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Integral manifolds, stability and decomposition of smgularly
perturbed systems in Banach space '

V. A. SOBOLEV*)

‘1. Introduction. This paper is dealing with the study of infinite dimensional
singularly perturbed systems near an integral manifold.
Consider the system
%= f(t, x, y, )
(1.1
ey = Ay+eg(t, x,, €

where x and y are elements of Banach spaces X and Y with norms |- ||, 4 is a con-
stant linear bounded operator in Y, and

f: RXXXY X[0, 6] ~ X, g: RXXXY X[0, 6] ~ Y

are continuous nonlinear operator functions. Using the method of integral mani-
folds [1, 2] we shall study the stability problem for (1.1) and the problem of decom-
position of (1.1) by transforming it to the form

(1.2) u=F(@,u,z¢),
(1.3) eb = Av+eG(t, u, v, &).

Then we shall apply this method for investigation of linear singularly perturbed
systems.

2. Slow manifold. We first recall the definition of an integral manifold for
the equation %X=X(#, x) where x is an element of a Banach space. A set S is said
to be an integral manifold if for. (f, xo)€S, the solution (¢, x(2)), x(f)=x, is in
S for t€R. If (t, x(1))€S only at a finite interval, then we shall say that § is a
local mtegral mamfold
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Let B,={ycY, yl=r}, I =[O, &l Q=R><XXB,><I,‘. Assume that f and
g are bounded and satisfy the Lipschitz condition in x, y on Q:

@1 Ift, syl =M, lgtxyel=M,
"f(t: X Yy 8) _f(t) f, f9 6)“ = I(HX—fﬂ +“y_y")v

"g(ta X, Y, e)—g(t, X, j’-’ 8)“ = l(“x_f“ +“y—)7“),

where M and [ are positive constants.
Assume that the spectrum o(A4) of the linear bounded operator A satisfies
the inequality Re g(A)= —2x<0. Then there exists a positive number K such that

2.3) le*] = Ke=®, t=0.

We shall say that the integral manifold of system (1.1) is a slow manifold if
it can be represented of form y=*h(t, x, &), where 4 is a continuous operator-func-
tion. If ¢, is sufficiently small then for each £€(0, g,) the system (1.1) has an integral
manifold (slow manifold) represented of form y=eh(t, x, £) (see [1], p. 438). Here
h is a continuous and bounded operator-function defined on Q;=RXX X1, and
satisfies the Lipschitz condition in x:

4 Ih(t, x, ) —h(t, %, &)] = A[x~%], 4=0.

Moreover, if f and g are continuously differentiable on Q to k order and their -
derivatives are bounded-and Lipschitzian in x, y then # is continuously differentiable
on , to k and its derivatives are bounded and Lipschitzian in x. In this case the
operator-function 4 can be represented as asymptotic expansion eh=eh,(t, x)+...
v 4R, X)+hy i1 (1, X, 8) where k., =O(e*Y). The coefficients #; of this
expansion can be found from the equation

ok
i

. - For finite dimensional systems this method of approximating slow manifolds
was essentially used in [3]. The method of approximation used in [4] can be gen-
eralized to infinite dimensional problems in an obvious way.

. The flow on a slow manifold is governed by the reduced equation (1.2), where
F(t, u, e)=f{¢, u, eh(t, u, &), ¢).

" It is well-known for finite dimensional spaces X that the condition f(¢, 0, 0, £)=0,
2(1,0,0, e)=0 implies A(z, 0, )=0 and if the zero solution of (1:2) is stable (asymp-
totically stable, unstable) then the zero solution of (1.1) is stable (asymptotically
stable, unstable). We shall prove below this statement for infinite dimensional X.

2.2)

2.5 +e& g—;}:.f(t’ x, ch,e) = Ah+g(t, x, &h, €).

3. Integral manifold for anxiliary system. Let us suppose that fand g are con-
tinuously differentiable on Q and their derivatives are bounded and Lipschitzian
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in'x, y and introduce new variables u, z and x, by the formulae z=y--gh(s, x, &),
x,=x—u where u satisfies (1.2). Consider the following auxiliary differential system

u = F(t,u,c)
3.1 % =filt,u, x1,2,8)
ez = Az+eZ(t, u, X, 2, &),
where fi=f(t, u+x,, z+eh(t, u+x,,6), e)— F(t, u, &),
Z = g(t, u+x,, z+eh(t, u+x,, ), &) —g(t, u+x,, eh(t, u+x,, €), &) —

—e%—(t, u+xy, [ f(t, u+xy, z+eh(t, u+x,,€), 8)~f(t, u+x,, eh(t, u+x,,¢), )]

By means of our assumptions it is easy to show that there exists a constant
N=0 such that f; and Z satisfy the following inequalities

(3.2 A u, %1, 2, )] = N(|xa +12]),

(3.3) |Z(t, u, x,, z, &) = Njz|,

34 1A, u, x4, 2, €)—f1(t, 4, %1, 2, )] = N(|x,—%,] +1z—2]),
(3.5 |Z(t, u, %15 2, ) —Z(t, u, X1, Z, &) = N(|xy =%, +]z—Z2[),
(3.‘6) 1A, u, %1, 2, 8)—f1(8, 4, Xy, Z, 8)|| =

= N1+ x|+ 2011z =2} + 0+ [x21) [ = Xy [} + (2] + ) 2])) s —aa]]],
B NZ(t, u, %1, 2, )—=Z(t, &, %1, 2, &) = N{lz—Z] + 2] (|lu—#] + % — %],
where t€R, u,t€X, x,%€X, z,Z¢B,, O<r=r.

We shall show that the system (3.1) has an integral manifold represented of
form x;=cH(t, u, z,¢), where H is an operator-function defined and continuous

r
on Q,=RXXXB,XI,, 0<g<? 0O<e=g,, and H satisfies the inequalities:

(3.8) lH(t, u, z, ¢)| = alz],
(39 - NH(t, u,2,)—H(t,u, 2, 8)] = b]z—Z],
(3.10) |H(t, u, z, ) —H(t, 4, z, )] = c|z] - [u—d,

with a, b, c=0 for 1€R, u,ucX, z,Z€B,, e€1,,.

The flow on this manifold is governed by reduced equatlons (1 2), (1.3), where
F=f(t,u,ch(t,u, 8),¢), G=Z(t,u, eH(t, u, v, ), v,€).
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Moreover, every solution of (L.1) with |[|y(t))—eh(f,x(%), ]| =0 can be
represented of form
x = u+teH(t, u,v,¢),
(3.11)
y = v+eh(t, x, &) = v+eh(t, u+eH(t, u, v, ), &),

where u, v is the corresponding solution of (1.2), (1.3).

Our proof of this statements is modelled on KELLEY {5].

Let S be the set of operator-functions eH: Q,—~ X such that H is contipuous
and satisfies (3.8)—(3.10). Let 4 be a metric on § defined by

d(eH, eH) = sup{"—;“-sﬂH(t, u, z,e)—H(t, u, z, )|, t€R, ueX, ZEBQ}

for each £€(0,¢,], eH, eH¢S and note that S is a complete metric space with
respect to d.
For each eHeS, we consider the system

(.12) i = F(t, u, &),
(3.13) g2 = Az+eZ(t, u, eH(t, u, z, €), 2, &),

with solutions denoted by u=®(1, 1, uy,8), 2=" (¢, ty, Uy, Z4, £|H) where
D(ty, ty, Uy, E)=Uy, W(to, to, Uy, Zg, E|H)=2,. The operator-functions F(¢, u, €),
Z(t,u, eH(t,u, z,€), 2, &) are uniformly bounded on their domains, hence, -any
solution of (3.12), (3.13) is defined for all .

As usually, (see [1, 2, 5]) the equality x,=eH(t,u,z, &) describes an integral
manifold for (3.1) if and only if the operator-function eH is a solution of the equation

(3.19) eH(r, u,2,8) = — [ fi(t, 8(, 7, u,8), eH(, B(1, 7, 4, ¢),

Y(t,1,uz¢|H) ), P 1, u,z ¢|H), ¢)dt

Let o(#)=®(t,7,u,¢), Y (@)=Y, 7, u, z, ¢l H) then by the “variation of constants”
formula

t
Y(0) = A=z 4 [ LA Z(s, o(s), eH s, 0 (5), Y (5), &) ds.
By (2.3), (3.3) and (3.8) there holds for all —eo<t=t<oo, |z]=p, £€(0, &,]:

@l = Ke—(cle)(t—r)ﬂzﬂ+ f Ke‘(“")“-’)N{]tﬁ(s)ﬂ ds.
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Therefore, by .Gronwall’s Lemma, we obtain
(3.15) W] = Ke-@0-9)z], —w<t=1<co,

where oy =0¢—eKN=y=0 for sufficiently small ¢,.
Now define an operator T on S by setting

GO TG w20 =— [ £t o), eH, 0, (0,0, (1), &) dr.

The improper integral here converges by virtue of (3.2), (3.8) and (3.15). It is clear
that T'(H) as defined in (3.16) is continuous on £,. Also, by (3.2), (3.8) and (3.15)
we obtain : -

\T(H)(z, u, 2, 8)| = fw N(1+ea)Ke= @)= 7] dt = s——]%(l-l-sa) Izll,

. - : - NK
-and therefore T(H ) satisfies the boundedness condition required by (3.8) if g —=<1
2

NK NK !
and a=—r (l—s ——]

o oy

To prove that T(H) satisfies the conditions, required by (3.9), (3.10) we reason
as follows. Let ucX, z,2z¢B,, Y,=¥(t,1,u, Z,¢|H). Then, by (3.5), (3.9), (2.3)
and by the ‘“‘variations of constants” formula we have

W @)=y ()] = Ke=©9¢-9)z—z] + | ' Ke-ta-ay (1+eb) [ ()= ()] ds.

Therefore, by Gronwall’s Lemma, we obtain

3.17) W) =1 ()] = Kem @99z 3], —cocr=1<en,
@, = a—eKN(1+¢eb).

Then, by (3.4), (3.9) and (3.17)

TG, 1, 2,0)~TH)E w5 0] = [ N(+eb) WO —ba O] de =

=e XY (14eb)lz—2|

It is clear that for sufficiently small ¢; a constant b can be choosen such that o,>y

o

and (1+¢&b)=b. From this inequality it follows that T(H) satisfies the

Lipschitz condition required by (3.9).
In exactly the same way by the inequality

8@, 7, 4, ) —D(t, 1, 4,8)| = O+ DI u—it], —w<r=t<e
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and (3.10), (3.7) and (3.6) it is easy to show that for some ¢=0 and sufficiently:
small g, the operator-function T(H) satisfies the condition (3.10). Now, let eH, ¢eHE S,
V(1))=Y 7, u, z, el H). Then by (3.4) and (3.9)

(3.18) IT(H)(z, 4,2, ) —T(H)(t, u, 2, &)| =
= f N{(1+eb) ¢ () -y ()] +8||H(’, o (1), ¥o(1), &) —H(t, (1), (1), 8)”] dt =

= f“ N[(1+2b) [y () Y= ()] + Ke=0=¢=9 2| d(eH, eH)] dt.

Using (3.5) and (3.9) we find that
(@) —de(0)] =
= [ Ke"SO-DNI(L4eb) |y (9 —pals)] + Ke 193] 2] d s, D) .

Substitution of this into (3.18) yields

ToT " —T(H)(z, u, z, &) =T(H)(z, 4, z, e)| = e———[(1+ b) 1] d(eH, eH).
From this last inequality it easily follows that 7 is a contraction mapping if ¢; is
sufficiently small.

Thus, T is a contraction mapping of § into itselt and so, by the known Banach
Contraction Principle, T must have a unique fixed point e¢H¢S. The operator-
function ¢H is a solution of (3.14) and, therefore, the equality x,=c¢H(t, u, z, &)
represents an integral manifold for (3.1). The flow on this manifold is governed by
(1.2), (1.3) where

F=f(t,u,eh(t,u,e),¢), G= Z(t, u, eH(t, u, v, €), v, €).

4. Decomposition and stability, Our next object is to obtain the representation
(3.11). Let x=x(t), y=y() be a solution of (l.1) with x(t))=xo, ()=,
Vyo—eh(tys Xo, &)l =0. We shall show that there exists a solution u=u(?), u(t,)=u,,
v=0v(t), v(t)=v, of (1.2), (1.3) such that

x(f) ~= u(f)+eH(t, u(®), v(2), €),
y(8) = v(O)+eh(t, x(2), ¢).

It is sufficient to show that (4.1) holds - for r=t#,. Substitution z=¢, into
(4.1) yields

4.1

Xo = Ug+eH(ty, uy, vy, €), - Yo = vo+eh (2, X, €)
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and, therefore, vy,=y,—eh(ty, x,, £). For u, we obtain the equation
| (‘}:2) ' Xo = uy+eH(to, tg, yo—&h(ty, Xo, €), ).
This last equation can be represenied of form
uy = P(uy, &) = xo—eH(ty, 11y, yo—€h(ty, Xy, £), £).
From (3.10) it is easy to obtain that for each £€(0, &) and fixed x,, yo such that
lyo—eh(ty, xp, s)||§g<-£—c-, P is a contraction mapping of X into itself and so,

1
by the Banach Contraction Mapping Principle, P must have a unique fixed. point

1#,€X which is the required solution of (4.2).
"~ Now, we consider the stability problem for (1.1). Using (4.1) we obtain that
every solution x=x(z), y=y(t) with ||y,—eh(t,, x,, €} =¢ can be represented as

x(t) = u(®)+o.(0),
y(0) = eh(t, u(1), &)+ @a (1),

where (u(t), eh(z, u(t), &) is a solution lying in the manifold y=eh(t, x, &); ¢, =
=¢eH(t, u(t), v(t), £), po =0(t)+eh(t, u(t) +eH(t, u(t), v(t), ¢), ¢)—eh(t, u(t), €). This
and (2.4), (3.8) and (3.15) allow us to write

4.3)

4 lox(D] = eake=@¢=10 g,
(4.4)
920l = (1-+%ad) Ke=HO=1]o],

e€(0,¢], t=t,, vy=y,—eh(ty, x,,¢).

Assume that f(¢,0,0,¢)=0, g(1,0,0,¢)==0; then A(20,e)=0 and F(t,0, £)=0.
By (4.3) and (4.4) we obtain

X)) = Ju()] +saKe= =1y
[y = ed[u(@)] +(1+e*ad) Ke= -], 1= 1.

From this last inequalities it easily follows that if the zero solution of (1.2} is stable
(asymptotically stable) then the zero solution of (1.1) is stable (asymptotically stable).
It is obvious that the instability of the zero solution of (1.2) implies the instability
of the zero solution of (1.1).

Now, we can summarize our results in the following

Theorem 4.1. Let f and g in (1.1) be continuous, bounded and satisfy (2.1),
(2.2yon RXXXB,XI,; let us assume that the spectrum of the linear bounded oper-
ator A satisfies Re o(Ay=—22-0. Then there exist numbers &, and ¢, such that
the following assertations are true:
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(i) For each €€(0, ¢,), 0€(0, 0,) and t, there exists for (3.1) an integral manifold
represented by an equation of form x,=eH(t, u, z, &) where H is an operator-function
defined and continuous on RXX XB X1, and, moreover, H satisfies (3.8)—(3.10).

(ii) Every solution x=x(t), y=y(t) of (1.1) with x(t))=xy, y(te)=Vo,
liyo—2eh(ts, xo, E) =0 can be represented of form (3.11), where u=u(t), u(ty)=u,
is a solution of (1.2), u is a solution of (4.2); v=v(t) isa solution of (1.3) with u= u(t),
v(t))=vy=Yo—&h (1, Xo, €).

@in) If f(1,0,0,e)=0, g(1,0,0,e)=0 and the zero solution of (1.2) is stable
(asymptotically stable, unstable), then the zero solution of (1.1) is stable (asymp-
totically stable, unstable).

Note, that in the proof of this theorem we did not use the boundedness of 4.
So, Theorem 4.1 can be extended onto the system (1.1) with an unbounded operator
A, if A4 is the generator of a strongly continuous linear semigroup S(¢) such that
1Sl =Ke™*, 1=0.

It should be observed that similar problems for systems with unbounded oper-
ators were studied in [2, 6].

The next result shows that, in principle, the operator-function H can be approxi-

. : oH
mated to any degree of accuracy with respect to & Let D(eH):e—at—+

+6%§ F@,u, s)+%g(Av+aZ(t, . eH,v,6))— f1(¢, u, cH, v,8).  If D(eH)=

=0(**) then |H—H|j=O0(").

The:idea of the proof of this statement is very simple. Let us introduce a new
variable x, =x,—¢H(t, u, 2, ¢); then for u, x,, z we obtain the following system
u=f(t,uye),

Xg =.f2(t: U, X, 2, 8),
e2= Az+eZ(t,u, x,+¢H, z, ¢),

oH -
where f,= fi(¢, u, xo,+¢H, z, &)— f,(t, u, eH, z, &)— 8—52_[2(” u, x,+¢eH, z, &)~

—Z(t,u,eH, z,¢)), eH=c¢H(t, u,z,€). This last system has ap integral manifold
Xo=¢Hy1(t, u,2,€) such that H,,,=O(e"). It means that the system (3.1) has
the integral manifold x;=¢H(t, u, z, &)=eH(t, u, 2, &)+ O (1),

In many problems, H can be found as asymptotic expansion

eH = eH,(t,u, v)+... + & H, (1, u, v) + O (k+Y)
from the equation D(eH)=0. Note, that u, can be found as asymptotic expa'mion
Uy = uy(e) = ud+eu+... + ek + O (F+Y)
from (4.2). Tt is easy to see that ul=x,, uy=—H;(t, Xo, ¥o)-
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5. Linear systems. Consider the following system

%y = Apx,+Asexatfi,
.1

Ex.g = Amxl'l"Aggxz'i‘_fz,
where x;, fi=f,(t, &) vary in the Banach space X;, and A4;;=A4;;(t, &) are operator-
functions 4;;: X;~X; (i,j=1,2). Assume 4;; and f; to have high order continuous
and bounded derivatives with respect to ¢ and g, for 7€R, e€[0, g]. Therefore, they
can be represented as asymptotic expansions

Ay = AP O +eAP () +...+&AP (D + 0 (Y,
f;. = fl_(O) (t) +8ﬂ(1) (t) +... +8kf;-(k) (t) + 0(8k+1)
with smooth and bounded coefficients.
Let us suppose that the family AQ(¢), ¢€R, is compact, the spectrum ¢(4%)
of AQ(t) satisfies the inequality
(5.2 Reo(AY) =—-2a <0, 1€R
and there exists bounded operator [AQ]~2. Under such assumptions there exists a
transformation
x, = u+eH(t, €)v,
Xy = v+L(t e)x,+1(t, &) = (I+eLH)v+ Lu+1(t, €),

analogous to (3.11) for the linear case. The new variables v, v satisfy the equations

(5.3) = (An+ApL)ut+fi+ 45l

(5.4) &0 = (Ay—€LA;5)0.

The operator-functions L, H and the function / can be found from the equations
(5.5) el +eL(Ay+AL) = Ay +ApL,

(5.6) eH+ H(Agp—eLAyy) = e(Ay+ Ay LY H+ Aj5,

&X)) el+eLlfy = (Agg—eL A+ 12

as asymptotic expansions L=L®(r)+eL®(¢)+... +&FLO() + O (Y,
H=HOW)+eHV(0)+...+&LH* V() +0(e"),
I =190 +elV@) +... +&IB (D + O ().
It is a straightforward computation to obtain expressions for L®, H®, [® from
(5.5—(5.7).
Note that L is'a bounded solution of the Riccati equation (5.5) on R and, there-
fore, satisfies the integral equation

L(t,e) = —1— f ‘ U(t, s, &)[ A (s, &) —eL(s, €)(Ani (s, €) + Asa(s, ©)L(s, 8))] ds,
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where U is the evolutional operator of the equation ex,= Ay x,. Using (5.2) and
the compactness of 4 (¢) we obtain

(5.8) UG, s, &) = Kem@90=9,  —coc 51 <o,

For H and I we have the exacl expressions

H= —% f V(t,s,€)Aw(s, W (s, t,8)ds,
14

1= % jt W(t, s, &)[ (s, &) — eL(s, &) fi(s, €)] ds,

where V is the evolutional operator of the equation Xx;=(4;+ 4;,L)x; and W is
the one of the equation eX,=(Ax—€LAp)x.. The improper integrals here con-
verge by virtue of (5.8). As earlier, the stability of (5.3) is equivalent to the stability
of (5.1).

In conclusion it should be noted that the stablhty and decomposition problems
for finite dimensional systems were considered in [7].
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