \text { for a.e. } \\
\sup _{\xi \in \mathbf{R}^{N}}\left|g_{\alpha, j}(x, \xi)-g_{\alpha, 0}(x, \xi)\right| \leqq \psi(x) \quad \text { for a.e. }
\end{gathered} x \in \Omega,
$$

where $\psi \in L^{p / e}(\Omega), \quad j=1,2, \ldots$.
Then I, II, IV-VIII are satisfied for $f_{\alpha, j}, g_{\alpha, j}(j=1,2, \ldots)$ with $p_{\alpha, j}:=p_{\alpha, \mathrm{e}}$, $r_{x, j}:=\left(g_{\alpha, j}-g_{\alpha, 0}\right)+r_{\alpha, 0}$.
2. If there is a constant $c>0$ such that for a.e. $x \in \Omega$, all $(\eta, \zeta),\left(\eta, \zeta^{\prime}\right) \in \mathbf{R}^{N}$
and

$$
\sum_{|a|=m}\left[f_{a, 0}(x, \eta, \zeta)-f_{a, 0}\left(x, \eta, \zeta^{\prime}\right)\right]\left(\xi_{a}-\xi_{\alpha}^{\prime}\right) \geqq c\left|\zeta-\zeta^{\prime}\right|^{p}
$$

$$
\begin{gathered}
\left|\left[f_{\alpha, j}(x, \eta, \zeta)-f_{\alpha, j}\left(x, \eta, \zeta^{\prime}\right)\right]-\left[f_{\alpha, 0}(x, \eta, \zeta)-f_{\alpha, 0}\left(x, \eta, \zeta^{\prime}\right)\right]\right| \leqq \\
\leqq d_{j}\left|\zeta-\zeta^{\prime}\right|^{p-1} \quad(j=1,2, \ldots)
\end{gathered}
$$

where $\lim _{j \rightarrow \infty} d_{j}=0$, then $f_{\alpha, j}$ satisfy III for sufficiently large j.

Lemma 1. Assume that $u_{j} \rightarrow u$ weakly in V and for any bounded domain $\omega \subset \Omega$

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{\infty} h_{j} d x=0 \tag{1.1}
\end{equation*}
$$

where

$$
\begin{align*}
& h_{j}(x)=\sum_{|\alpha|=m}\left[f_{\alpha, j}\left(x, u_{j}, \ldots, D^{\gamma} u_{j}, \ldots, D^{\beta} u_{j}, \ldots\right)-\right. \tag{1.2}\\
& \left.-f_{x, j}\left(x, u_{j}, \ldots, D^{y} u_{j}, \ldots, D^{\beta} u, \ldots\right)\right]\left(D^{\alpha} u_{j}-D^{\alpha} u\right)
\end{align*}
$$

$|\gamma|<m,|\beta|=m$. Then there is a subsequence $\left(u_{j_{k}}\right)$ of $\left(u_{j}\right)$ such that $D^{\beta} u_{j_{k}} \rightarrow D^{\beta} u$ a.e. in Ω for all β with $|\beta| \leqq m$ and for any bounded $\omega \subset \Omega, u_{j_{k}} \rightarrow u$ with respect to the norm of $W_{p}^{m}(\omega)$.

Proof. Since $u_{j} \rightarrow u$ weakly in V there is a subsequence $\left(u_{j_{k}}\right)$ of $\left(u_{j}\right)$ such that for $|\gamma|<m$

$$
D^{\gamma} u_{j_{k}} \rightarrow D^{\gamma} u \quad \text { a.e. in } \Omega
$$

and

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|D^{\gamma} u_{j_{k}}-D^{\gamma} u\right\|_{L^{p}(\omega)}=0 \tag{1.3}
\end{equation*}
$$

for any bounded subdomain ω of Ω (see e.g. [5] and [4]). Further, by assumption III $h_{j} \geqq 0$ and so (1.1) and Fatou's lemma imply that $h_{j} \rightarrow 0$ a.e. in ω. Thus there exists $\omega_{0} \subset \omega$ of measure 0 such that for $x \in \omega \backslash \omega_{0}$

$$
\begin{gather*}
\left|D^{\beta} u(x)\right|<\infty, \quad\left|K_{1}(x)\right|<\infty,\left|K_{2}(x)\right|<\infty, \tag{1.4}\\
D^{\gamma} u_{j_{k}}(x) \rightarrow D^{\gamma} u(x) \quad(|\gamma|<m), h_{j_{k}}(x) \rightarrow 0, \quad k \rightarrow \infty . \tag{1.5}
\end{gather*}
$$

Set

$$
\xi^{(k)}(x)=\left(\ldots, D^{\beta} u_{j_{k}}(x), \ldots\right)
$$

where $|\beta|=m$. By assumptions II, IV, V and (1.4), (1.5) we have

$$
\begin{gather*}
h_{j_{k}}(x) \geqq \sum_{|\alpha|=m} f_{\alpha, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\gamma} u_{j_{k}}, \ldots, D^{\beta} u_{j_{k}}, \ldots\right) D^{\alpha} u_{j_{k}}- \tag{1.6}\\
-\sum_{|\alpha|=m}\left|f_{\alpha, j_{k}},\left(x, u_{j_{k}}, \ldots, D^{\gamma} u_{j_{k}}, \ldots, D^{\beta} u_{j_{k}}, \ldots\right) D^{\alpha} u\right|- \\
-\sum_{|\alpha|=m}\left|f_{\alpha, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\gamma} u_{j_{k}}, \ldots, D^{\beta} u, \ldots\right)\left(D^{\alpha} u_{j_{k}}-D^{\alpha} u\right)\right| \geqq \\
\geqq c_{2}\left|\xi^{(k)}(x)\right|^{p}-c_{3}(x)\left[1+\left|\xi^{(k)}(x)\right|^{p-1}+\left|\xi^{(k)}(x)\right|\right]
\end{gather*}
$$

if $x \in \omega \backslash \omega_{1,}$ where $|\gamma|<m, \quad|\beta|=m$. (For a fixed $x \in \omega \backslash \omega_{0}, D^{\gamma} u_{j_{k}}(x)$ and $f_{a, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\gamma} u_{j_{k}}, \ldots, D^{\beta} u, \ldots\right)$ are convergent and thus they are bounded.) By (1.5) $\left(h_{j_{k}}(x)\right)$ is bounded for a fixed $x \in \omega \backslash \omega_{0}$, thus (1.6) implies that $\left(\xi^{(k)}(x)\right)$ is bounded, too. Consequently, for a fixed $x \in \omega \backslash \omega_{0}$, $\left(\xi^{(k)}(x)\right)$ contains a subsequence which converges to a vector $\xi^{*}(x)$.

Now we show that

$$
\begin{equation*}
\xi^{*}(x)=\xi(x)=\left(\ldots, D^{\beta} u(x), \ldots\right) . \tag{1.7}
\end{equation*}
$$

Indeed, applying (1.2) to the subsequence of $\left(h_{j_{k}}(x)\right)$ with $k \rightarrow \infty$, by (1.5) and assumption V we obtain

$$
\begin{gathered}
0=\sum_{|\alpha|=m}\left[f_{\alpha, 0}\left(x, u(x), \ldots, D^{\gamma} u(x), \ldots, \xi^{*}(x)\right)-\right. \\
\left.-f_{\alpha, 0}\left(x, u(x), \ldots, D^{\gamma} u(x), \ldots, \xi(x)\right)\right]\left[\xi_{\alpha}^{*}(x)-\xi_{\alpha}(x)\right]
\end{gathered}
$$

which implies (1.7) in virtue of assumption III.
So we have shown that all convergent subsequences of the bounded sequence $\left(\xi^{(k)}(x)\right)$ tend to $\xi(x)$. Therefore, $\lim _{k \rightarrow \infty} \xi^{(k)}(x)=\xi(x)$ if $x \in \omega \backslash \omega_{0}$ and thus, by (1.5) $D^{\beta} u_{j_{k}} \rightarrow D^{\beta} u$ a.e. in ω for all β satisfying $|\beta| \leqq m$. Since ω is an arbitrary bounded subset of Ω we have

$$
\begin{equation*}
D^{\beta} u_{j_{k}} \rightarrow D^{\beta} u \quad \text { a.e. in } \quad \Omega \quad \text { if } \quad|\beta| \leqq m . \tag{1.8}
\end{equation*}
$$

By using notations

$$
\begin{gathered}
F_{k}(x)=\sum_{|\alpha|=m} f_{\alpha, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\beta} u_{j_{k}}, \ldots\right) D^{\alpha} u_{j_{k}} \\
F_{0}(x)=\sum_{|\alpha|=m} f_{\alpha, 0}\left(x, u, \ldots, D^{\beta} u, \ldots\right) D^{\alpha} u
\end{gathered}
$$

from (1.1) one obtains that

$$
\begin{aligned}
& \int_{\omega} F_{k} d x-\sum_{|\alpha|=m} \int_{\omega} f_{\alpha, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\gamma} u_{j_{k}}, \ldots, D^{\beta} u_{j_{k}}, \ldots\right) D^{\alpha} u d x- \\
& -\sum_{|\alpha|=m} \int_{\omega} f_{\alpha, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\gamma} u_{j_{k}}, \ldots, D^{\beta} u, \ldots\right) D^{\alpha}\left(u_{j_{k}}-u\right) d x \rightarrow 0,
\end{aligned}
$$

i.e.

$$
\begin{gather*}
\int_{\omega} F_{k} d x-\int_{\omega} F_{0} d x- \tag{1.9}\\
-\sum_{|a|=m} \int_{\omega}\left[f_{\alpha, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\gamma} u_{j_{k}}, \ldots, D^{\beta} u_{j_{k}}, \ldots\right)-\right. \\
\left.-f_{a, 0}\left(x, u, \ldots, D^{\gamma} u, \ldots, D^{\beta} u, \ldots\right)\right] D^{\alpha} u d x- \\
\sum_{|a|=m} \int_{\omega} f_{a, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\gamma} u_{j_{k}}, \ldots, D^{\beta} u, \ldots\right) D^{\alpha}\left(u_{j_{k}}-u\right) d x \rightarrow 0 .
\end{gather*}
$$

By assumptions II, V, (1.8), Hölder's inequality and Vitali's theorem the third term in (1.9) converges to 0 . Furthermore, (1.8), assumptions II, V, (1.3) and Vitali's theorem imply that

$$
f_{a, j_{k}}\left(x, u_{j_{k}} \ldots, D^{\gamma} u_{j_{k}}, \ldots, D^{\beta} u, \ldots\right) \rightarrow f_{a, 0}\left(x, u, \ldots, D^{\gamma} u, \ldots, D^{\beta} u, \ldots\right)
$$

in the norm of $L^{q}(\omega)$. Since $\lim _{k \rightarrow \infty} D^{x}\left(u_{j_{k}}-u\right) \rightarrow 0$ weakly in $L^{p}(\Omega)$ one finds that the fourth term in (1.9) converges to 0 , too.

Therefore, from (1.9) it follows that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{\omega} F_{k} d x=\int_{\infty} F_{0} d x \tag{1.10}
\end{equation*}
$$

By assumption IV

$$
F_{k}(x) \geqq c_{2} \sum_{|\beta|=m}\left|D^{\beta} u_{j_{k}}(x)\right|^{p}-K_{2}(x) .
$$

Thus for functions $G_{k}=F_{k}+K_{2}, G_{0}=F_{0}+K_{2}$ we have

$$
\begin{equation*}
G_{k}(x) \geqq c_{2} \sum_{|\beta|=m}\left|D^{\beta} u_{J_{k}}(x)\right|^{p} \geqq 0, \tag{1.11}
\end{equation*}
$$

(1.8) and assumption V imply that $G_{k} \rightarrow G_{0}$ a.e. in ω, thus from (1.11), (1.12) it follows that

$$
\begin{equation*}
G_{k} \rightarrow G_{0} \text { in } L^{1}(\omega) \tag{1.13}
\end{equation*}
$$

(see [6]). Consequently, (1.8), (1.11) and Vitali's theorem imply that, for $|\beta|=m$, $D^{\beta} u_{j_{k}} \rightarrow D^{\beta} u$ in $L^{p}(\omega)$, and the proof of Lemma 1 is complete.

Assume that instead of III condition

$$
\text { III'. } \sum_{|\alpha| \leqq m}\left[f_{a, j}(x, \xi)-f_{\alpha, j}\left(x, \xi^{\prime}\right)\right]\left(\xi_{\alpha}-\xi_{\alpha}^{\prime}\right)>0
$$

is fulfilled if $\xi \neq \xi^{\prime}$.
An easy modification of the proof of Lemma 1 gives
Lemma 2. Suppose that $u_{j} \rightarrow u$ weakly in V and

$$
\lim _{j \rightarrow \infty} \int_{\Omega} \tilde{h}_{j} d x=0
$$

where

$$
\tilde{h}_{j}(x)=\sum_{|\alpha| \leq m}\left[f_{x, j}\left(x, u_{j}, \ldots, D^{\beta} u_{j}, \ldots\right)-f_{\alpha, j}\left(x, u, \ldots, D^{\beta} u, \ldots\right)\right]\left(D^{\alpha} u_{j}-D u\right) .
$$

Then there is a subsequence $\left(u_{j_{k}}\right)$ of $\left(u_{j}\right)$ such that $u_{j_{k}} \rightarrow u$ with respect to the norm of $W_{p}^{m}(\Omega)$.

2. Stability results

Theorem 1. Assume that conditions $I-X I$ are fulfilled and $u_{j} \in V$ is a solution of

$$
\begin{gather*}
\sum_{|\alpha| \leq m} \int_{\Omega} f_{\alpha, j}\left(x, u_{j}, \ldots, D^{\beta} u_{j}, \ldots\right) D^{\alpha} v d x+ \tag{2.1}\\
+\sum_{|\alpha| \leq t} \int_{\Omega} g_{\alpha, j}\left(x, u_{j}, \ldots, D^{\beta} u_{j}, \ldots\right) D^{\alpha} v d x=\left\langle F_{j}, v\right\rangle
\end{gather*}
$$

for all $\quad v \in V \quad(j=1,2, \ldots)$.
Then there is a subsequence $\left(u_{j_{k}}\right)$ of $\left(u_{j}\right)$ which converges weakly in V to a solution $u \in V$ of (2.1) for $j=0$. Moreover, $D^{\beta} u_{j_{k}} \rightarrow D^{\beta} u$ a.e. in Ω if $|\beta| \leqq m$, and for arbitrary bounded $\omega \subset \Omega, u_{j_{k}} \rightarrow u$ strongly in $W_{p}^{m}(\omega)$.

If solution u of (2.1) for $j=0$ is unique then $u_{j} \rightarrow u$ weakly in V and strongly in $W_{p}^{m}(\omega)$ for any bounded $\omega \subset \Omega$.

Remark. According to [1], for any $F_{j} \in V^{\prime}$ there exists at least one solution $u_{j} \in V$ of (2.1).

Proof of Theorem 1. Applying (2.1) to $v=u_{j}$, by assumptions IV, VI, VII we obtain that

$$
\begin{equation*}
c_{2}\left\|u_{j}\right\|_{V}-\int_{\Omega} K_{2}(x) d x-\sum_{|\alpha| \leq l}\left\|h_{a}\right\|_{L^{p^{\prime} e}(\Omega)}\left\|D^{\alpha} u_{j}\right\|_{L^{q_{1}}(\Omega)} \leqq\left\|F_{j}\right\|_{V^{\prime}}\left\|u_{j}\right\|_{V} \tag{2.2}
\end{equation*}
$$

where q_{1} is defined by $1 /(p / \varrho)+1 / q_{1}=1$.
By an imbedding theorem (see e.g. [4]) for

$$
\begin{gathered}
|\alpha| \leqq l(<m-(n / p)(1-p+\varrho)), \quad v \in W_{p}^{m}(\Omega) \quad \text { we have } \\
\left\|D^{\alpha} v\right\|_{L^{q_{1}(\Omega)}} \leqq c\|v\|_{W_{p}^{m}(\Omega)}
\end{gathered}
$$

(c is a constant) because $q_{1}<n p /\left(n-(m-l) p\right.$). Thus (2.2) and $p>1$ imply that (u_{j}) is bounded in V. Therefore, there exist a subsequence $\left(u_{j_{k}}\right)$ of $\left(u_{j}\right)$ and $u \in V$ such that

$$
\begin{gather*}
u_{j_{k}} \rightarrow u \text { weakly in } V, \tag{2.4}\\
D^{\gamma} u_{j_{k}} \rightarrow D^{\gamma} u \quad \text { a.e. in } \Omega \text { for }|\gamma| \leqq m-1 \tag{2.5}
\end{gather*}
$$

(see [5]).
Consider an arbitrary bounded domain $\omega \subset \Omega$ and a function $\Theta \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ such that $\Theta \geqq 0$ and $\Theta(x)=1$ for $x \in \omega$. By the theorems on compact imbedding (see e.g. [4]) it may be supposed that

$$
\begin{equation*}
D^{\gamma} u_{j_{k}} \rightarrow D^{\gamma} u \text { in } L^{p}(\Omega \cap \operatorname{supp} \Theta) \text { for } \quad|\gamma| \leqq m-1 \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
D^{\gamma} u_{j_{k}} \rightarrow D^{\gamma} u \quad \text { in } \quad L^{q_{1}}(\Omega \cap \operatorname{supp} \Theta) \quad \text { for } \quad|\gamma| \leqq l, \tag{2.7}
\end{equation*}
$$

where q_{1} is defined by $1 /(p / \varrho)+1 / q_{1}=1(l<m-(n / p)(1-p+\varrho))$. By a "diagonal process" the subsequence ($u_{j_{k}}$) can be chosen so that (2.6), (2.7) are true for any fixed $\Theta \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$.

In virtue of assumption $\mathrm{X} \Theta\left(u_{j_{k}}-u\right) \in V$ and thus from (2.1) one obtains

$$
\begin{gather*}
\sum_{|\alpha| \leq m} \int_{\Omega} f_{\alpha, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\beta} u_{j_{k}}, \ldots\right) D^{\alpha}\left[\left(\Theta\left(u_{j_{k}}-u\right)\right] d x+\right. \tag{2.8}\\
+\sum_{|\alpha| \leqq 1} \int_{\Omega} g_{\alpha, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\beta} u_{j_{k}}, \ldots\right) D^{\alpha}\left[\Theta\left(u_{j_{k}}-u\right)\right] d x= \\
=\left\langle F_{j_{k}}, \Theta\left(u_{j_{k}}-u\right)\right\rangle .
\end{gather*}
$$

Since $\left(u_{j_{k}}-u\right) \rightarrow 0$ weakly in V

$$
\begin{equation*}
\Theta\left(u_{j_{k}}-u\right) \rightarrow 0 \quad \text { weakly in } V . \tag{2.9}
\end{equation*}
$$

From (2.8) it follows that

$$
\begin{equation*}
\sum_{|\alpha|=m} \int_{\Omega}\left[f_{\alpha, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\gamma} u_{j_{k}}, \ldots, D^{\beta} u_{j_{k}}, \ldots\right)-\right. \tag{2.10}
\end{equation*}
$$

$$
-f_{\alpha, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\gamma} u_{j_{k}}, \ldots, D^{\beta} u, \ldots\right] \Theta D^{\alpha}\left(u_{j_{k}}-u\right) d x=
$$

$$
=\sum_{|\alpha|=m} \int_{\Omega} f_{x, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\gamma} u_{j_{k}}, \ldots, D^{\beta} u, \ldots\right) \Theta D^{\alpha}\left(u-u_{j_{k}}\right) d x+
$$

$$
+\sum_{|\alpha|=m} \int_{\Omega} f_{\alpha_{,} j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\gamma} u_{j_{k}}, \ldots, D^{\beta} u_{j_{k}}, \ldots\right) \sum_{|\gamma| \leqq m-1} c_{\gamma} D^{\gamma}\left(u-u_{j_{k}}\right) D^{\alpha-\gamma} \Theta d x+
$$

$$
+\sum_{|\alpha| \leq m-1} \int_{\Omega} f_{a, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\gamma} u_{j_{k}}, \ldots, D^{\beta} u_{j_{k}}, \ldots\right) D^{\alpha}\left[\Theta\left(u-u_{j_{k}}\right)\right] d x+
$$

$$
+\sum_{|\alpha| \leqq l} \int_{\Omega} g_{a, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\gamma} u_{j_{k}}, \ldots, D^{\beta} u_{j_{k}}, \ldots\right) D^{\alpha}\left[\Theta\left(u-u_{j_{k}}\right)\right] d x+
$$

$$
+\left\langle F_{j_{k}}, \Theta\left(u_{j_{k}}-u\right)\right\rangle \quad(|\gamma|<m,|\beta|=m)
$$

Now we show that all the terms on the right-hand side of (2.10) converge to 0 as $k \rightarrow \infty$. By (2.4), $D^{\alpha}\left(u_{j_{k}}-u\right) \rightarrow 0$ weakly in $L^{p}(\Omega)$. Furthermore, from (2.5) and assumption V we get

$$
\begin{align*}
& \Theta f_{\alpha, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\gamma} u_{j_{k}}, \ldots, D^{\beta} u, \ldots\right) \rightarrow \tag{2.11}\\
& \rightarrow \Theta f_{\alpha, 0}\left(x, u, \ldots, D^{\gamma} u, \ldots, D^{\beta} u, \ldots\right)
\end{align*}
$$

a.e. in Ω, and, consequently, by assumption II, (2.6) and Vitali's theorem (2.11) is valid in $L^{q}(\Omega)$ norm, too. Thus the first term in (2.10) converges to 0.

By assumptions I, II the functions

$$
f_{a^{\prime}, j_{k}}\left(x ; u_{j_{k}}, \ldots, D^{\gamma} u_{j_{k}}, \ldots, D^{\beta} u_{j_{k}}, \ldots\right)
$$

are bounded in $L^{q}(\Omega)$, hence (2.6) implies that the second and third terms in (2.10) converge to 0 as $k \rightarrow \infty$.

From assumptions VI-VIII it follows that

$$
g_{a, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\gamma} u_{j_{k}}, \ldots, D^{\beta} u_{j_{k}}, \ldots\right)
$$

is bounded in $L^{p / e}(\Omega \cap \operatorname{supp} \Theta)$, thus (2.7) implies that the fourth term in (2.10) converges to 0 as $k \rightarrow \infty$. Finally, for the last term we have

$$
\begin{gathered}
\left|\left\langle F_{j_{k}}, \Theta\left(u_{j_{k}}-u\right)\right\rangle\right| \leqq\left|\left\langle F_{j_{k}}-F_{0}, \Theta\left(u_{j_{k}}-u\right)\right\rangle\right|+ \\
+\left|\left\langle F_{0}, \Theta\left(u_{j_{k}}-u\right)\right\rangle\right| \leqq\left\|F_{j_{k}}-F_{0}\right\|_{v} \cdot\left\|\Theta\left(u_{j_{k}}-u\right)\right\|_{V}+\mid\left\langle F_{0}, \Theta\left(u_{j_{k}}-u\right)\right\rangle,
\end{gathered}
$$

thus assumption XI, (2.9) imply that also the last term in (2.10) converges to 0 as $k \rightarrow \infty$.

Thus we have shown that the term on the left-hand side of (2.10) converges to 0 as $k \rightarrow \infty$. By assumption III and $\Theta \geqq 0$ we find that (1.1) is valid for a subsequence of $\left(h_{j}\right)$. Consequently, from Lemma 1 we obtain that ($u_{j_{k}}$) contains a subsequence $\left(u_{j_{k}}\right)$ such that

$$
\begin{equation*}
D^{\beta} u_{j_{k}}^{\prime} \rightarrow D^{\beta} u \quad \text { a.e. in } \Omega \tag{2.12}
\end{equation*}
$$

if $|\beta| \leqq m$, and for any bounded $\omega \subset \Omega$

$$
\begin{equation*}
\left(u_{j_{k}}\right) \rightarrow u \text { in } W_{p}^{m}(\omega) . \tag{2.13}
\end{equation*}
$$

(2.12) and assumption V implies that

$$
f_{a, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\beta} u_{j_{k}}, \ldots\right) \rightarrow f_{a, 0}\left(x, u, \ldots, D^{\beta} u, \ldots\right)
$$

a.e. in Ω. Therefore, assumption II the boundedness of $\left\|u_{j_{k}}\right\|_{V}$, Hölder's inequality and Vitali's theorem imply that for any $v \in V$

$$
\begin{gather*}
\lim _{k \rightarrow \infty} \sum_{|\alpha| \leqq m} \int_{\Omega} f_{\alpha, j_{k}}\left(x, u_{j_{k}^{\prime}}, \ldots, D^{\beta} u_{j_{k}^{\prime}}, \ldots\right) D^{\alpha} v d x= \tag{2.14}\\
=\sum_{|\alpha| \leqq m} \int_{\Omega} f_{\alpha, 0}\left(x, u, \ldots, D^{\beta} u, \ldots\right) D^{\alpha} v d x .
\end{gather*}
$$

By using assumption IX and (2.12) we find $g_{\alpha, j_{k}}\left(x, u_{j_{k}^{\prime}}, \ldots, D^{\beta} u_{j_{k}^{\prime}}, \ldots\right) \rightarrow$ $\rightarrow g_{a, 0}\left(x, u, \ldots, D^{\beta} u, \ldots\right)$ a.e. in Ω and thus, by assumptions VI-VIII, (2.3), Hölder's inequality and Vitali's theorem we find that for any $v \in V$

$$
\begin{gathered}
\lim _{k \rightarrow \infty} \sum_{|\alpha| \leq l} \int_{\Omega} g_{\alpha, j_{k}}\left(x, u_{j_{k}^{\prime}}, \ldots, D^{\beta} u_{j_{k}^{\prime}}, \ldots\right) D^{\alpha} v d x= \\
\quad=\sum_{|a| \leq l} \int_{\Omega} g_{\alpha, 0}\left(x, u, \ldots, D^{\beta} u, \ldots\right) D^{\alpha} v d x
\end{gathered}
$$

Thus from (2.1), (2.14), assumption XI it follows that u is a solution of (2.1) for $j=0$ and, by (2.4), (2.12), (2.13), the proof of the first statement of Theorem 1 is complete.

If solution u of problem (2.1) for $j=0$ is unique but " $u_{j} \rightarrow u$ weakly in V " is not true then there are $G \in V^{\prime}$, a positive number ε and a subsequence (u_{j}^{\prime}) of (u_{j}) such that

$$
\begin{equation*}
\left|G u_{j}^{\prime}-G u\right|>\varepsilon, \quad j=1,2, \ldots . \tag{2.15}
\end{equation*}
$$

Applying the first statement of Theorem 1 to $\left(u_{j}^{\prime}\right)$ instead of $\left(u_{j}\right)$ we find that there is a subsequence $\left(u_{j}^{\prime \prime}\right)$ of $\left(u_{j}^{\prime}\right)$ which converges weakly in V to a solution of (2.1) for $j=0$, i.e. $u_{j}^{\prime \prime} \rightarrow u$ weakly in V (because the solution of (2.1) for $j=0$ is unique). But this is impossible because of (2.15). It can be proved similarly that then $u_{j} \rightarrow \boldsymbol{u}$ strongly in $W_{p}^{m}(\omega)$ for any bounded $\omega \subset \Omega$.

Theorem 2. Assume that conditions $I-I I, I I I^{\prime}, I V-X I$ are fulfilled and $u_{j} \in V$ is a solution of (2.1). Then there is a subsequence $\left(u_{j_{k}}\right)$ of $\left(u_{j}\right)$ which converges strongly in V to a solution $u \in V$ of (2.1) for $j=0$. If the solution u of (2.1) for $j=0$ is unique then $\left(u_{j}\right)$ also converges to u strongly in V.

Proof. Assumption III' implies III thus all conditions of Theorem 1 are fulfilled. Consequently, by Theorem 1 there is a subsequence $\left(u_{j_{k}}\right)$ of $\left(u_{j}\right)$ such that

$$
\begin{equation*}
u_{j_{k}} \rightarrow u \text { weakly in } V \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
D^{\beta} u_{j_{k}} \rightarrow D^{\beta} u \quad \text { a.e. in } \Omega \quad \text { for } \quad|\beta| \leqq m, \tag{2.17}
\end{equation*}
$$

where u is a solution of (2.1) for $j=0$.
Now we show that the sequence ($u_{j_{k}}$) satisfies the condition of Lemma 2. Since $u_{j_{k}}$ is a solution of (2.1) with $j=j_{k}, v=u_{j_{k}}$ and u is a solution of (2.1) with $j=0$, $v=u$, we have

$$
\begin{align*}
& \sum_{|\alpha| \leqq m} \int_{\Omega}\left[f_{\alpha, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\beta} u_{j_{k}}, \ldots\right)-f_{a, j_{k}}\left(x, u, \ldots, D^{\beta} u, \ldots\right)\right]\left(D^{\alpha} u_{j_{k}}-D^{\alpha} u\right) d x= \tag{2.18}\\
& =\sum_{|\alpha| \leqq m} \int_{\Omega} f_{\alpha, j_{k}}\left(x, u, \ldots, D^{\beta} u, \ldots\right)\left(D^{\alpha} u-D^{\alpha} u_{j_{k}}\right) d x+ \\
& +\sum_{|\alpha| \leq m} \int_{\Omega}\left[f_{\alpha, 0}\left(x, u, \ldots, D^{\beta} u, \ldots\right)-f_{\alpha, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\beta} u_{j_{k}}, \ldots\right)\right] D^{\alpha} u d x+ \\
& +\sum_{|a| \leqq l} \int_{\Omega}\left[g_{\alpha, 0}\left(x, u, \ldots, D^{\beta} u, \ldots\right) D^{\alpha} u-g_{\alpha, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\beta} u_{j_{k}}, \ldots\right) D^{\alpha} u_{j_{k}}\right] d x+ \\
& \\
& +\left\{\left\langle F_{j_{k}}, u_{j_{k}}\right\rangle-\left\langle F_{0}, u\right\rangle\right\} .
\end{align*}
$$

Applying Vitali's theorem, Hölder's inequality, assumptions I, II, V and (2.16), (2.17), we find that the first and second terms on the right-hand side of (2.18) converge to 0 as $k \rightarrow \infty$. By assumption XI and (2.16) we have

$$
\begin{aligned}
& \left|\left\langle F_{j_{k}}, u_{j_{k}}\right\rangle-\left\langle F_{0}, u\right\rangle\right| \leqq\left|\left\langle F_{j_{k}}-F_{0}, u_{j_{k}}\right\rangle\right|+\left|\left\langle F_{0}, u_{j_{k}}-u\right\rangle\right| \leqq \\
& \leqq\left\|F_{j_{k}}-F_{0}\right\|_{V^{\prime}}\left\|u_{j_{k}}\right\|_{V}+\left|\left\langle F_{0}, u_{j_{k}}-u\right\rangle\right| \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty .
\end{aligned}
$$

Furthermore, (2.17) and assumption IX yield

$$
p_{\alpha, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\beta} u_{j_{k}}, \ldots\right) D^{\alpha} u_{j_{k}} \rightarrow p_{\alpha, 0}\left(x, u, \ldots, D^{\beta} u, \ldots\right) D^{\alpha} u
$$

a.e. in Ω. In virtue of Fatou's lemma and assumption VII we get the inequality

$$
\begin{gather*}
\int_{\Omega} p_{\alpha, 0}\left(x, u, \ldots, D^{\beta} u, \ldots\right) D^{\alpha} u d x \leqq \tag{2.19}\\
\leqq \liminf _{k \rightarrow \infty} \int_{\Omega} p_{\alpha, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\beta} u_{j_{k}}, \ldots\right) D^{\alpha} u_{j_{k}} d x
\end{gather*}
$$

Assumptions VII, IX, (2.17), Hölder's inequality and Vitali's theorem imply that

$$
\begin{gathered}
\lim _{k \rightarrow \infty} \int_{\Omega} r_{\alpha, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\beta} u_{j_{k}}, \ldots\right) D^{\alpha} u_{j_{k}} d x= \\
\quad=\int_{\Omega} r_{\alpha, 0}\left(x, u, \ldots, D^{\beta} u, \ldots\right) D^{\alpha} u d x
\end{gathered}
$$

Hence and from (2.19) it follows that

$$
\begin{gathered}
\limsup _{k \rightarrow \infty} \sum_{|\alpha| \leqq l} \int_{\Omega}\left[g_{\alpha, 0}\left(x, u, \ldots, D^{\beta} u, \ldots\right) D^{\alpha} u-\right. \\
\left.-g_{\alpha, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\beta} u_{j_{k}}, \ldots\right) D^{\alpha} u_{j_{k}}\right] d x= \\
=\lim _{k \rightarrow \infty} \sup _{|\alpha| \leqq l} \sum_{\Omega}\left[p_{\alpha, 0}\left(x, u, \ldots, D^{\beta} u, \ldots\right) D^{\alpha} u-\right. \\
\left.-p_{\alpha, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\beta} u_{j_{k}}, \ldots\right) D^{\alpha} u_{j_{k}}\right] d x \leqq \\
\leqq \sum_{|\alpha| \leqq l} \int_{\Omega} p_{\alpha, 0}\left(x, u, \ldots, D^{\beta} u, \ldots\right) D^{\alpha} u d x+ \\
+\sum_{|\alpha| \leqq l} \lim \sup _{k \rightarrow \infty} \int_{\Omega}\left[-p_{\alpha, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\beta} u_{j_{k}}, \ldots\right) D^{\alpha} u_{j_{k}}\right] d x \leqq 0 .
\end{gathered}
$$

In virtue of (2.18) we have shown that

$$
\begin{aligned}
& \limsup _{k \rightarrow \infty} \sum_{|x| \leqq m} \int_{\Omega}\left[f_{\alpha, j_{k}}\left(x, u_{j_{k}}, \ldots, D^{\beta} u_{j_{k}}, \ldots\right)-\right. \\
& \left.-f_{a, j_{k}}\left(x, u, \ldots, D^{\beta} u, \ldots\right)\right]\left(D^{\alpha} u_{j_{k}}-D^{\alpha} u\right) d x \leqq 0
\end{aligned}
$$

Hence by assumption III' it follows that ($u_{j_{k}}$) satisfies the conditions of Lemma 2 and there is a subsequence $\left(u_{j_{k}}\right)$ of $\left(u_{j_{k}}\right)$ such that $u_{j_{k}^{\prime}} \rightarrow u$ in $W_{p}^{m}(\Omega)$. This completes the proof of the first statement of Theorem 2. The case when the solution u of (2.1) for $j=0$ is unique can be treated in the same way as in the proof of Theorem 1.

References

[1] L. Simon, On boundary value problems for nonlinear elliptic equations on unbounded domains, Publ. Math., Debrecen, 34 (1987), 75-81.
[2] F. E. Browder, Pseudo-monotone operators and nonlinear elliptic boundary value problems on unbounded domains, Proc. Nat. Acad. Sci. USA, 74 (1977), 2659-2661.
[3] L. Boccardo and F. Donati, Existence and stability results for solutions of some strongly nonlinear constrained problems, Nonlinear Anal. 5 (1981), 975-988.
[4] О. В. Бесов и В. П. Ильин и С. М. Никольский, Интегральные представления функций и теоремы вложсения, Наука, (Москва, 1975).
[5] D. E. Edmunds and J. R. L. Webb, Quasilinear elliptic problems in unbounded domains, Proc. Roy. Soc. London Ser. A, 337 (1973), 397-410.
[6] И. П. Натансон, Теория функций вецественной перемениой. Наука (Москва, 1974).

DEPARTMENT OF APPLIED ANALYSIS
EOTVƠS LORÁND UNIVERSITY
MÚZEUM KRT. 6-8
1088 BUDAPEST, HUNGARY

[^0]: Received February 21, 1985.

