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An extension of the Lindeberg—Trotter operator-theoretic 
approach to limit theorems for dependent random variables 

II. Approximation theorems with O-rates, 
applications to martingale difference arrays 

PAUL L. BUTZER, HERIBERT KIRSCHFINK and DIETMAR SCHULZ 

This is Part II of the paper [10]. The contents of Part I, particularly the nota-
tions and preliminary results, are assumed to be known. References are in alpha-
betical order in each part, a few of the basic papers of Part I being recalled here. 
The sections are numbered consecutively. 

Whereas Par t i is concerned with convergence assertions without as well as 
with o-rates for dependent r.v.'s, all established with the help of the conditional 
Trotter operator first defined there, the purpose of Part II is to deal with O-error 
estimates, not only for convergence in distribution but also for the uniform con-
vergence of distribution functions. The specializations to martingales carried out in 
Section 8 enable one to compare the results with those of other authors. Firstly 
some modifications and corrections are made to Part I. 

3. A generalization of the Trotter-operator for dependent r.v.'s. — A revisit. 
Let us recall the definition of the generalized Trotter operator in terms of the con-
ditional expectation given in Section 3. 

D e f i n i t i o n 1. Let X£Q(£2, 21, P) and © be an arbitrary sub-c-algebra of 21. 
The conditional Trotter operator Vx{<5: C B - C B x ( 3 ( G , ©)) of X relative to © is 
defined for f£CB by 

J W O O - inf E[f(X+x)\<$>] (yeR) x€Aa(y,f) 

for an a > 0 with a£ Q (=set of rationals), where Aa ( y , f ) Q; f(x) >f(y), y£ Bxx}, 
Bax:={y£R1, | x - y \ ^ a } . Again, ( V m f ) ( y , oj)~{Vx[<sf(y))(oj). 
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In comparison with Definition 1 of [10] the present version has been modified 
by the introduction of the infimum. This will assure that assertions to be derived 
with this operator theoretical approach are valid almost surely in cog (2 not only 
for each fixed j>£R but uniformly in The space R1 endowed with the usual 
topology has a countable base, namely ©:={.#,„; a, x£Q, z>0}. Such spaces, 
namely complete, separable metric spaces are called "Polish spaces"; they are in 
particular Borel spaces. Now it is well known that each finite Borel-measure p. on a 
Polish space is a regular measure (see e.g. [16, p. 373]). This ensures the existence 
of a regular distribution Px|0 which is in particular ©-measurable for each fixed 
J?£$ as well as a measure on S for each fixed co£ Q. Therefore the integral repre-
sentation of the conditional expectation (2.12) of [10] holds. In view of these con-
siderations, the above infimum is taken only countably often for all j>£R, so uni-
formly for all The condition "/(x)>/0>)" assures that the conditional 
Trotter operator will coincide with the classical one in case 21 (X) is independent of ©. 

Under this modification Lemma 2 and Corollary 1 of [10] is readily seen to be 
valid, Lemma 3 is superfluous, and Lemmas 4 (the case n=2 of La. 5) and 5 are 
to be replaced by 

Lemma 5. Let (Xn)n€N be a sequence of r.v.'s from 2(Q, 91, P), (©„)„eN a 
sequence of sub-o-algebras from 91 for which ©0:={i2, 0}c©1c©2cz. . .cz©„<=.. . . 

a) For each f£CB one has 

VX^XV^(-VXN\KF{ )...))G>, CO) = 

= (K* l l^Kx1 |V . .Kx jvO(y,<B) = (Ks j« I / ) (y ,o) a.s. (y€R; n€N). 

I f , in particular ©1=©0, then 

(yx№l-VXn\*nf)(y,a>) = VsJ(y,co) a.s. 0>£R; b€N). 

b) If (Z„)„€N is a further sequence from 2(Q, 91, P), it being assumed that 
the Z„ are independent amongst themselves as well as of the X„, then for each f£CB, 

W s j ^ f - V n . f\\ ^ 2 Wx^J-VzJW («6N). 
Z ^t k=l 

If in particular, ©*=©„, all N, then 

WsJ-Vn / I s 2 \\VXJ-VZJ\\ («6N). 
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P r o o f , a) First take n=2 . Noting (2.7) and (2.11) of [10], the latter being 
valid only for © c ©', one readily has 

( K x . L . K ^ / j O ' , ©) = {_ in/ £ [ / № + * ( • ) ) 1 6 2 ] } ) ^ co) = > X T 

= inf {ElfiX.+X2+x)I®1]((0)} = f ( y , CO). 

The general result follows by induction, the particular case by Lemma 2e) of [10]. 
b) The proof follows immediately by Corollary 1 and Lemmas 1 and 2e) of 

[10], as well as by the following result: Let Ult ..., U„, ... and Vlt ..., V„, ... be 
contraction endomorphisms of CB such that UJUj is only defined for i^j, but 
the Vt may commute amongst themselves, and UiVj—VjU; for any i,j. Then for 
each /€C B 

IIU1...U„f-V1...Vnf\\^ 2\\Ukf-Vkf\\ (n€N). 
k=1 

6. O-approximation theorems for convergence in distribution 

6.1. General theorems. In the proofs of the O-estimates of Section 6 the hypoth-
eses of the corresponding o-convergence theorems of Section 5 may either be weak-
ened or partially dropped entirely. Thus Lindeberg conditions are not needed either 
for the sequences (y*)k€N or (Z t ) t € N ; the conditional moments of ther.v.'s Xk rela-
tive to &k need only coincide with the moments of Zk up to the order r—1 (com-
pare (6.2)). 

T h e o r e m 7. Let №)*£N be a sequence of (possibly) dependent r.v.'s from 
&(Q, 91, P), let (©fc^gN be a sequence of sub-a-algebras of 91 with ©0:={i2, 0 } c 
c©!cr (S 2 cr . . . c :© n cr . . . , and Z be a (p-decomposable r.v. with decomposition com-

ponents Zk, k£N. Assume that for an r £ N \ { l } 

(6.1) E[\Xk\'\<5k)^Mk,r a.s. (keN) 

for some constant MktT> 0 as well as E[\Zk\r]<.<*=. If furthermore 

(6.2) E[Xi\ ©,] = E[ZJ] a.s. (k, N; l s / ^ r - 1 ) , 

then there holds for f£CB 

(6.3) \\VM<zJ-Vzf\\ ^ 2C2„CO, M^) ] 1 ' ' ; / ; CB), 

where 

(6.4) M(n):= 2(Mk,r+E[\Zk\']), 
*=1 

c2 r being the constant of (2.1) in [10]. 
9« 
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: 'Proof. In view of (2.7) and (2.8) one has for /£C B and any g€CB, 

(6.5) l x f M / ) E [ f ( v ( n ) S a + x ) l ( B 1 ] - E t / < Z + y ) ] l ^ 

— 2||/—g|| + | inf E f e f r M S i + x l l G j - E M Z + y ) ] ! . 

Further, in view of Lemma 5b, 

A 

(6-6) II 'Wje.g - Vzg\\ ^ 2 II V9WXk\<5K g - V<p(*)zkg\\ • 

Furthermore, there holds the estimate 

(6.7) |xeinf j E l g i c p m + x ^ D - E W v W Z t + y y H S 

S sup {| £ [g (<p (n) Xk+x)\ ©k] - E [g (<p(*) Zk+x)]|}. 
xiAJy.g) 

On account of the integral representation (2.12), and Taylor's formula applied to 
g(u+x) twice, 

| E [g(<p(n)Xk+x) | ©t]-E[g(q>(n)Zk +x)]| = 

= \ f g(u+x)dFyMXk(u\<5k)(a))- Jg(u + x)dF,in)Zk(u)| s§ 

- I/Ho T g°)(x)}®*)- W>(«))| + 
/ (7^2)! I / 0 - i Y - 2 { g " - 1 ) ( x + t »)-g ( r - 1 ) (x)}u r - 1 dt] ¿F„ (n )X)>|© t)| + 

+ 1 / ( ^ 2 ) ! [ / 0 - g ^ W K " 1 dt] dF9(n)Zk(u)\. 

Since geC7B, g ( r_1)£Lip (1; 1; CB) with Lipschitz constant L9=||g(r) | |. So for 
0 < / s l , lU^" 1 »(x+/«)-g^v(*)} i / - 1 ! ^ | | | « | r . In view of (6.2) and (6.1) there 
holds 

(6.8) 2}Elg(cp(n)X k +x) \^-Elg{cp(n)Z k +x)- \ \^ 

~Jf gU)(x) { fu'd[F9in)Xk(u\©t)-iv(n)zt(«)]}! + j. R 'I 

i ^ L J f\u\'d[F,(n)Xk(u\<5k) + F,WZk(u)]\ ^ 

% ¿ ( M ^ e u z ^ I = | g « | -^%M(n). 

k=1 
n r - 1 

t=iy=o 

s lgwll 
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All in all, noting (6.5), (6.6) and (6.7), 

This gives (6.3) in view of (2.1). 
The proof of the following result is immediate, noting La. 2e. 

T h e o r e m 8. a) If the hypotheses in Theorem 1 are satisfied, and if in particular 
©!=©„, then 

(6-9) \K{n)sJ-Vzf\\ ~§L 2c2>ra>r([(^j- Mi«)] ' / ; CB) . 

b) If further / € Lip (a; r, CB), then the left side of (6.9) has the bound 

(6.10) 2 citrLf(p(n)'M(n)*lr. 

R e m a r k 1. The basic condition (6.2) of Thm. 7, which together with the 
assumed monotonicity of the © t is the only condition upon which the dependency 
structure of the r.v.'s Xk in question is subjected, could be replaced by the much 
weaker order condition 

(6.2)* J \E[Xi\ &k)-E[Zi] | = O ( - ^ f - M(«)} a.s. ( l s j â r - l ; « - ) . 

This will also insure the estimate (6.8) as does condition (6.2). 
A comparable weaker version is given in [9] or [5] in the case of a weak invari-

ance principle for dependent random functions. A further paper [6] deals in more 
detail with conditions like (6.2)*, called pseudo-moment conditions (with orders). 

R e m a r k 2. Concerning the proofs of Theorem 1, and analogously of 
Thms. 2—6 of [10], it should be mentioned that they have to be modified and cor-
rected by taking the definition of the conditional Trotter operator in the form given 
here and by using likewise the arguments involving inequalities (6.6) and (6.7) of 
the proof of Thm. 7. This will assure results comparable to Thms. 7 and 8 for "little-
o-rates" when assuming Lindeberg conditions provided (©„)„eN is additionally 
assumed to be a monotone non-decreasing sequence. In fact, assertion (2.11) needed 
here is only valid if © C © ' . In regard to GOVINDARAJULU , cited in [10], the authors 
cannot follow the proof of his main Theorem 3.1, in particular the step involving 
the norms on p. 1016, since the conditional expectations occurring there only hold 
for each fixed j>£R a.s. in co££2. 
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6.2. The CLT and WLLN with O-rates. The following statements dealing with 
the CLT are applications of Theorems 7 and 8, the usual specialisations being 
carried out. 

T h e o r e m 9. Let (Xk)kiN, ((5 t)kÇN be given as in Theorem 7, and let X* be a 
standard normally distributed r.v. Set Var [Xk], k£N and ^n—Zn

k=l <7̂ , and assume 
that E\\Xk\'\<S}^\^MktT a.s. for some constant Mkir>0 as well as that 

(6.11) E[X{\<5t\ = olE[X*>] a.s. (fc,j€N, 1 S j ^ r ) . 

a) Under these hypotheses one has for any fÇ.CB 

(6.12) | | ^ - 1 S n | m J - V x , f \ \ C B S 2 c 2 , r f t ) r ( [ ^ Ç l r M(«)] ' ; / ; CB), 

where M{n)~rk=1 {Mk>r+<fkE[\X*\']). 
b) If /6Lip (a; r; CB), 0 < a ^ r , and ©,.=©„, then 

(6.13) Ws-xSnf-Vx*flcB — 2c2,rLfs-°M(nT". 

Concerning the proof, just as in that of Theorem 2 condition (2.4) is satisfied 
with Zk=okX*, <p(n)=s~x. Since [|Ar+n<c«, r£N, and so assertion (6.12) fol-
lows from (6.3), assertion (6.13) follows from (6.10). 

In the case of the following WLLN with "0"-rates the basic moment condi-
tion, in this case (6.2) for r > 2 , must, for the same reasons as in Theorem 6, be 
weakened (see (6.15)), whereas for r=2 (6.10) reduces to the non-trivial require-
ment (6.17). 

T h e o r e m 10. Let (XJk€N, (©*)*gN> Zk with P{Zk=0)=1, k£N be defined as 
in Theorem 7. 

a) If for some r € N \ { l } 

(6.14) E[\Xk\r\(Sk]sMk,r a.s. (fee N) 

and if there exist constants Cj such that 

(6.15) <p(«y 2 № l ® * ] l ^ Cj<p(nf 2Mk,r a.s. ( O S ; 3 r —1; „€N), 
*=i t=i 

then for / 6 Lip (r ; r; CB), 

(6-16) I K ( n ) S „ № / - / | | C B ^ 1 Mk„ 

with cf:= Z'jZlcjWf^WcJjl. 
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b) If r=2, one has for f£C%, provided E[XK|©J=0 a.s. W 
a.s., N , 

(6.17) l i n - ' s n / - / l i c B ^ 2 c 2 , 8 L / « - 2 

k=l 

Proof . Condition (2.4) is satisfied for independent r.v.'s Zk with Pz^=PXa for 
all &€N. Since E[\X0\J]=0 forany 1, a Taylor expansion up to the order r—1 
yields, similarly as in the proof of Theorem 7, 

(6.18) \ v ç W X k ^ f ( y , « O - K ^ / M I â 

- 0 ) ï \\fU)\\cBE[\m ©*] +Lf Mk„. 

Assertion (6.16) now follows by using condition (6.15) in formula (6.18). Part b) 
is the particular case of Theorem 8b) for r = a = 2 and q>(ri)=n~1, noting that 
Pz = PXo-

7. O-approximation theorems for convergence in distribution. Just as in the case 
of martingales (cf. [5], [6]) it is possible to transfer our results concerned with rates 
for the weak convergence of the distributions P^s to Pz to those for strong con-
vergence. This is possible by applying a result contained implicitly in ZOLOTAREV [18], 
formulated explicitly in e.g. [5]. Using this result one can deduce from Theorem 7 
the following theorem, noting that conditions (7.1) and (7.2) yield, for f£CB, 

\\VçWSnf-Vzf\\CB = 0(ncp(riy) (« -co). 

Theorem 11. Let (Xk)kçN, (©¿)igp, Zk, kÇ.N, be defined as in Theorem 7, 
let the limiting r.v. ZÇ£(Q, 91, P), with distribution function Fz, satisfy condition 

|fz(*i)--Fz(*2)l ^ Mz\xi-x2\ (Xl, x2(ER) 

for some constant Af z>0, and assume that for rÇN\{ l} 

(7.1,2) E[\Xk№k]^Mr a.s., E[\Zk\'] < M* (k£N), 

Mr, M* being positive constants, independent of k. If further (6.2) holds, then 

(7.3) sup|i<p(B)Sn(x)-Fz(x)| = 0(<?)(«)'/('+1)«^+1>) 
* € R 

If one applies Theorem 11 to the r.v. Z:~X*, one obtains the following 
Berry—Esséen type estimates for dependent r.v.'s. 

Theorem 12. Let the assumptions of Theorem 9 be satisfied. If there exist two 
positive constants m, M such that m<a\<M, one obtains 

(7.4) sup|i^-i s (x) —Fx.(x)| = 0(s; / ( r+1)/j1 / ( r+1)) ( « - « , ) . -i-D n " 
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If the r.v.'s Xk and Zk, k£N are identically distributed, and a^—1, all then 
for r=3 

(7.5) sup |F. - , A S i i (*)- f z . (*) | = 0(«-1 '«) ( « - - ) • 
X € R 

Setting (p(n)=j"1 one can show, just as in the proof of Theorem 9b, that 
(7.4) follows from (7.3). Estimate (7.5) is a result of (7.4) since s ^ n " 1 ' 2 for 
o J= l . 

8. Applications to martingale difference arrays. Whereas the dependency struc-
ture of the r.v.'s in question has so far been very general, it will be concretized 
in this section. The particular type of dependency to be considered will be that defined 
by a martingale difference array (MDA). A MDA is a double indexed array ( X ^ ) ^ ^ , 
/16N of r.v.'s from 2(Q, 91, P) that is connected with a scheme C&„k)0skiskn, 

N of sub-«7-algebras of 91 in such a form that the following three conditions are 
satisfied: 

i) the sequence C5„k)0sksk is monotone non-decreasing in k for each w£N, 
ii) Xnk is measurable with respect to for 

iii) £ [ j r j g - I » _ 1 ] = 0 a.s. for n£N. 

The general convergence theorem of this paper, Theorem 1, may be applied 
to MDA, as well as that supplied with o-rates, namely Theorem 4. But in order to 
avoid repetitions in the formulations we shall just consider the applications of 
Theorem 7 and 12 to yield 

Theorem 13. Let (X„k)lskskn, N, be a MDA, (5nlt)0sks) t( i, «6N, the 
associated array of sub-o-algebras of 91 (non-decreasing in k per definition) with 
3no={0> i2} for all and let Z be a cp-decomposable r.v. with decomposition 
components Znk, 1 . 

Assume further that for an r £ N \ { l } 

(8.1) a.s. (1 ^ k ^ fc„; n€N) 

for some constant Mn t j r> 0, as well as 

(8.2) ( l s f c s f c , ; / I € N ) 
together with 

(8.3) g,,».!] = E[Zi] a.s. ( l i f c s k„; n£ N; l ^ j S r - 1 ; j€ N). 

Then for any /€Lip (a; r; CB), 0 < a there holds for Tnkn:=<p(kn)Zk
k»=1X„k 

the estimate 

(8.4) ||VTnk f—Vzf\\ ^ 2c2irL fcp(»k)' 2 (Mnk„ + E[\Znk\']) 
" * = 1 

with c2>l. and Lf from Theorem 8. . 
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If for each n£N the r.v.'s Xnk and Znk are in particular identically distributed 
for all and if there holds 

a-®. ( I S k i t n i N ) 
where Mn>T is a positive constant independent of k, as well as (8.2) and (8.3), then 
for fiC'B 

(8.5) \WTnkJ-Vzf\\ s Lf ^ ^ kn(M„„+E[\Znkn). 

Proof . Assertion (8.4) is a direct application of Theorem 8b), replacing the 
Xk by and the (5k by noting that © l =g n > o ={0, i2}, and that the distrib-
ution Pz of the limit r.v. Z can, for each natural k„, be representated as P z = 
= P^kn)Zk

k"^Z„k, whereby the independent decomposition components Zk of (2.4) 
have here been written in the preciser form Znk. Inequality (8.5) follows by (6.8) 
in the proof of Theorem 7. 

Now to the application of Theorem 12 to MDA; it is the CLT with rates for 
MDA. 

T h e o r e m 14. Let (Xnk)lskskn, n£N and CS„k)oskskn, «€N be defined as 
in Theorem 13. Let m'n«r*k:=Var (Xnk)<M^, M£N. Assume further that 
for r € N \ { l } 

a.s. (1 S k S k„, «€N), 

M„tT being positive constants, independent of k, as well as 

= °LE[X*J] a.s. (1 ^ k ^ k„, N€ N; 1 s j r-1; J€ N). 

Then one has for ¿ „ . ^ f e ^ ) 1 ' 2 , 

(8.6) s u p l F ^ t„ (x)-Fx,(x)\ = („-«,). sn,kn,Z Xnk = 1 
I f , in addition, for each n£N the r.v.'s X„k are identically distributed for all 1 
and <xlk = 1 for «£N, then for r=3 

(8.7) sup |F (x)-Fx.(x)\ = 0(k~^) («--). 
*6R K1'* 27 X„k k \ 

The proof of this theorem consists in a consequent application of Theorem 12, 
using the special case of MDA with <5fc=«5„tfc_1. 

If one would take k„=n in Theorem 14, then the rate in (8.7) reduces to 0(n~118), 
one which was also attained by HEYDE and BROWN [14], CHOW and TEICHER [11 p. 
314] as well as by ERICKSON, QUINE and WEBER [12]. Improvements of this rate 
were achieved by HALL and HEYDE [13 p. 84] , namely with 0(n - 1 / 4 logw), by 
MUKERJEE [17] with 0(n~114), KATO [15] with 0(«~1/2(log n f ) as well as by BOLT-
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HAUSEN[3] with 0(n~m log n), whereby the better rates of convergence by Kato 
and Bolthausen are restricted to uniformly bounded r.v.'s. If one just assumes the 
boundedness of the third absolute moments of the r.v.'s Xnk as well as the "near 
constancy" of the partial sums of the conditional variances, here expressed in the 
form 

(8-8) 1 in probability 
*=i 

then the rate 0(/i - 1 '4) is the best that has been obtained so far. It should be noted 
that condition (8.6) for j=2 implies (8.8); however, an assertion comparable to 
Theorem 14 could also be deduced by means of the conditional Trotter operator 
under the weaker assumption (8.8). 

It must further be mentioned that the rates of Theorem 13, deduced from 
Theorem 7, dealing with rates for dependent r.v.'s, are just as good as those obtained 
in [4], [1], [2], [8], [9] and [5] for independent r.v.'s, MDS or MDA by means of 
the strongly modified Dvoretzky-method of proof mentioned in the introduction 
of [10]. But the conditional Trotter operator introduced in Section 3 allows one 
to prove the fundamental limit theorems equipped with rates in a unified way not 
only for various types of dependent r.v.'s but also for independent r.v.'s. It should 
be added that the definition and proofs involving the conditional Trotter opera-
tor and its properties also make use. of set functions. So this operator theoretic 
approach stands in contrast to the more intricate "measure-theoretic" approach 
dealt with in most papers concerned with stochastic processes, in particular Markov 
processes. 

It may be observed that the conditional Lindeberg—Trotter operator approach 
even makes it possible to deal with general limit theorems for Markov processes 
equiped with rates, see [7]. Similar results would be possible for inverse martingales 
or other dependency structure types. 

The research of the third named author was supported by DFG grant Bu 
166/37—4. The authors would like to thank a DFG-referee for pointing out an 
error in Part I of this paper, corrected in this part. They are also indebted to Dr. Diet-
mar Pfeifer, Heisenberg Professor, Aachen, for suggesting the use of "Polish spaces" 
to overcome the difficulty as well as for his critical reading of the manuscript. 
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