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On the minimal ring containing the boundary
of a convex body

IMRE BARANY

1. Let KcR? be a convex compact set with boundary C. For each point x€K
there exist a minimal circular disc B(R(x), x) containing K and a maximal circular
disc B(r(x), x) contained in K, where B(r, x) denotes the disc with radius r and cen-
ter x, '

The function R(x)—r(x) attaines its minimal value in a unique point x,€K.
This was shown by BONNESEN [1], Bonnesen and FENCHEL [2]. So the circular ring
around x, with radii R(x,) and r(x,), respectively, is the minimal ring containing the
boundary C of K.

This result was used by Bonnesen and Fenchel [2] to sharpen the isoperimetric
inequality in R2. Later 1. VINczE [7] showed that

min {R(x): x€K} _ ﬁ

@ R(x) =72
and
@ max {r(x): x€K} -2

r (%)
and these inequalities are sharp.

Answering a question due to I. Vincze we genetalize the inequalities (1) and (2)
to arbitrary dimension. To do so we need a theorem characterizing the minimal ring
in R% For d=2 and d=3 such a theorem was found by Bonnesen [1] and by
KRriTikos [4]. The main tool in the proof of our results is the use of convex analysis
(see: Viopde — Tuxommpos [3] and ROCKEFELLAR [5]).

2. Again, let KcR? be a convex compact set with boundary C. B(r, x) stands
for the ball with radius r and center x. For x¢K we define

R(x) = min{R: B(R,x) 2 K},
r(x) = max {r: B(r, x) € K}.
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1t is easy to see that the maximum and minimum above exist, so the definition is
correct. Moreover, this means that for each x€ K there exist points p and g such that
p,q€C and | x—p|=R(x) and ||x—gqll=r(x). In this case we say that p supports
R(x) and g supports r(x).

Theorem 1. There exists a point x,€K in which the function R(x)—r(x)
attaines its minimal value. This point x, is unique.

The set {x€R?: r(xp)=|lx—x,/l=R(xy)} is called the minimal ring containing C.
The characterization theorem for the minimal ring is this:

Theorem 2. The point x,€K is the center of the minimal ring if and only if
there are points p., ..., p,€C supporting R(x,) and q,, ..., q,€C supporting r(x,)
(k,I=1) such that

Pi—Xo . . _ Gi—Xo . . _ : } -
conv{ RGo) - i=1, ...,k}ﬂconv{ o) 1j=1,.., 1 =0,

where conv denotes the convex hull.
There is a certain converse to this theorem. We describe it when x,=0.

Theorem 3. Let py, ..., Dys G5 ---» 4; be vectors in R? such that
@ lpll=...=lpll=R=r,

(i) lg:ll=...=lgll=r=0,

(i) {p/R: i=1, ..., k}Nconv {g,/r: j=1, ..., I}#0,

(iv) each p; is contained in the halfspaces

{x€R*: {g;,q;—x)= 0} (j=1,..,0D).

In this case there exists a convex compact set KCR? for which R(x)—r(x) attaines
its minimal value at x,=0, R(0)=R, r(0)=r and R(0) is supported by p,, ..., p,€C
and r(0) is supported by q,, ..., q,€C.

Now we give the generalization of the inequalities (1) and (2).

Theorem 4, For d=3, max r(x)/r(x,) isnot bounded from above. On the other
hand, for d=3,

. 1 1 0
min R(x)/R(x,) = 5 [cos2 &y +cos ay— 1 +m) = 0.8054,
where 0y€(0, nf2) is the root of the equation sin®a—2 cos® a=0. This inequality is
sharp.

3. This section contains the proofs. We start with some simple facts and obser-
vations.
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Claim 1.
R(x) = max [x—pll = max lx—pl,

r(x) = inf |x—p| = min |x—pl,

and the points in which the maximum (minimum) is attained support R(x) (r(x), re-
spectively ).

Claim 2.

. X1+ X 1
@ R(ZE% < L (RGw) + Rex)
and if equality holds here, then there is a unique p&C supporting R((x;+x.)/2)
and this point lies on the straight line through x, and x,, and p supports R(x;) and
R(x5) as well.
X1+ X 1
(b) 2 (——12—3—) = (rxD)+r(xy)
Proof. (a) Let pcC be a point of support for R((x;+xp)/2). Then
pEB(R(xy), x;)NB(R(x,), x5} and the triangle-inequality proves the claim.

(b) Obviously conv (B(r(xy), x1) UB(r(x,), %)) EK and an easy calculation
shows that _

B[ r(x) ;—r(xg) , 2 ;xZ] S conv (B(r(xy), X)) U B(r(x,), x2)).

Proof of Theorem 1. By Claim 2, R(x) is a convex, r(x) is a concave func-
tion. So R(x)—r(x) is convex and attaines its infimum. What we have to show is the
uniqueness of the minimum. This will be done by showing that x;, x,€K, x;#x»
and R(x))—r(x)=R(xy)—r(x)=h implies that R((x;+x,)/2)—r((x;+x,)/2)<h.

Convexity implies that R((x;+x5)/2)—r((x,+x,)/2)=h, so assume, by way of
contradiction, that R((x;+xp)/2)—r((x,+x;)/2)=h. Then by Claim 2, we have
R((x;+x2)/2)=1/2(R(x;)+ R(xs)) and a unique point p€C supporting R(xy),
R(x5) and R((x,+ x,)/2) and p lies on the straight line through x, and x,. Without loss
of generality we suppose that x; lies between x; and p on this line. By our assumption
R(x)—r(x)=R(xx)—r(x;), s0 B(r(x,),x;)SB(r(xy), x;), and then there is a
unique point g€C supporting r(x,) and this point lies on the line segment joining
X, and p. But K contains the set conv (B(r(x,), x;)U {p}) and this set contains g in
its interior. This contradicts the assumption

x1+x2)__ [x1+x2)_
R( 3 r 5 =h 0O
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For fixed p€C define Z(p) as the set of unit outer normals to K at p, i.e.,

Z(p) = {zeR": |lz| = 1,{z, p) = max(z, x)}.
Define now
I = {(p, 2)ER*X R: z€Z(p)}.

It is clear that I' is compact.
Claim 3. (a) R(x) = max {{z, p—x): (p, 2)€T},
(b) r)=min {(z p—x): (p, €T}
Proof. (a) Clearly for each (p, z)€o
(zp—x) = |lz] - |p—x] = |p—x|l = R(x).
If p, supports R(x), then (py, ((po—x)/llp—xl)€I' and

Do—X >
S py—x) = R(x).
Ipo—x] * o ()

(b) Trivially {(z, p—x)=r(x) for each (p,z)eI'. On the other hand it is easy
to check that if p, supports r(x), then Z(py)={po—x/llpo—x|} and

Po—X
|po — x|
Using Claim 3 the function r: K—~R' can be extended over the whole space
R% It is again easy to see that the extended r(x) is concave, and so the function
R(x)—r(x) (x€RY) attaines its minimal value at xo€K only.

R po—x> =r(x). O

To prove Theorem 2 we need some definitions and theorem from convex analysis.
Definition. Let f: R*~R be a convex function. The set .
f (x) = {x*€R%: (x*,z—x) = f(2)—f(x) (for every z€R%}
is the subgradient of f at x.

It is well-known that the subgradient of a finite convex function is nonempty,
‘convex and compact.

Theorem A (Fenchel, Rockafellar—Moreau, see [5]). Let f: R‘~R be con-
vex, g:R!=R concave functions, finite over the whole space. Then f(x)—g(x)
attains its minimum at x, if and only if

0€df (%0) + B(—£)(x0).

Here the last addition is meant in the Minkowski sense; (—g) is a convex func-
tion so d(—g)(x,) is its subgradient at x,.
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Theorem B (Modpe — Tuxomupos [3]). Assume I' is compact and the map
y—(x}, a,)ER*XR. is continuous. Let f(x)=sup {(x}, x)+a,: yéT'}. Then f: R’~R
is a finite convex function and df(xg)=conv {x}: yeI and (x}, Xo)+a,=f(xo)}-

Now we are réady to prove Theorem 2.

Proof of Theorem 2. First by Theorem B
. dR(x,) = conv {—z:A (p, 2)ET, {z, p— xo) = R(xp)},
d(=1)(xo) = conv {z: (p, 2)€T, (z, p— Xo) = 1(X0)}-

By Theorem A, R(x)—r(x) is minimal at x, if and only if for some x*E R, x*€OR(x,)

and ——x*€3( r)(xp). But x*€IR(x,) is the same as x =—Zaz, for some

=0, Z a;=1 and z; with (p;, z)€I, (z;, pi—Xop=R(x,).
Thls is true if and only if z;=p;— x,/| p;— x0||, i.e., if p; supports R(xo) Simi-
larly — x*€0(—r)(x,) is equivalentto —x*= 2’ B;w; for some B;=0, Z’ B;=1 and

w; with (g;, w,)€T, (w;, q;— Xo)=r(x,). In this case again w; —(ql—xo)/llqj xoll and g;
supports r(x,). These conditions imply that R(x)—r(x) is minimal at x, if and only if
there exist points pi, ..., p€C supporting R(x,) and ¢, ...,q;€C supporting
r(x,) such that

conv{pl‘((_—xf)": i=1, ...,k}ﬂconv{—q-’(T j

So we are finished with the proof. We mention that k=1 (or /=1) implies
that K is a ball. Further, it can be shown that if conv P(conv Q=@ for some
P, QcR?, thenthere are subsets P’S P and Q' SQ suchthat conv P’Nconv Q' =0
and |P’|+|Q)'=d+2. This means that we can suppose k+/=d+2 in Theorem 2.

I mention here that the “only if” part of Theorem 2 can be proved in a simpler
way: Set P={(p;—xo)/R(xo): i=1,...,k} and Q={(g;—xo)/r(xp): j=1,....1}. If
conv PNconv Q=#, then there is a hyperplane separating P and Q with normal
acRY, say. One can easily see that R(xy)>R(x;+a) and r(xg)<r(x,+a) which
shows that R(x)—r(x) cannot attain its minimal value at x,.

=1, ...,l} = 0.

Proof of Theorem 3. Set

Knin = conv (B(r, 0)U{py, ..., p}).

Ko = BRON() (52 <03 9= = 0}
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It is easy to see that both K, and K satisfy the conditions of Theorem 2 with

xo=0 and p,, ..., px, 41, -.., q,- Moreover, any convex compact set K with K, &
CKCK,,, will do the same.

Proof of Theorem 4. First part. We construct a convex compact set Kc R?
for each d=3 such that max r(x)/r(x,) is “large”.

Let Py, Pz 415 92 be the vertices of a square such that ||pyf| =[Pl =llg:ll =llg.ll =1
and the length of the diagonals p, p, and q, g, is 2—¢ (where ¢>0 is small). The hy-
perplanes (g, ¢;—x)=0 and {g,, g,—x)=0 meet in an affine flat 4. The halflines
starting from the origin in directions p, and p, meet 4 in the points p,=Rp; and
ps=Rp,. Consider the set X ,, from Theorem 3 with p,, p, and ¢, ¢,. A simple
calculation shows that

2

R(0)=(s—%]—1, 7(0)=1, and maxr(x):(s—%z-]—llz.

So we have
max r(x) ( e’]-”z
—_— =l —
r(xo)

4
which indeed tends to infinity as £—0.

Second part. Let KcR? (d=3) be convex compact body and suppose that
R(x)—r(x) attaines its minimal value at x,="0 and r(x)=1, R(x;)=R. By Theorem 2
there exist points p,, ..., p; supporting R(x,) and ¢, ..., g, supporting r(x,) with

conv{p/R:i=1,..,k}conv{g;: j=1,..,1} =0,

and we may assume k,/=2, k+I/=d+2. Then conv {p,,...,p;} is a simplex
whose nearest point to the origin is p, say. Clearly |p,—pol=...=|pi.—p,] and
the angle between the vectors p; and p, is the same for each i. Denote this angle by «.

Now the halfspaces (g;,q;—x)=0 (j=1, ...,1) have to contain the simplex
conv {p;, ..., p} and so the point p, as well. On the other hand, for some j=1, ...,/
the angle between the vectors g; and p, is not larger than « for otherwise

conv{p/R:i=1,...,k}Nconv{g;: j=1,...,1} = .
This implies that
0={(g;,9,—pPy) = 1—{q,P0) =
= 1—1lq,]| - || ol c0s (€(g;0po) = 1— Rcos®a.

Consider now min R(x)=¢ and set R(X)=p, x€K. Then B(p,X) contains the

points py, ..., p, and the ball B(1, 0), so it contains the point py=—p./ll p,ll as well.
We are going to give an estimation from below for the radius of the smallest ball
containing the points p,, py, ..., py. It is clear that the smallest ball containing
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D1s .- Py 1S B(Rsin o, py) and so Rsin a=g. However if || p,—pol=R cos ¢+ 1>
>R sin a, then B(R sin «, p,) does not contain p,. In this case, using some elemen-
tary geometry, we get the estimation

14+2Rcosa+ R?
o=
2(14+ Rcosa)

Define now
sina if Rsine = Rcosa+1,
S (R,a)=1 1+2Rcosa+ R?

2R+ Roos®) otherwise

where R=1, 0=a=n/2 and Rcos?a=1.

What we have to do is to find the minimum of fin the domain determined by
these inequalities. This is a routine calculation. The main steps are:

1) for R fixed f(R, &) is monotone non-decreasing, so the minimum is attained
on the curve Rcos?a=1;

2) on this curve the minimum of f'is equal to

—%—(cos2 g+ oS ag— 1 +cos— ap)

where o, is the solution of the equation sin?x—2 cos® =0 with 0=a,=n/2.
This proves that

min R(x) 1

1
———————— — 2 —
@ R(x0) = 5 (cos op+-cos og— 1+ oS % )

Finally we give an example showing that equality can occur here for d=3,4, ....
Again, let Py, P», q1, g» be the vertices of a square such that the diagonals p,, p,
and ¢,, g, meet in a point ¢ and the angle between ¢ and P,, p,, g1, 4o €quals o.
Now set p= cos~2a, p; and p,= cos~2«, P, and apply Theorem 3 with the vectors
P15 P2» 41 g2 tO get the convex compact set K ;.. An easy calculation shows that for
K., (4) holds with equality.

Acknowledgement. The author is indebted to professor I. Vincze for raising the
problem and for fruitful discussions. .
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