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Structure-filters in equality-free model theory

P. ECSEDI-TOTH

Using a natural definition of (finite) meets of structures and that of the lattice
ordering induced by the meet, we introduce the concept of filters on the similarity
class of structures. Our main problem here is to answer the question whether
the theories of such filters are characterizable by purely syntactical means. Restricting
our considerations mostly to equality-free first order languages, we provide an
affirmative solution to this problem.

1. Finite meet of structures has been introduced as a simple set theoretic con-
struction in [3], where we have proved the following

Theorem 1.1 ([3), Theorem 2.14). Let T be an equality-free first order theory.
Then the two assertions below are equivalent:

() T has a set of universal equality-free Horn axioms;
(ii) T is preserved under finite meets (cf. Definition 3.6, below).

It was shown, too, that this theorem fails for theories containing equality;
more precisely, (ii) does not entail (i) if the equality is present, while the converse
implication (i)=-(ii) holds in general.

Our starting point in the present work is that, disregarding some set theoretic
difficulties, the class of all similar structures forms a weak partial meet-semilattice.
It is well-known, that the lattice ordering is uniquely determined in weak partial
meet-semilattices. By means of the lattice ordering, filters are definable in the
traditional way, and so the following natural questions arise:

(1) Which sentences (theories) are preserved under the lattice ordering induced
by the meet?

(2) Which sentences (theories) have a class of models that forms a filter in the
weak partial meet-semilattice of structures?
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We shall give here a complete answer to question (1) (cf. Corollary 4.4, Theo-
rems 4.5, 4.6, 4.7), and a partial one to question (2) (cf. Theorems 5.3 and 5.5), in
the sense, that we restrict our attention to equality-free languages, only.

It would be natural, too, to introduce and investigate the duals of these con-
cepts; i.e. the join of structures and ideals of structures. These notions, however
cannot be treated analogously to the meets and filters. For example, the meet of
structures can ‘be defined without any restrictions on thé universes of structures
(cf. Definition 3.1, below), nevertheless, a similar definition of the join would involve
either the assumption that the universes of all structures in question are the same,
or the permission for partial structures (in which functions may be partial). Beyond
this definitional difficulty, some of our results do not have analogous dual forms.
Thus, it seemed better to deal with these dual question in a separate paper.

2. Some of our assertions refer explicitly to proper classes, and so, in order
to avoid set theoretic difficulties, the choice of the underlying set theory is important;
in fact, our considerations could be carried out e.g. in the Bernays—Godel. set
theory. We shall, however, present the material informally; the formal set theoretic
development would be rather tedious.

By a similarity type ¢ we shall mean an ordered quintuple t=(®, F, ¥, ts, t5),
where &, #, € are pairwise disjoint sets, €#0, t5: Z+~w—{0}, ty: F-w—{0}.

By a structure of type ¢, we mean an ordered quadruplet

A= <|QI|, <R$Q')>rea, <F}m>f€§, <C§m)>cefe>,

where |2 is a nonvoid set, the universe of U; for each r€R, f€F and cc¥, R®
is a t5(r)-ary relation, F{ is a t4(f)-ary function and C” is a constant on the set
||, respectively.

From now on, we shall keep an arbitrary similarity type ¢ be fixed. The class
of all structures of type ¢ will be denoted by M'; we shall denote the elements of
M by German capitals, A, B, €, D, maybe with indices.

We shall use the standard notions and notations of [2]. Additionally, we nced
some supplementary facts, collected together in the rest of this section.

First, we mention the equality-free version of the well-known Eo§—Tarski
preservation theorem (cf. [2], Theorem 3.2.2, p. 124).

Theorem 2.1 ([3), Lemma 2.10). Let T be an equality-free first order theory.
-Then, the following two assertions are equivalent:

(i) T is preserved under substructures;

(ii) T has a set of universal equality-free axioms.

Analogously, one can prove without major difficulty the dual form of this
theorem. ‘
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. Theorem 2.2. Let T be an.arbitrary equality-free first order theory Then, the
two assertions below are equivalent: 3
. (1) T is preserved under extensions;
(ii) T has a set of existential equality-free axioms.

lhe followmg concept has been introduced also in [3].

Definition 2.3 ([3], 2.4). Let X be an arbitrary set and consider the absolutely
free algebra Fr (XU®) of type ¢z generated by the set XU% (cf. [5], Definition
'0.4.19(i), Remarks 0.4.20, pp. 130—131). Let AcM’. It is well-known, that for
‘arbitrary h: XU%—~|U|, such that for all c€%, h(c)=C™ holds, there exists
a unique homomorphism i from Fr(XU%) into A for which hCSh (cf. [5],
Definition 0.4.23, Theorem 0.4.24, Theorem 0.4.27(i), pp. 131—132). We define the
Jfree structure §r, W induced by h over U as follows: '

@ let |Fr, A=|Fr (XUDB)|;
(i) for every r€Z, t4(r)=n+1 and for arbitrary elements a,, ..., a,€|Fr, A, let.

{aq, ...,‘a,,)éRf"""m) < (h(ay), ..., h(a,))c R,

where h is the unique extension of 4 to a homomorphism from Ft (XU%)
into U;
(iit) for every f€ &, such that ¢, (f)=n+1 and for arbitrary ay, ..., a,€|Fr, U,
let
F}"""q')(ao, , a,) = F}ﬁ'(xug»(ao, e @)

(iv) finally, for all c€%, let

CEND . CEXUN)

It was shown in [3], that §r, A is correctly defined and is of type ¢, provided
Ac M. We shall need the following

Theorem 2.4 ([3], Lemma 2.5). Let AcWM and X be a set, h: XU¥~|U}
such that h(c)=C% for all c€%. If his onto, then W and Fr, WA are elementarily
equivalent for equality-free sentences.

The next assertion is, on the one hand, a particular case of a well-known result.
of Shoenfield (cf. [2], Theorem 3.1.16, p. 118) in two respects: firstly, it concerns
equality-free languages only, and secondly, it is restricted to the lowest levels of
the quantifier hierarchy. On the other hand, however, it.is a generalization of the
mentioned result, since it is about theories instead of single sentences. Our proof,.
presented here, is purely model theoretic in character and differs from the one given
in [2], p. 118.
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Theorem 2.5. Let T be an equality-free first order theory. Then, the following
assertions are equivalent:
(i) T has both a set of universal equality-free and a set of existential equaltty-
_free axioms;
(ii) T is preserved under both substructures and extensions;
(iii) T has a set of quantifier-free (i.e. II,=Z,=4,) equality-free axioms.

Proof. (i) and (i) are equivalent by Theorem 2.1, and Theorem 2.2. Also,
(iii) implies (i) trivially, since every quantifier-free (and equality-free) sentence can
be considered as a universal, as well as an existential (equality-free) sentence. To
-complete the proof, we show that (ii) entails (iii).

First, we prove the following fact.

(3) Let A, B, and assume that for any quantifier-free and equality-free sen-
tence ¥, Ay =BEyY. Then A=ToBE=T. _

Let X be an arbitrary set with cardinality large enough such that the onto
mappings h: XUZ—|A| and g: XU¥—~|B| exist. Consider the free structures
&5 A and Fr,B and let us denote by A’ and B’ those substructures of Fr, A
-and §r,B which are generated by the set of constants, respectively. (By assumption,
there exist constants in §r, A and Fr,B, so A and B’ exist.)

We claim that A’'=%®’.

Indeed, by Definition 2.3, we see that

1C) |&, Ul = |Fr, B,
and for every c€¥ and feZ,

(5) . Cc(i’yr,,ﬂl) — Cgﬁxgss)
© FP™® = FF®.

From (4), (5) and (6), it follows that |['|=|B’| and CT'=C®), F=F®),
for every c€%, f€&.

Finally, let a,, ..., a,€|%| and r€Z, such that t4(r)=n+1. By the defini-
‘tion of A/, there are closed terms g, ..., T, such that

79 = ay, ..., T = a,,
(where ) denotes the ‘““value of 7; in A, cf. [2], 1.3.13, p. 27). Hence
(@gy --0» GYERT) & (Z{T), ., tONERW) & Wi r(to‘, ey Tp)-

Since 1, ..., 7, are closed, W k=r(z, ..., 1,) implies that Fr, Al=r(z,, ..., T,)-
By Theorem 24, Wk=r(z,...,1,). According to the assumption of (3),
BEr(t, ..., 1), from which &r,Bl=r(z,...,7,) and B'E=r(t, ..., 1,) . follow,
.again by Theorem 2.4 and by the closedness of o, ..., ,.
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. ‘This,- however, means that ({2, ..., 7®)¢ R®? and so, using the fact that for
all i (OSzSn) {®)=a,, which follows from (5) and (6), we obtain: (g, ..., a,y¢ R®.
Hence, R®CR®. The converse implication R®cR®™ can be established
similarly. Thus RS"" R® and, r being chosen arbitrarily, we have A =%’

If A=T, then by Theorem 2.4, &5, A =T, and since T is preserved under
substructures, A’ =T. So, B’k=T. But T'is preserved under extensions, too, hence
&, B=T, whence we obtain B=T, by Theorem 2.4. The converse implication
BE=T=AE=T can be seen in an analogous way.

Thus (3) is proved.

If T is inconsistent, then the set {r(c,c,...,¢), r(cc, ..., c)}, where re®,”
te(r)=n+1 and c€% are arbitrary, is an axiom system for T in the required form.
(In fact, speaking on equality-free languages, we may assume that %9, for other-
wise no formula exists; on the other hand, ¢=0 by assumption.)

Let us suppose that T is consistent and set Fy={p|p is a quantifier-free equal-
ity-free sentence and T'=¢}. Then, T=T, and so T, is consistent.

Let €=T, be arbitrary. We claim that there is a structure D, such that D=7,
and for every quantifier-free equality-free sentence ¢, CEy oD =y.

Indeed, let Z={p|e is a quantifier-free equality-free sentence and C=o}.
Then ZUT is consistent. For if ZUT were inconsistent, then we could find a finite
subset {gy, ..., 6,y CZ such that Ti="1(ooA...Ad,). But the sentence “[(goA...Aq,)
is itself a quantifier-free equality-free sentence and 'so it is in T,, hence
C="T(ooA...Aa,,). Nevertheless, €k=a,A...Ac,,, by the definition of X. This con-
tradiction indicates that YUT is consistent.

. Let D be a model of XUT and let i be an arbitrary equality-free quantifier-
free sentence. If €=y, then Y€X andso DE=y. If €y, then €=T¢¥ and so
TIYEZ, hence D= Ty, ie. Di=y.

Thus, € and D satlsfy the condition of (3), and C=T follows from D=T,

by(3). O

3. Definition 3.1 ([3], 1.2). Let ¢= (9? F,¥€ g, tf) be a similarity type
and let

Uy = (UL, R ey (FF)rers (Cecs)

be structures of type ¢ for i<n+1, whete ncw. We define the set theoretic meét
of A;, i<n+1 as follows:
N WA= ( ﬂ |2, ( ﬂ R(%)>r63:< w‘)>fe9', ﬂ (Cg]’) cee)

D i<ntl

where the meets on the right hand side of the equation are meant in the sense of
set theory (i.e. the meet of functions is taken as the meet of sets of pairs representing
those functions; the meet of sequences of constants-is defined again as the meet of
ordered sets).

7
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If N WeW, then-it is called the model theoretic meet (from now on, simply,
i<n+1

the meet) of A;, i<n+1. We shall use the infix notatlon AnU,N...NAYU, for
the meet of UA;, i<n+1. ,
Clearly, [ U; always exists as a tuple The meet of the structures Q[,,

. i<n41
i<n+1, however, is a partial operation: it may well happen, that the meet of U;,

i<n+1 does not exist even if () IQI,KI#!D We shall use synonymously the fol-

i<n+l

lowing two expressions:

“ M WM™ and “UNWL,N...AN, exists”.

i<n+l

The meet, if exists, is very close to the set theoretic meet. In particular, it pos-
sesses the following familiar properties.

Lemma 3.2. Let W, B, €CcM* be arbitrary.
(i) ANAU=A, hence AN A< W'.
(i) If ANBEW, then BNUCWM, and ANB=BNA.
(iil) If ANBWM* and BNCEW, then («) and (B) below are equivalent and
any of them implies (ANB)NE=AN(BNCE):

@ (ANB)NLW,
B ANBNL)CW.

Proof. (i) and (ii) are trivial.

(iii): Assume that ANBe WM, BNCc W', If (a) is true, i.e. (QIF]SB) NEeM,
then consider AN(BNE). By the associativity of the set theoretic meet, which is
immediate by Definition 3.1, we have (ANBV)NEC=AN(BNE), hence (B) is true
and (ANB)NE=AN(BNE) holds. The converse can be established similarly. O

An immediate consequence of this lemma is the following

Theorem 3.3. Let t be a fixed similarity type. Then, the class of all structures
of type t forms a weak partial meet-semilattice.

Definition 3.4. Let us define the binary relation = on MM’ by the item:
for any U, Be P, A=B iff ANB exists and ANB=A.

If A=Y, then we say that “W is a weak substructure of B”, or equivalently,
that “$B is a weak extension of U”.

The next assertion collects some useful facts about the relation =. The proof

is an easy verification or can be readily obtained from the general theory of lattices [4].

Lemma 3.5. Let A, B, CcW'.
| (i) = is a partial ordering on W’
(ii) If ANB exists, then
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@) ANB=U and ANB=B;
B) €=U and €=V tmpIy that €=ANSB.
(iii) If UCB then U=V (where C stands for the tradmonal concept of
substructures). The converse implication is not true in general.
(iv) A= iff |U|C|B| and the identity mapping i: |A|—~|B|, defined by i(a)=a,
is @ homomorphism in the model theoretic sense.

The clause (iii) of this lemma justifies the adjective “weak” in the naming of
weak substructures.

Definition 3.6. Let T be an arbitrary first order theory. We say that

(i) T is preserved under weak substructures (resp. under weak extensions) iff
for all A, VP, if U=T and B=YU (resp. U=B), then V=T ' '

(i) T is preserved under finite meets iff for all Ay, A, ..., W, W, if
WU=T, W =T, ..., W, =T and U NA; N ... N Y, exists, then A,NA;N... AU, =T

The next assertion is a slight strengthening of Lemma 3.5(ii), (iii), and is true
for arbitrary first order languages.

Theorem 3.7. Let T be an arbitrary first order theory.
(i) If T is preserved under weak substructures, then T is preserved under finite

meets.
(i) If T is preserved under finite meets, then T is preserved under tradmonal

substructures.
(iii) None of these implications in (i) and (ii) can be reversed in general.

Proof. (i): Let us suppose that T is preserved under weak substructures; let
Wy, Ay, ..., W VY, and assume that for all i<n+1, U=T and the meet
AN AN ... N, exists. By Lemma 3.5(ii) it is easily seen that A, N A N... AU, =U,
and so, A,NA,N...NA, =T, because T is preserved under weak substructures.

(ii): Let T be such that T is preserved under finite meets. Let A=T, B<A.
We define the structure U’ as follows. First set |A’|=|B]U((A]~[BNX{IA});
then define A: [A|—~|2| by the item

‘ iff ac)B)
hia) = {< ) i ac|2r] ||,

Obviously, A is one-to-one and is onto. For all c€¥, let C™=h(C®™). For
every f€ Z, tz(f)=n+1 and for arbitrary elements ay, ..., g,€||, let

F@(a, ..., al) = h(F® (h=(a}), ..., h=1(a})).
Finally, for every 7€, tg(r)=n+1 and elements aj, ..., a,€[W[; let
(@b ey ALYER) & (h1(ap), ..., h=H(a))ERID.

7‘
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Then A’ is correctly defined and eI, provided - UCW'. -Moreover, W
is isomorphic to A by h. Thus W =T. By the construction, ANA'=VB and so,
T being preserved under finite meets, B=T.

(iii): Let us consider the (equality-free) theories

T ={(¥0)r(®}, Te={(V)(r(x)VeX)}

where r and ¢ are distinct unary relation symbols of an appropriate particular simi-
larity type . > '

By Theorem 2.1, T, is preserved under traditional substructures but, according
to Theorem 1.1, is not preserved under finite meets.
~ Similarly, Theorem 1.1 shows, that T, is preserved under ﬁn_ite' meets. Never-
theless, T, is not preserved under weak substructures as the following counter-
example indicates. (This follows also from Theorem 4.7, below.)

Obviously, T, is consistent; let 2 be a model of T;. Let us define the structure
€ as follows. First set |€|=||. Then, for every fc#, and c€¥, put FO=F®
and C®=C®. Finally, for every ré%, let R®=0.

Trivially, €T, and CNU=E, ie. €<A. L[

The ““dual” of this theorem is simply a reformulation of Lemma 3.5(iii) in
terms of preservation properties.

Theorem-3.8. Let T be an arbitrary first order theory: If T is preserved under
weak extensions, then T is preserved under (traditional) extensions. T he converse fails
in general. : : :

Proof. Trivial by Lemma 3.5(iii). O

Corollary 3.9. Let T be an arbitrary first order theory.

() If T is preserved under weak substructures or under finite meets, then T has
a set of universal axioms. If, in addition, T is equalzty free then it has a universal axiom
system which is equality-free.

(ii) If T is preserved under weak extenszons then T has a set of existential axloms,
which are equality-free, provided T is such.

Proof. (i): In contrary to the assertion, let its suppose that T has no universal
axioms. Then T is consistent. By the well-known £o§—Tarski preservation theorem
(12, Theorem 3.2.2, p. 124), we can find a model U of T and a substructure B of
A, such that BT. By Theorem 3.7, T is preserved under neither weak substruc-
tures nor finite meets. If T is equality-free, then using Theorem 2.1 in place of the
E.o§—Tarski theorem, the same argument applies.

(ii): Similar. O '

4. This section is devoted to answering the question (1).
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~Definition 4.1. Let us suppose that ¢ is an arbitrary first order formula
By predicate logic, ¢ is equivalent to-a formula i -of the form -

M-
! m
¥ =(01%1...0:%) A (9aV...V o VPaV... Vi VeV Ve Vi V.. Vi),
i=1 -

where n,m€w; for all i, 1=i=m, ji, s, ki, €0, @y, .. 9, Vars s Yy, a1€
proper atomic formulae of the form r(z, ..., 7,) for some r€#, ty(r)=v+1 and
terms Tg, ..., T,; and g, ... &> Mixs --or My, ATE equations of the form t1,=7,,
for some terms 1,, ,; and finally, for all z, 1=z=n, Q,€{V,3}.

We say that  (of the form (7)) is an equationally-augmented negative (resp.
positive) formula, an EAN-formula (resp. EAP-formula), for short, iff for all i
1=i=m, 5;=0 (resp. j,=0). :

Lemma 4.2, Let T be an arbitrary first order theory. If T has a set of existential
.EAP-axioms, then T is preserved under weak extensions.

Proof. It will suffice to prove, that every existential EAP-sentence ¢ is pre-
served under weak extensions. We shall proceed by induction.

First we observe some trivial facts. Let U, B, and B=UA. We shall
denote the set of variables by V.

(8) If k: V—-|B|, then k: V—|U|; that is, every assignment relative to B can
as well be regarded as an assignment relative to 2.

9) For every ré#, R®cR™, by Lemma 3.5(iv).

(10) If 7 is a term in the variables x, ..., x,, then for all k: V—|B|, 1®[k]=
=1[k], by (8) and by Lemma 3.5(iv). (Here P[] (resp. ©™[k]) stands for
“the value of 7 in B (resp. in A) at k”; cf. [2], 1.3.13, p. 27).

Now, let us suppose, that ¢=(3x;...3x,)Y, where ¥ is an atomic formula
in the variables x, ..., x,, and let B=¢@. Then there is an assignment k: ¥V —~[B|,
such that .
(11) - B Eylk]

Recalling that ¢ is in one of the following three forms: 74=1;, 1(1,=7,) and
F(ty, ..., T,), WE see that, in any case, k=y[k] is inmediate from (11) by (8), (9)
and (10).

The induction trivially passes over all the remaining cases, hence the assertion
is proved. [0

The converse of this lemma holds, too.
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Theorem 4.3. Let T be an arbitrary first order theory. If T is preserved under
weak extensions, then T has a set of existential EAP axioms.

Proof. If T is inconsistent, then the set {(Ix)7(x=x)} is an axiom system
for T in the required form. Hence we may assume, that T is consistent. Let I'={p|¢
is an existential EAP sentence and T=¢}. Then, obviously, T=I" and I is con-
sistent. We shall prove that I'=T.

Let A=T. First we show, that there is a structure B such that B=T, and
every existential EAP sentence holding in 8 holds in . To see this, let 2= {T¢|¢p
is an existential EAP sentence and Uk="¢}. We claim that ZUT is consistent.
Indeed, if ZUT were inconsistent, then we could find a finite subset {7 gy, ..., 10,}CZ
such that T="1(0,A...A16,). But 1(g,A...AT0o,,) is equivalent to an exis-
tential EAP sentence, say o, and thus Tk=o¢ implies that ¢€I’, hence Wi=o, that
is AE=T(ToeA...ATo,). This, however, contradicts to the assumption that
A="T0y, ..., U=To,. So YUT is consistent. Let B be an arbitrary model of
2UT and suppose that x is an existential EAP sentence which is true in 8. Assume
that Wicy, ie. AE="1y. Then 71y€X which entails that B="Ty, a contradic-
tion. Thus AE=y.

Next we show that if B is such that B=T and every existential EAP sen-
tence holding in B holds in , then there are structures U’, B’ for which we have
AU<W, B'=A" and B’ is isomorphic to B. (Here < stands for the traditionally
defined concept “‘elementary submodel”, cf. [2], p. 107.)

Let ¢, and d, be new constant symbols for every a€|¥| and be|B|, respec-
tively, thus forming the diagram languages of % and B (cf. [2], p. 108). Make sure
that {c,|a€|U[}N {d,|b€|B|}=0. Let I'y be the elementary diagram of A (cf. [2],
p- 108). Let 45 be the set of all positive atomic sentences and all negated equa-
tions in the diagram language of B which hold in the diagram expansion (B, b), ¢ g
(cf. [2], p. 108). (That is, 45°* is a proper subset of the diagram 4y of B, cf. [2], p. 68,
obtained from 4y by omitting all elements of the form r(z,, ..., Tw)-) '

We claim that I'yUA44®* is consistent. Let us suppose the contrary: I'yUAg®
is inconsistent. Then we can find a finite subset {dy, ..., 6,}C 43, such that
g="T1(8A...AS8,). Since the elements of {d,|b€|B|} do not appear in I'y, we
can treat them in 77(JA...AJd,) as free variables. It follows from the universal
Closure Theorem of predicate logic, that for an appropriately large ncw,

Lo = (V%15 %) (8 (ens ooy XA o A (s .oy X))
In particalar, (U, @),¢jaq = (VX1.. ¥ X)W (X15 -vos X)A ... ASH (x5 ...y X)), and so
(12) A = (VX1 V%) TG (Xqs oo XDA e AS Xy ees X))
bacause no clements of {c,|a€|A|} appear in the sentence
1= (7x Y x)0(86(x1s oy XA e AS (x5 -ens X))
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On the other hand, however, (B, b),¢ 5 F0A...AJ,, and so
B = (Axy... 3x) (G0 X1y -5 XA AGH (X1, -oos X))

But the sentence (3x;...3x,)(8p(X15 -+0s X)A ... Ay (%), ..., X,)) is an existential EAP
sentence, hence, by assumption

A = (3x;---3x) (G0 (ers ooos XA . A8 (X1, -y X)),

which contradicts to (12). Thus I'yUAZ® is consistent, indeed..

Let (W, d, b )¢, b1 be @ model of I'yUAE®™ (where ' and b denote
the interpretations of the new constant symbols ¢, and d, for every a<|¥| and b€|B],
respectively). We may assume that for all a€|¥|, a'=a; ie. [U[c|W|. Then
A< W, because (W, a, b'),c oy, peim =a- Let us define the mapping g: B[]
by the eqiiation g(b)=>b'. Since (', a, V) i peim =42, it is easily seen that
g is an isomorphism in the algebraic sense (leaving relations out of consideration)
and that g is a model theoretic homomorphism (when relations are considered, too).
By Lemma 3.5(iv), there is a weak substructure B’ of U, such that B” and B are
isomorphic by g.

Now, BT implies B =T. T is preserved under weak extensions, hence
WET. By A<W, we have =T, which was to be proved. O

Corollary 4.4. Let T be an arbitrary first order theory. Then, the two asser-
tions below are equivalent: :
(i) T is preserved under weak extensions;
(i) T has a set of existential EAP axioms.

Proof. Immediate by Lemma 4.2 and Theorem 4.3. O

The dual of Corollary 4.4 has a somewhat simpler proof; in fact, we need
the compactness property only, and we shall not use elementary submodels.

Theorem 4.5. Let T be an arbitrary first order theory. Then the two assertions
below are equivalent:

(i) T is preserved under weak substructures,

(ii) T has a set of universal EAN axioms.

Proof. (i)=>(ii): We may assume that T is consistent for otherwise the set
{(Vx)1(x=x)} shows that (ii) is true.

Let I'={¢|e is a universal EAN sentence and T=¢}. Then T=I and I is
consistent.

Let A=I and consider the set 43°* (defined in the very same way as
45 was defined in the proof of Theorem 4.3, but, of course, B replaced every-
where by ).
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We claim that 42UT is consistent. To see this let {6y, ..., 6,} <45, Then,

the sentence

1= (3. 3x)(60(X15 s XDA ... ABp (X215 oy X))
is true in U for an appropriate n€w. But x-must hold in some model of 7, since
otherwise (when y is false in every model of T), we would have y€I’, because
Ty is a universal EAN sentence, and so, we would arrive to the contradiction
A="y. Thus, {Jy, ..., d,} is consistent with T and, by compactness, 45*UT is
consistent,

Let (B, d),¢ be a model of 45UT (where @’ stands for the interpreta-
tion of the newly added constant symbol ¢, for each a¢|Ul). Let g: |A|—~|B| be
defined by the item g(a)=a’. Since (B, a),cq =45 it is easy to see that g
is an isomorphism in the algebraic sense (relations dropped) and is a homomorphism
if we consider relations, too. It follows from Lemma 3.5(iv) that there®s a weak
substructure B’ of B such that U is isomorphic to B’.

T is preserved under weak substructures, hence B'=T follows from B=T
and W=B. Thus, AT, ie. I is an axiom system for 7.

(if)=(1): It suffices to prove that every universal EAN sentence ¢ is preserved
under weak substructures. This can be done by a simple argument; details are
omitted. [

The statement of Theorem 4.5 is a slight strengthening of a result due to
H. ANDREKA, I. NEMETT and I. SAIN (cf. [1], § 6. Theorem 1; [6], Theorem 1, Theo-
rem 3). Their proof, however, is purely category theoretic in character and works
only if T is assumed to be universal. By Theorem 3.7, the assumption that T is
universal, does not mean the loss of generality; nevertheless, this is not clear from
the category theoretical framework.

For equality-free languages we prove

Theorem 4.6. Let T be an equality-free consistent first order theory. Then, the
Jollowing two assertions are equivalent:

(i) T is preserved under weak extensions;

(ii) T has a set of existential positive equality-free axioms.

Proof. (i)=(ii): Let I'={¢ple is an existential positive equality-free sentence
and Ti=¢}. T is assumed to be consistent, hence I' is consistent, because T'=T .
We shall prove that I'=T.

Let A=TI. Just as in the proof of Theorem 4.3, we see that there is a struc-
ture B, such that BE=T, and every existential positive equality-free sentence
holding in B holds in U. Let A and B be fixed in the rest of this proof.

For every be€|B|, let d; be a new constant symbol and form the diagram lan-
guage of B (the language constructed from the non-logical symbols of ¢ and the
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new set of constant symbols {d,|b€|B|}). Let 43 be the set of all (positive) atomic
sentences of the form r(ty, ..., 7,), where r¢&, ta(r)=n+1 and <, ..., 7, are
terms in the didgram language of B, which are true in (B, b),¢ |y Let X be the
set of all equality-free sentences (of the original language) which hold in 2.

Following closely the way the consistency of  I'y, U4 is established in the
proof of Theorem 4.3, one proves that XUA4Z* is consistent.

Let (G, b'),¢ s be a model of ZUAE®" (where, as usual, b’ denotes the inter-
pretation of d, for each be|B|). First we show the following statement is true:

(13) For every équality-free first order sentence ¢,
A=gpoCEo.

Indeed, if A=¢@, then @€Z and thus (G, b), =@, from which C=¢
follows, because the elements-of the set {dy|b€|B|} cannot appear in ¢. On the
other hand, if Ak, ie. WET¢@, then Jp€ZX, and so €="¢ is obtained.
Thus (13) is proved.

Let X be an arbitrary set such that card X=card |€|. Let h: XU {d,|bc|B|}~
~|€| and g: {d,}b€|B|}~|B| be two onto mappings, such that for all b¢|B|,
h(d,)=b" and g(d,)=b. Such mappings h and g exist. Let us form the free struc-
tures € =g, (€, )¢\ and B =Fr, (B, b),¢ - By Theorem 2.4, €' =3U4F
and B’ =TUAS". We shall show that B’=C’. Obviously, |®8’|c|E’|, and for
all b¢|B|

(14) - ¢’ =cy’
is immediate by Definition 2.3. Similarly, for every f¢ &, to(f)=n+1, and
by, ..., b€|B’|, we have
(15 F®) (b, ..., b,) = F{€) (by, ..., b,).
| It follows from (14) and (15), that for any closed term 7 in the diagram lan-
guage of B, the equation : :
(16) ®) = 7(©)
holds. '
Let 7€, tz(r)=n+1, by, ..., b,€|B’|. By the definition of B’, we can find
closed terms 1, ..., 7, of the diagram language of B, such that by=1, ..., b,=
=1®), Hence, the following chain of implications is obtained:
(bgs - by)ERE) = (2B, .., TBNER®) = B’ = r(1q, -, T,) =
=1 (Tqs -5 Tp)EAFE = (€, b )y 1wy = 1 (Tgs -oes Ty)-

Using Theorem 2.4 again, we can continue:

(€, By =1 (T0s o 0r T) = € =1 (7, ..oy 1) = (255, L., TEDE RS
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from which (b, ..., b,)¢ R follows. .

By Lemma 3. 5(1v), we see that B'=C".

Since B’=T and T is preserved under weak extensions, we have 0:’}=T
and by Theorem 2.4, €=T7. By (13), Y =T, which was to be proved.

(ii))=(i): Immediate by Lemma 4.2. 0[O

Using a similar (but somewhat simpler) argument, one can prove the dual of
this theorem

Theorem 4.7. Let T be an equality-free consistent first order theory. Then, the
Jollowing assertions are equivalent:

(i) T is preserved under weak substructures;

(ii) T has a set of universal negative equality-free axioms.

5. This section is devoted to answering question (2) in the particular case
when equality is excluded from the language.

Definition 5.1. Let K.

(i) K is said to be closed under finite meets iff for arbitrary A, ..., W€K, if
UpN...NYA, exists, then U,N.. NAUELK.

(ii) K is closed under extensions (weak extensions) iff for arbitrary U€K and
Ve DY, AcCB (A=B) entails BeK.

Obviously, if T is an arbitrary first order theory and “OPERATION” stands
for one of the following items: “finite meets”, “‘extensions”, and “weak extensions”,
then the assertion “T is preserved under OPERATION?” is equivalent to the asser-
tion “K is closed under OPERATION where K={U|A=T}".

Definition 5.2. By a filter of structures we shall mean a nonvoid class KW'
such that K is closed under both finite meets and weak extensions. )

The following assertion characterizes filters of structures from a model theoret-
ical point of view.

Theorem 5.3. Let T be an arbitrary equality-free first order theory. and let
K be the class of all models of T. Then the following two assertions are equivalent:

(1) T has a set of quantifier-free atomic equality-free axioms;

(i) K is a filter of structures.

Proof. First we note that both (i) and (ii) imply that T is consistent.

(i)=(i): It is obvious that every equality-free quantifier-free atomic sentence
can be considered as an existential positive equality-free sentence and as a universal
equality-free Horn sentence, simultaneously. Thus, T is preserved under both weak
extensions and finite meets by Lemma 4.2 and Theorem 1.1, respectively; whence
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K is closed under both weak extensions and finite meets; i.e. K is a filter of structures
(for K>=0).

(ii)=(i): Let us suppose, that K is a filter of structures, i.e. that K is closed
under finite meets and weak extensions. It follows that T is preserved under finite
meets and weak extensions.

Let I'={¢plo is an equality-free, quantifier-free atomic sentence, Tk=¢}. Obvi-
ously, T=I. We shall prove that I'=T.

Let Ci=I be arbitrary and set X={Tlo[c is an equality-free, quantifier-free
atomic sentence such that €= TJo}.

Let Ja€Z be arbitrary. Then {T6}UT is consistent, for otherwise we would
have T+=7(T0), ie. TE=o, and so ¢€I'; from which the contradiction €=o
would follow.

Let {70 ..., To,4CZ, and for every i, O=i=m,; let B; be a model of
{T6}UT. Let X be any set such that card X=card [B,|U...Ucard [B,|, and
let g;: XU%—~|B,| be an onto mapping for each i, O=i=m. Let us consider the
free structures &, B;, O=i=m. It is immediate by Definition 2.3, that
B=gr, BoN...NJr, B, exists; moreover, for any i, 0=i=m, Fr, B;k= {Te}UT,
by Theorem 2.4. Since T is preserved under finite meets, and g; is atomic, we have
for every i, O0=i=m that B&={1¢}UT, ie. B={1g,, ..., 16,}UT. By com-
pactness, ZUT is consistent.

Let ® be a model of TUT. If  is an arbitrary equality-free, quantifier-free
atomic sentence such that €k, then TYeZ, hence D=y It follows that for
any equality-free, quantifier-free atomic sentence ¥, D=y implies €.

Let ¥ be an arbitrary set such that card ¥Y=card |€|Ucard |D] and let
hy: YU% |G|, hy: YU%—~|D] be two onto mappings for which h,(c)=C®, and
hy(c)=C®, for any c¢€%. Considering the free structures r, € and Fr, D
we still have for any equality-free, quantifier-free atomic sentence y, that §r, D=y
entails §r, €=y. By Definition 2.3 and Lemma 3.5 @(v), &r, D=§r, €. But
&1, D=T (by Theorem 2.4) and T is preserved under weak extensions, hence
g1, C=T. By Theorem 24, C=T. O

From a purely formalist point of view one may adopt the following notion:

Definition 5.4. By a quasi-filter of structures we mean a class K<k such
that K is closed under finite meets and ordinary extensions.
The analogue of Theorem 5.3 for this concept reads as follows.

Theorem 5.5. Let T be an arbitrary equality-free first order theory and let
K be the class of all models of T. Then, the following two assertions are equivalent:

(1) T has a set of quantifier-free equality-free Horn axioms;

(ii) K is a quasi-filter of structures.
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Proof. Similar to the proof of Theorem 5.3. O

We note that none of Theorems 5.3 and 5.5 generalize for theories with equality.
Let us consider for example the theory T={c,=d,Vc,=d,}, where ¢, ¢;, d,, d;
are constant symbols. It is trivial that T is preserved under finite meets and weak
extensions, by definition. Hence, K, the class of all models of 7, is a filter of struc-
tures. T, however, has neither an atomic nor a Horn set of axioms in general, thus
Theorem 5.3 is not true for this theory. Since every filter of structures is a quasi-
filter of structures, Theorem 5.5 is false for T, too.
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