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Structure-filters in equality-free model theory 

P. ECSEDI-TOTH 

Using a natural definition of (finite) meets of structures and that of the lattice 
ordering induced by the meet, we introduce the concept of filters on the similarity 
class of structures. Our main problem here is to answer the question whether 
the theories of such filters are characterizable by purely syntactical means. Restricting 
our considerations mostly to equality-free first order languages, we provide an 
affirmative solution to this problem. 

1. Finite meet of structures has been introduced as a simple set theoretic con-
struction in [3], where we have proved the following 

Theorem 1.1 ([3], Theorem 2.14). Let T be an equality-free first order theory. 
Then the two assertions below are equivalent: 

(i) T has a set of universal equality-free Horn axioms; 
(ii) T is preserved under finite meets (cf. Definition 3.6, below). 

It was shown, too, that this theorem fails for theories containing equality; 
more precisely, (ii) does not entail (i) if the equality is present, while the converse 
implication (i)=>-(ii) holds in general. 

Our starting point in the present work is that, disregarding some set theoretic 
difficulties, the class of all similar structures forms a weak partial meet-semilattice. 
It is well-known, that the lattice ordering is uniquely determined in weak partial 
meet-semilattices. By means of the lattice ordering, filters are definable in the 
traditional way, and so the following natural questions arise: 
(1) Which sentences (theories) are preserved under the lattice ordering induced 

by the meet? 
(2) Which sentences (theories) have a class of models that forms a filter in the 

weak partial meet-semilattice of structures? 
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We shall give here a complete answer to question (1) (cf. Corollary 4.4, Theo-
rems 4.5, 4.6, 4.7), and a partial one to question (2) (cf. Theorems 5.3 and 5.5), in 
the sense, that we restrict our attention to equality-free languages, only. 

It would be natural, too, to introduce and investigate the duals of these con-
cepts; i.e. the join of structures and ideals of structures. These notions, however 
cannot be treated analogously to the meets and filters. For example, the meet of 
structures can be defined without any restrictions on thé universes of structures 
(cf. Definition 3.1, below), nevertheless, a similar definition of the join would involve 
either the assumption that the universes of all structures in question are the same, 
or the permission for partial structures (in which functions may be partial). Beyond 
this definitional difficulty, some of our results do not have analogous dual forms. 
Thus, it seemed better to deal with these dual question in a separate paper. 

2. Some of our assertions refer explicitly to proper classes, and so, in order 
to avoid set theoretic difficulties, the choice of the underlying set theory is important; 
in fact, our considerations could be carried out e.g. in the Bernays—Gôdel set 
theory. We shall, however, present the material informally; the formal set theoretic 
development would be rather tedious. 

By a similarity type t we shall mean an ordered quintuple t=(0t, SF, ta, t^), 
where M, <ii are pairwise disjoint sets, < ^ 0 , ta: co — {0}, t^: J5"—a> — {0}. 

By a structure of type t, we mean an ordered quadruplet 

21 = <|2I|, <R<">)ria, ( / ^ W , <Ci«>>c€*>, 

where |2I| is a nonvoid set, the universe of 21; for each r^Sk, f(i2F and cÇ_(€, R^1S) 

is a fa(r)-ary relation, F{p is a t^(f)-ary function and C(
c
a) is a constant on the set 

|2I|, respectively. 
From now on, we shall keep an arbitrary similarity type t be fixed. The class 

of all structures of type t will be denoted by SOZ* ; we shall denote the elements of 
by German capitals, 2i, S , (£, T>, maybe with indices. 
We shall use the standard notions and notations of [2]. Additionally, we need 

some supplementary facts, collected together in the rest of this section. 
First, we mention the equality-free version of the well-known Los—Tarski 

preservation theorem (cf. [2], Theorem 3.2.2, p. 124). 

Theorem 2.1 ([3], Lemma 2.10). Let T be an equality-free first order theory. 
Then, the following two assertions are equivalent: 

(i) T is preserved under substructures; 
(ii) T has a set of universal equality-free axioms. 

Analogously, one can prove without major difficulty the dual form of this 
theorem. .: 
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. T h e o r e m 2.2. Let T be an .arbitrary equality-free first order theory. Then, the 
two assertions below are equivalent: > 

. (i) T is preserved under extensions; 
(ii) T has a set of existential equality-free axioms. 

The following concept has been introduced also in [3]. 

D e f i n i t i o n 2.3 ([3], 2.4). Let Xbe an arbitrary set and consider the absolutely 
free algebra gr (XU&) of type t generated by the set X\J<£ (cf. [5], Definition 
0.4.19(i), Remarks 0.4.20, pp. 130—131). Let 9l€9Jt'. It is well-known, that for 
arbitrary h: such that for all h(c)=Cf> holds, there exists 
a unique homomorphism h from gr (XW&) into 91 for which hQh (cf. [5], 
Definition 0.4.23, Theorem 0.4.24, Theorem 0.4.27(i), pp. 131—132). We define the 
free structure 91 induced by h over 91 as follows: 

(i) let |gt f c i t | = |0ft(ArUif)|; 
(ii) for every tgt(r)=n+1 and for arbitrary elements a0, ..., a „ £ | 9 t | , let. 

<a„, ..., ~ (iHa0,), ..., h(an))ZR™, 

where h is the unique extension of h to a homomorphism from gr (XUtf) 
into 91; 

(iii) for e v e r y s u c h that t^(f)=n+1 and for arbitrary a0, ..., a„£\9I|, 
let 

tf (a„, ..., a„) — fif (a0,...,a„), 

(iv) finally, for all let 

— . 

It was shown in [3], that 91 is correctly defined and is of type t, provided 
9ie2RI. We shall need the following 

Theo rem 2.4 ([3], Lemma 2.5). Let 916991' and X be a set, h: Z U ^ - ^ f 
such that h(c) = C<*s> for all c^S. If his onto, then 91 and gr,,9l are elementarily 
equivalent for equality-free sentences. 

The next assertion is, on the one hand, a particular case of a well-known result 
of Shoenfield (cf. [2], Theorem 3.1.16, p. 118) in two respects: firstly, it concerns 
equality-free languages only, and secondly, it is restricted to the lowest levels of 
the quantifier hierarchy. On the other hand, however, it is a generalization of the 
mentioned result, since it is about theories instead of single sentences. Our proof,, 
presented here, is purely model theoretic in character and differs from the one given, 
in [2], p. 118. 
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Theorem 2.5. Let T be an equality-free first order theory. Then, the following 
assertions are equivalent: 

(i) T has both a set of universal equality-free and a set of existential equality-
free axioms; 

(ii) T is preserved under both substructures and extensions; 
(iii) T has a set of quantifier-free (i.e. IJ0—I0=A0) equality-free axioms. 

Proof , (i) and (ii) are equivalent by Theorem 2.1, and Theorem 2.2. Also, 
(iii) implies (i) trivially, since every quantifier-free (and equality-free) sentence can 
be considered as a universal, as well as an existential (equality-free) sentence. To 
complete the proof, we show that (ii) entails (iii). 

First, we prove the following fact. 
(3) Let 21, 936 9JF, and assume that for any quantifier-free and equality-free sen-

tence STN^oSNi / ' . Then 211= T-«=>2? 1= T. 
Let X be an arbitrary set with cardinality large enough such that the onto 

mappings h: XWtf—|2l| and g: exist. Consider the free structures 
grA2l and gr9© and let us denote by 21' and S ' those substructures of grA2t 
and 0fr923 which are generated by the set of constants, respectively. (By assumption, 
there exist constants in grA2l and gr9SB, so 21' and S ' exist.) 

We claim that 21'=S' . 
Indeed, by Definition 2.3, we see that 

(4) = |0ft f»|, 

and for every c a n d 

(5) C®1"90 = 

(6) F f ^ = Ffx°*\ 

From (4), (5) and (6), it follows that |91'| = |®'I and Cf">=Cf'\ Ff' )=F}®' ) , 
for every 

Finally, let a0,...,a„£|2l'| and r^Sk, such that ta(r)=n+1. By the defini-
tion of 21', there are closed terms T0, ..., T„ such that 

L0 — M0> •••» N — "ID 

(where t f ° denotes the "value of T; in 21"', cf. [2], 1.3.13, p. 27). Hence 

< A „ , . . . , A N ) 6 / ? W > ~ ( T F ) , . . . , O 2 L ' N r ( R 0 , . . . , T„). 

Since T0, ..., T„ are closed, 21'N/-(T0, ..., T„) implies that grA2it=r(T0, ..., T„). 
By Theorem 2.4, 21(=/-(T0, ..., T„). According to the assumption of (3), 
® N / - ( T 0 T„), from which G T 8 S | = / - ( T 0 , . . . , T„) and ®'N/-(T0 , . . . , T„) follow, 
again by Theorem 2.4 and by the closedness of T0, ..., T„. 
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:: This, however, means that <4®°, ..., ) arid so, using the fact that for 
all i ( 0 s i s / i ) , xfr)=ab which follows from (5) and (6), we obtain: (a0,..., a„)€i^®'). 
Hence, l ^ c J f . The converse implication tf^c/?^ can be established 
similarly. Thus and, r being chosen arbitrarily, we have 9 l ' = S ' . 

If 91 NT, then by Theorem 2.4, gr A 9i t=r , and since T is preserved under 
substructures, 9 l ' l= r . So, 93't=7\ But T is preserved under extensions, too, hence 
S X f S N r , whence we obtain S N T , by Theorem2.4. The converse implication 
93l=r=>-9It=77 can be seen in an analogous way. 

Thus (3) is proved. 
If T is inconsistent, then the set {r(c, c , . . . , c), ~]r(c, c,..., c)}, where 

ta(r)=n+1 and are arbitrary, is an axiom system for T in the required form, 
(in fact, speaking on equality-free languages, we may assume that for other-
wise no formula exists; on the other hand, by assumption.) 

Let us suppose that T is consistent and set T0={(p\(p is a quantifier-free equal-
ity-free sentence and Tt=<p}. Then, T\=T0 and so T0 is consistent. 

Let (£ t= T0 be arbitrary. We claim that there is a structure such that T>t=T, 
and for every quantifier-free equality-free sentence ij/, GN^<=>I)|=I¡i. 

Indeed, let I— {(p\q> is a quantifier-free equality-free sentence and (£(=<?}. 
Then EUT is consistent. For if IUJ were inconsistent, then we could find a finite 
subset {(T0, ..., <7m}cZ such that 7,t=l(ff0A...A(Tni)- But the sentence ~l(cr0A...Affm) 
is itself a quantifier-free equality-free sentence and so it is in T0, hence 
£N~|(ff0A...Acrm). Nevertheless, GN<70A...A<7m, by the definition of X. This con-
tradiction indicates that Z U T is consistent. 

Let D be a model of T U T and let ip be an arbitrary equality-free quantifier-
free sentence. If (£t=ij/, then ij/£Z and so 2>Ni¡f. If G^i/f, then and so 
"li¡/£S, hence , S ( = ~ I i . e . 

Thus, G and © satisfy the condition of (3), and <i\=T follows from DNI 7 , 
by(3). • 

3. D e f i n i t i o n 3.1 ([3], 1.2). Let ta, t?) be a similarity type 
and let 

% = (|9ij|, (R^Uz, <Cf<>>c€*> 

be structures of type t for / < « + 1 , where n£a>. We define the set theoretic meet 
of 9l;, / < « + 1 as follows: 

n % = ( n № l , < n n n < < £ % « > icn + l i-in + l i-=n + l «<B + 1 '«n + 1 
where the meets on the right hand side of the equation are meant in the sense of 
set theory (i.e. the meet of functions is taken as the meet of sets of pairs representing 
those functions; the meet of sequences of constants is defined again as the meet of 
ordered sets). 

7 
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If Pi 2lf693l', then i t is called the model theoretic meet (from now on, simply, ><B+1 
the meet) of 21,-, / < « + 1 . We shall use the infix notation 2 l 0 n 2 i 1 n . . . n 2 I „ for 
the meet of 21,-, / '<«+1. 

Clearly, P| 21, always exists as a tuple. The meet of the structures 21;, i<n+l 
f 1, however, is a partial operation: it may well happen, that the meet of 2i ;, 

/</1+1 does not exist even if H 121^0. We shall use synonymously the fol-
¡<II+I 

lowing two expressions: 

" f l 2li€9M"' and "2I 0 n2I 1 n. . .n2I I I exists". 
i<B+l 

The meet, if exists, is very close to the set theoretic meet. In particular, it pos-
sesses the following familiar properties. 

Lemma 3.2. Let 21, ®, G69JI' be arbitrary. 
(i) 2Ifl2I=2l, hence 210216931'. 

(ii) If 2inSG9K', then 9302162)1', and 2 I n ® = ® n 2 I . 
(iii) If 2 inS62K' and ®nG:69Jt', then (a) and QS) below are equivalent and 

any of them implies ( 2 l n ® ) n £ = 2 I n ( ® flG): 

(a) (2in®)H £6 931', 

05) 2in(®n£)693i'. 

P roof , (i) and (ii) are trivial. 
(iii): Assume that 2IDS6931', 930(16931'. If (a) is true, i.e. (210®) 066931', 

then consider 2in(®f)(£:). By the associativity of the set theoretic meet, which is 
immediate by Definition 3.1, we have ( 2 i n ® ) n £ = 2 i n ( ® fid) , hence ($) is true 
and (21 n ®) f l G=21 n (® H G) holds. The converse can be established similarly. • 

An immediate consequence of this lemma is the following 

Theorem 3.3. Let t be a fixed similarity type. Then, the class of all structures 
of type t forms a weak partial meet-semilattice. 

D e f i n i t i o n 3.4. Let us define the binary relation s on 931' by the item: 
for any 21, S69M', 2IS® iff 2 I n ® exists and 21fl®=21. 

If 21s®, then we say that "21 is a weak substructure of ®", or equivalently, 
that " S is a weak extension of 21". 

The next assertion collects some useful facts about the relation s . The proof 
is an easy verification or can be readily obtained from the general theory of lattices [4]. 

Lemma 3.5. Let 21, S , C69W. 
' (i) S is a partial ordering on 931'. 

(ii) If 21 n ® exists, then 
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(a) ' « n 8 s 2 1 and S l n S s S ; 
(fi) and imply that 1 

(iii) 7/" 21c:23 then 2 t s S (where c stands for the traditional concept of 
substructures). The converse implication is not true in general. 

(iv) 21^23 i f f | 2 I | c |S | and the identity mapping i: | 2 I | - | S | , definedby i(a)=a, 
is a homomorphism in the model theoretic sense. 

The clause (iii) of this lemma justifies the adjective "weak" in the naming of 
weak substructures. 

D e f i n i t i o n 3.6. Let T be an arbitrary first order theory. We say that 
(i) T is preserved under weak substructures (resp. under weak extensions) iff 

for all 21, 2369Jt', if 21 NT- and 93s=2I (resp. 2 l s®) , then 
(ii) T is preserved under finite meets iff for all 2I0,2I l5 ..., 2l„693i', if 

2I0 N T, 2lx 1= T, ..., 2IB N T and 2I0n 2lx n • • • n 2In exists, then 2l0n2Ii f l . . £12I„ 1= T. 
The next assertion is a slight strengthening of Lemma 3.5(ii), (iii), and is true 

for arbitrary first order languages. 

Theorem 3.7. Let T be an arbitrary first order theory. 
(i) If T is preserved under weak substructures, then T is preserved under finite 

meets. 
(ii) If T is preserved under finite meets, then T is preserved under traditional 

substructures. 
(iii) None of these implications in (i) and (ii) can be reversed in general. 

Proof , (i): Let us suppose that T is preserved under weak substructures; let 
2l0,2li, ..., 2In£9Jt', and assume that for all / < « + 1 , % t = T and the meet 
2t0 f l 2lx n . . . f l 2t„ exists. By Lemma 3.5 (ii) it is easily seen that 2T0 f l 2Ii f l . • • f l 2ins2i0 

and so, 2 I 0 f l2 I 1 n . . . f l2 I n t= r , because T is preserved under weak substructures. 
(ii): Let T be such that T is preserved under finite meets. Let 21 NT, 23 c 21. 

We define the structure 21' as follows. First set |2l'| = |S|U(( |2l |- |S|)X{|2I |}); 
then define h: |2I | - |2l ' | by the item 

Obviously, h is one-to-one and is onto. For all let Cf)=h(Cf>). For 
every t#(f)=n+1 and for arbitrary elements a'Q,..., a^ |2I ' | , let 

FfHa'0,..., a'n) = h{F^(h-Ka'o) h^(a'n))). 

Finally, for every ta(r)=n+1 and elements |2T|; let 

<<4 ..., a'B)£lt™ o (h-Ha'o), .... h~Ha'B))eR<*>. 

i• 
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Then 91' is correctly defined and 9I'€9DF, provided 916951'. Moreover, 91' 
is isomorphic to 91 by h. Thus 91'\=T. By the construction, 91 f l 91'=93 and so, 
T being preserved under finite meets, S1= T. 

(iii): Let us consider the (equality-free) theories 

T t = {(Vx)r(x)}, r 2 = {(V*)(K*)V ?(*))}, 

where r and q are distinct unary relation symbols of an appropriate particular simi-
larity type t. a 

By Theorem 2.1, T2 is preserved under traditional substructures but, according 
to Theorem 1.1, is not preserved under finite meets. 

Similarly, Theorem 1.1 shows, that 7\ is preserved under finite meets. Never-
theless, Tx is not preserved under weak substructures as the following counter-
example indicates. (This follows also from Theorem 4.7, below.) 

Obviously, 7\ is consistent; let 91 be a model of Tx. Let us define the structure 
C as follows. First set |£| = |9I|. Then, for every and put 
and Cf>=Cf). Finally, for every rd®, let Rf>=0. 

Trivially, G ^ T j and (£091=5, i.e. G<91. C 

The "dual" of this theorem is simply a reformulation of Lemma 3.5 (iii) in 
terms of preservation properties. 

Theorem-3.8. Let T be an arbitrary first order theory. If T is preserved under 
weak extensions, then T is preserved under (traditional) extensions. The converse fails 
in general. 

Proof . Trivial by Lemma 3.5(iii). • 

Co ro l l a ry 3.9. Let T be an arbitrary first order theory. 
(i) If T is preserved under weak substructures or under finite meets, then T has 

a set of universal axioms. I f , in addition, T is equality-free, then it has a universal axiom 
system which is equality-free. 

(ii) If T is preserved under weak extensions, then T has a set of existential axioms, 
which are equality-free, provided T is such. 

Proof , (i): In contrary to the assertion, let iis suppose that T has no universal 
axioms. Then T is consistent. By the well-known Lo§—Tarski preservation theorem 
([2], Theorem 3.2.2, p. 124), we can find a model 91 of T and a substructure 8 of 
91, such that S l ^ T . By Theorem 3.7, T is preserved under neither weak substruc-
tures nor finite meets. If T is equality-free, then using Theorem 2.1 in place of the 
Lo§—Tarski theorem, the same argument applies. 

(ii): Similar. • 

4. This section is devoted to answering the question (1). 



Structurerfilters in model theory 395-

D e f i n i t i o n 4.1. Let us suppose that q> is an arbitrary first order formula. 
By predicate logic, q> is equivalent to a formula \p of the form 

(7) 

where n,m£co; for all /', l s / ^ m , j\, sit kt, l£co, (pa, ..., q>ih, \l/a, ..., xj/^ are 
proper atomic formulae of the form r(z0, ..., T„) for some r£i%, t#(r)=v+1 and 
terms r0 , ..., T„; and e(1, ..., sIjtj, t)n, ..., rj^ are equations of the form 1 0 = ^ , 
for some terms T0, T^ and finally, for all z, 1 S z S « , <2Z£{V, 3}. 

We say that i¡1 (of the form (7)) is an equationally-augmented negative (resp. 
positive) formula, an EAN-formula (resp. EAP-formula), for short, iff for all /', 
l s / ^ m , (resp. jt=0). 

L e m m a 4.2. Let T be an arbitrary first order theory. IfT has a set of existential 
EAV-axioms, then T is preserved under weak extensions. 

P r o o f . It will suffice to prove, that every existential EAP-sentence <p is pre-
served under weak extensions. We shall proceed by induction. 

First we observe some trivial facts. Let 91, 93 € SOI', and S s 9 I . We shall 
denote the set of variables by V. 

(8) If k: V—|23|, then k: K—|9l|; that is, every assignment relative to SB can 
as well be regarded as an assignment relative to 91. 

(9) For every r i ® , Rf><zRf>, by Lemma 3.5(iv). 

(10) If z is a term in the variables xt, ...,x„, then for all k: x(S)[A;] = 
= T ( A ) [ £ ] , by (8) and by Lemma 3.5 (iv). (Here T(B)|VC] (resp. x(5°[£]) stands for 
"the value of z in SB (resp. in 91) at k"; cf. [2], 1.3.13, p. 27). 

Now, let us suppose, that <p = (Bx1...3x„)i//, where ifr is an atomic formula 
in the variables x1}...,x„, and let © N <59. Then there is an assignment k: F-*-|93|, 
such that 
(11) 93l=^[fc]. 

Recalling that is in one of the following three forms: n(i0—Ti) and 
r(z0, ...,ze), we see that, in any case, 9lt=i¡)[k] is immediate from (11) by (8), (9) 
and (10). 

The induction trivially passes over all the remaining cases, hence the assertion 
is proved. • 

The converse of this lemma holds, too. 



396 P. Ecsedi-T6th: Structure-filters in model theory 

T h e o r e m 4.3. Let T be an arbitrary first order theory. If T is preserved under 
weak extensions, then T has a set of existential EAP axioms. 

Proof . If T is inconsistent, then the set {(3x)~l(x=x)} is an axiom system 
for Tin the required form. Hence we may assume, that T is consistent. Let r = {<p\<p 
is an existential EAP sentence and T\=q>). Then, obviously, T t = r and f is con-
sistent. We shall prove that r\=T. 

Let 911= r . First we show, that there is a structure 23 such that 8 ( = r , and 
every existential EAP sentence holding in S holds in 91. To see this, let 1= {~\(p\q> 
is an existential EAP sentence and 91 (=1«?}. We claim that I\JT is consistent. 
Indeed, i f r U T w e r e inconsistent, then we could find a finite subset {~l<x0, ..., ~\(Tm}(zZ 
such that r t= l (n<x 0 A. . .A~lO- But l(l<T0A...A_]om) is equivalent to an exis-
tential EAP sentence, say o, and thus T\=o implies that cCF, hence 91 t=<r, that 
is 911= (~1 CT0A... A <rm). This, however, contradicts to the assumption that 
911= ~]c70, ..., 91N ~~\crm. So 2JUT is consistent. Let SB be an arbitrary model of 
EUT and suppose that x is an existential EAP sentence which is true in 23. Assume 
that 91 i.e. 21 \=~\x- Then "Ix^r which entails that 23 N a contradic-
tion. Thus 9lt=j(. 

Next we show that if 93 is such that 23 N T" and every existential EAP sen-
tence holding in 23 holds in 21, then there are structures 2i', 23' for which we have 
9I<9I' , 93 's2l ' and 23' is isomorphic to 23. (Here -< stands for the traditionally 
defined concept "elementary submodel", cf. [2], p. 107.) 

Let ca and db be new constant symbols for every a£|9I| and i>£|23|, respec-
tively, thus forming the diagram languages of 91 and 23 (cf. [2], p. 108). Make sure 
that {ca |a€|9I|}nK|&el©l}=0. Let r m be the elementary diagram of 91 (cf. [2], 
p. 108). Let be the set of all positive atomic sentences and all negated equa-
tions in the diagram language of 23 which hold in the diagram expansion (23, ¿Oteisi 
(cf. [2], p. 108). (That is, J £ e a is a proper subset of the diagram Am of 93, cf. [2], p. 68, 
obtained from by omitting all elements of the form ~\r(xQ, ..., rm).) 

We claim that raiLM<Jea is consistent. Let us suppose the contrary: r ^ U z l g ^ 
is inconsistent. Then we can find a finite subset {50, ..., <5m}cA£ea, such that 

~I05<)A---A(5m). Since the elements of {i//,|&6|93|} do not appear in r m , we 
can treat them in ~l(<50A...A<5m) as free variables. It follows from the universal 
Closure Theorem of predicate logic, that for an appropriately large n£co, 

A, N (Vxi...Vx„n(<50(*i, xn)A...A5m(Xl,..., *„)). 

In par tic alar, (91, a)aim HVxi...Vxn)~l(50(xi, •••. *n)A...A<5m(*i, ..., x„)), and so 

(42) 911= ( V X i . - . V ^ n ^ o f e , . . . , xJt\...A8m(Xl,..., xn)) 

bccausc in elements of {c0|a£|2l|} appear in the sentence 

X = (yx1...Vx„)-|(<50(*i, ...,xm)A...ASm(x1, ...,x„)). 
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On the other hand, however, (SB, b)bimt=80A...A5m, and so 

93 N (3x1..3xJ(80(xu ..„xJA.-.ASJx!,...,x„)). 

But the sentence {Sxl..3x^{5a(xl, ...,x^t\...A5m(xlt ..., x j ) is an existential EAP 
sentence, hence, by assumption 

91 N (SXi- . -Bx^oCx!, ..„x^A.-.ASJx^ ...,x„)), 

which contradicts to (12). Thus r ^ U J ^ 6 3 is consistent, indeed. 
Let (91', i/, fc')a6isi|,b€i®i t>e a model of r a L M ^ e a (where a' and b' denote 

the interpretations of the new constant symbols ca and db for every a£|9I| and 
respectively). We may assume that for all a£|9l|, a'=a; i.e. |9l |c |9I ' | . Then 
91-<9T, because (9T, a, b')ael<a|1b€¡si l=rai- Let us define the mapping g: | S | - | 9 l ' | 
by the equation g(b)—b'. Since (W, a, b')aim bl:mt=A£e!l, it is easily seen that 
g is an isomorphism in the algebraic sense (leaving relations out of consideration) 
and that g is a model theoretic homomorphism (when relations are considered, too). 
By Lemma 3.5 (iv), there is a weak substructure 23' of 91', such that SB' and SB are 
isomorphic by g. 

Now, SB t= T implies SB' I= T. T is preserved under weak extensions, hence 
91'NT. By 9I-<91', we have 91 NT, which was to be proved. • 

C o r o l l a r y 4.4. Let T be an arbitrary first order theory. Then, the two asser-
tions below are equivalent: 

(i) T is preserved under weak extensions; 
(ii) T has a set of existential EAP axioms. 

Proo f . Immediate by Lemma 4.2 and Theorem 4.3. • 

The dual of Corollary 4.4 has a somewhat simpler proof; in fact, we need 
the compactness property only, and we shall not use elementary submodels. 

T h e o r e m 4.5. Let T be an arbitrary first order theory. Then the two assertions 
below are equivalent: 

(i) T is preserved under weak substructures; 
(ii) T has a set of universal EAN axioms. 

P r o o f . (i)=*(ii): We may assume that T is consistent for otherwise the set 
{(Vx)~l(x=x)} shows that (ii) is true. 

Let T={(p|q> is a universal EAN sentence and TN<p}. Then T N T and f is 
consistent. 

Let 91 N T and consider the set (defined in the very same way as 
zl+ea was defined in the proof of Theorem 4.3, but, of course, SB replaced every-
where by 91). 
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We claim that A ^ U T is consistent. To see this let {<50,..., ¿ J c J j 6 ® . Then, 
the sentence 

X = ( 3 x 1 . . . 3 x n ) ( < 5 0 ( x 1 , j c J A - . A ^ i * ! , ...,*„)) 

lis true in 21 for an appropriate n£co. But x must hold in some model of T, since 
otherwise (when x is false in every model of T), we would have because 
~ix is a universal EAN sentence, and so, we would arrive to the contradiction 
2I|="Ix- Thus, {<50,..., 5m) is consistent with T and, by compactness, A^\JT is 
consistent. 

Let (©, </)fl€ ¡a, be a model of (where d stands for the interpreta-
tion of the newly added constant symbol ca for each a€|2l|). Let g: |2I|—|©l be 
defined by the item g(a)=a / . Since (93, a^eiiai it is easy to see that g 
is an isomorphism in the algebraic sense (relations dropped) and is a homomorphism 
if we consider relations, too. It follows from Lemma 3.5 (iv) that there cis a weak 
substructure 93' of S such that 21 is isomorphic to 93'. 

T is preserved under weak substructures, hence © ' N T follows from S(= T 
and 2 l ' s S . Thus, 21 NT, i.e. f is an axiom system for T. 

(ii)=>(i): It suffices to prove that every universal EAN sentence <p is preserved 
under weak substructures. This can be done by a simple argument; details are 
omitted. • 

The statement of Theorem 4.5 is a slight strengthening of a result due to 
H. ANDREKA, I. NEMETI and I. SAIN (cf. [1], § 6. Theorem 1; [6], Theorem 1, Theo-
rem 3). Their proof, however, is purely category theoretic in character and works 
only if T is assumed to be universal. By Theorem 3.7, the assumption that T is 
universal, does not mean the loss of generality; nevertheless, this is not clear from 
the category theoretical framework. 

For equality-free languages we prove 

Theorem 4.6. Let T be an equality-free consistent first order theory. Then, the 
following two assertions are equivalent: 

(i) T is preserved under weak extensions; 
(ii) T has a set of existential positive equality-free axioms. 

Proof . (i)=>(ii): Let r={(p\q> is an existential positive equality-free sentence 
and Tt=<p}. T is assumed to be consistent, hence r is consistent, because T\=T. 
We shall prove that n=T. 

Let 2 l t=r . Just as in the proof of Theorem 4.3, we see that there is a struc-
ture S , such that ©NT, and every existential positive equality-free sentence 
holding in S holds in 21. Let 21 and S be fixed in the rest of this proof. 

For every fc€|©|, let db be a new constant symbol and form the diagram lan-
guage of S (the language constructed from the non-logical symbols of t and the 
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new set of constant symbols {db\b£ |S|}). Let A%et be the set of all (positive) atomic 
sentences of the form r(x0,..., x„), where ta(r)=n-\-\ and x0, ...,T„ are 
terms in the diagram language of ©, which are true in (©, fc)6e|S|. Let I be the 
set of all equality-free sentences (of the original language) which hold in 91. 

Following closely the way the consistency of •Ts llM®ea is established in the 
proof of Theorem 4.3, one proves that is consistent. 

Let (G, b \ i m be a model of (where, as usual, b' denotes the inter-
pretation of db for each i>€|93|). First we show the following statement is true: 

(13) For every equality-free first order sentence q>, 

91 |= q, o G |= (p. 

Indeed, if 9l\=(p, then <pdZ and thus (G, b')bem \=q>, from which Gl=q> 
follows, because the elements of the set {db\b£ |S |} cannot appear in (p. On the 
other hand, if 9lN<?>, i.e. 91l="l<p, then ~\(p£Z, and so G !="]<? is obtained. 
Thus (13) is proved. 

Let X be an arbitrary set such that card Aboard |G|. Let h: A ' U | © | } — 
- | £ | and g: K|i>6|93|}H®l be two onto mappings, such that for all 2>€|93|, 
h(db)=b' and g(db)—b. Such mappings h and g exist. Let us form the free struc-
tures G'=gr fc(G,&')6€ | iB | and 93' = grg (SB, b)bem. By Theorem 2.4, G' i=ILM+ e f 

and © ' l = r U J £ e f . We shall show that S ' ;§G'. Obviously, |© ' |c |G ' | , and for 
all 6<E|S| 

(14) c £ > = C ™ 

is immediate by Definition 2.3. Similarly, for every tp(f)—n+1, and 
b0, . . . ,ft„€|S' | , we have 

(15) F^(b0,...,bn) = Ff>(b0,...,bn). 

It follows from (14) and (15), that for any closed term x in the diagram lan-
guage of S , the equation 
(16) i W = 
holds. 

Let ta(r)=n+\, b0, ..., By the definition of 93', we can find 
closed terms T0, ..., x„ of the diagram language of 93, such that b0=x^'), ..., b„— 
=xf'\ Hence, the following chain of implications is obtained: 

(K, ..., bn)iRW => ..., T<»'>>€*<»'> =>» ' != r(T0, ..., xn) =» 

=>-r(T0, ...,T„)€J+ef =>(G, fc')*€|®l t= r(x0, ...,x„). 

Using Theorem 2.4 again, we can continue: 

«5» b\tm ^ K t o , O => G't=r(r0 , . . . , x„) => <xf >,..., T 
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from which (b0,..., b^S^ follows. 
By Lemma 3.5 (iv), we see that S ' s C . 
Since B ' ( = r and T is preserved under weak extensions, we have £'N7", 

and by Theorem 2.4, E | = r . By (13), 91 \=T, which was to be proved. 
(ii)=>(i): Immediate by Lemma 4.2. • 

Using a similar (but somewhat simpler) argument, one can prove the dual of 
this theorem 

Theo rem 4.7. Let T be an equality-free consistent first order theory. Then, the 
following assertions are equivalent: 

(i) T is preserved under weak substructures; 
(ii) T has a set of universal negative equality-free axioms. 

5. This section is devoted to answering question (2) in the particular case 
when equality is excluded from the language. 

D e f i n i t i o n 5.1. Let R a f f l . 
(i) K is said to be closed under finite meets iff for arbitrary 9t0, ..., 91n£K, if 

2 t 0 n . . . n9 t „ exists, then 9 I 0 n . . .n9 i„€£ . 
(ii) K is closed under extensions (weak extensions) iff for arbitrary 9t€/£ and 

©£$№, 9 l c © (91SS) entails © € K 

Obviously, if T is an arbitrary first order theory and "OPERATION" stands 
for one of the following items: "finite meets", "extensions", and "weak extensions", 
then the assertion "T is preserved under OPERATION" is equivalent to the asser-
tion "K is closed under OPERATION where K= {U(|9t N T}". 

D e f i n i t i o n 5.2. By a filter of structures we shall mean a nonvoid class Kc 9JI' 
such that K is closed under both finite meets and weak extensions. 

The following assertion characterizes filters of structures from a model theoret-
ical point of view. 

Theo rem 5.3. Let T be an arbitrary equality-free first order theory and let 
K be the class of all models of T. Then tlte following two assertions are equivalent: 

(i) T has a set of quantifier-free atomic equality-free axioms; 
(ii) K is a filter of structures. 

Proof . First we note that both (i) and (ii) imply that T is consistent. 
(i)=>(ii): It is obvious that every equality-free quantifier-free atomic sentence 

can be considered as an existential positive equality-free sentence and as a universal 
equality-free Horn sentence, simultaneously. Thus, T is preserved under both weak 
extensions and finite meets by Lemma 4.2 and Theorem 1.1, respectively; whence 
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iTis closed under both weak extensions and finite meets; i.e. K is a filter of structures 
(for K^Q). 

(ii)=>(i): Let us suppose, that K is a filter of structures, i.e. that K is closed 
under finite meets and weak extensions. It follows that T is preserved under finite 
meets and weak extensions. 

Let r = {(p\cp is an equality-free, quantifier-free atomic sentence, T\= cp}. Obvi-
ously, 7 > r . We shall prove that r t = T . 

Let Gl=T be arbitrary and set Z={~\G\O is an equality-free, quantifier-free 
atomic sentence such that £ t = > } . 

Let o£Z be arbitrary. Then {"I a} U T is consistent, for otherwise we would 
have r i = l ( l f f ) , i.e. T\=a, and so o^T; from which the contradiction GNff 
would follow. 

Let (l<70, ..., 1 crm}d, and for every i, OSi'Sm, let S,- be a model of 
{iffiJUT. Let X be any set such that card Z s c a r d |930|U...Ucard | 8 J , and 
let gi: XU&-* 193,-1 be an onto mapping for each i, O s i ^ m . Let us consider the 
free structures OSi'Sm, It is immediate by Definition 2.3, that 
®=gr 9 o ® 0 n . . . ng r a m ®,„ exists; moreover, for any gt f f |8,N {"lo-.-JUT, 
by Theorem 2.4. Since T is preserved under finite meets, and at is atomic, we have 
for every i, O^i^m that ©1= {~lff;}Ur, i.e. ® t= {~|<x0, ..., l < r J U r . By com-
pactness, EUT is consistent. 

Let S be a model of IUT. If i// is an arbitrary equality-free, quantifier-free 
atomic sentence such that G^i/^, then "1 ij/H, hence Q^ip . It follows that for 
any equality-free, quantifier-free atomic sentence \j/, £>NiA implies GNiA-

Let Y be an arbitrary set such that card ard |G| Ucard |35| and let 
hx: YUV^W, h2: Y b e two onto mappings for which h1(c)=Cf\ and 
K(c)=C£C), for any cf/d. Considering the free structures gr^G and gr^X) 
we still have for any equality-free, quantifier-free atomic sentence ij/, that g r^ X) N ij/ 
entails g r ^ G N ^ . By Definition 2.3 and Lemma 3.5 (iv), g r ^ S S g r ^ G . But 

T)t=T (by Theorem 2.4) and T is preserved under weak extensions, hence 
g r^GNT. By Theorem 2.4, G \=T. • 

From a purely formalist point of view one may adopt the following notion: 

De f in i t i on 5.4. By a quasi-filter of structures we mean a class K<z.W such 
that K is closed under finite meets and ordinary extensions. 

The analogue of Theorem 5.3 for this concept reads as follows. 

Theorem 5.5. Let T be an arbitrary equality-free first order theory and let 
K be the class of all models of T. Then, the following two assertions are equivalent: 

(i) T has a set of quantifier-free equality-free Horn axioms; 
(ii) K is a quasi-filter of structures. 
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Proof . Similar to the proof of Theorem 5.3. • 

We note that none of Theorems 5.3 and 5.5 generalize for theories with equality. 
Let us consider for example the theory T={c1=d1Vcz=d2}, where c2, dlt d2 

are constant symbols. It is trivial that T is preserved under finite meets and weak 
extensions, by definition. Hence, K, the class of all models of T, is a filter of struc-
tures. T, however, has neither an atomic nor a Horn set of axioms in general, thus 
Theorem 5.3 is not true for this theory. Since every filter of structures is a quasi-
filter of structures, Theorem 5.5 is false for T, too. 
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