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The analytic behavior of the holiday numbers 

L. A. SZÉKELY 

1. Introduction 

Investigating Hilbert's fourth problem Z. I. SZAB6 [7] introduced the holiday 
numbers. In my previous paper [8] many combinatorial and algebraic properties 
of these numbers were treated. These properties are close to those of the Stirling 
numbers of the second kind. The aim of the present paper is to investigate the 
analytic behavior of the holiday numbers. We follow the main ideas of HARPER 

[1], who investigated the analytic behavior of the Stirling numbers of the 
second kind. 

We recall from [8] two possible definitions of the holiday numbers. The holiday 
numbers of the first kind are i¡/(m, i) (of the second kind (pirn, /)), where 

» m 
(1) 2 № 0 2 <K™> W = ( l / / l—2z)exp t ( l / f T ^ - l ) , 

m = 0 fc=0 

(10 2 № ! ) 2<p(m, k)tk = (1/(1 — 2 z ) ) e x p { t ( \ j ] f \ ^ 2 z ~ 1)). 
m=0 k=0 

The second definition is 

(2) il/(m, k) = (2m+k-l)\l/(m-l, fc) + ^ ( m - l , fc-1), 

>1/(0, 0) = 1, ^ ( 0 , i) = 0 f o r t ^ 0, 

(2') q>(m, k) = (2m+k)<p(m-l, k)+<p(m-l, fc-1), 

<p(0, 0) = 1, <p(0, t) = 0 for t ^ 0. 

We use the notations ij/m=2 "Kw> k) and <pm=2 ^C771» k). 
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2. Results 

S t a t e m e n t 1. The holiday numbers are strongly logconcave in the following 
sense: for Osfc^n, 

i]/(n, k)2 il/(n, k- l)il/(n, k+1), (p(n, kf ><p(n,k-\)(p(n,k+1). 

The statement is a special case of KURTZ'S theorem [2]. It follows that the 
holiday numbers are of unimodal distribution, for any n their maximum value is 
attained at most two times. The statement is important to get the corollaries of our 
theorems. 

T h e o r e m 2. \j/n and (p„ admit asymptotic expansions in the powers of TJ1'3 in 
the following way: 

(3) ^„~(n!27e Y37t)e2~' /3 , s '"1/3(n~ l i2+a1n~5,6+a2n~7,6+...), 

(30 ^n~(«!2n + 1 / 3 /e/3n)e2" , / 3 - 3 ' "1 / ,(n_ 1 / 8+i>1 .»;_ 1 / 2+62n - 5 / 6+.. .) . 

We have also 

tn+ilfa = 2n+(2«) 1 / 3 +0( l ) , cpn+ll<pn = 2n+(2/i)1 / 3+0(l) , 

(4) 

(40 <Pn2{— Pn+1 +<Pn<Pn+2—2<Pi> < ¡ " > 1 + 1 — <Pn} ~ (2/3) (2n)1/3. 

T h e o r e m 3. The holiday numbers are asymptotically normal in the following 
sense: 

(5) lim (1/<A„) ZHn, j) = ( 1 / ^ ) / e~ ,!/2 dt, 

(50 lim (1/ft) j ? 9(n, ; ) = (l/»/2^) fe-'l2dt, 

where 

(60 yn = (Pn+ihn-(2n + 3) + (y/q>n) { - <p2
+1 + <p„ <pn+2 - 2<p„ <pn+! - cplY'2; 

or 

(6'0 xB = (2n)1/3+x ((2/3) (2/j)1'3)1 '2, y„ = (2n)1/3+y ((2/3) (2«)1/3)1/2. 

C o r o l l a r y 4. t/j/wg the definitions of x„, y„ in (6), (60 or (6'0 we toe 
M - (l/]f2n)e~x'l2, 

<P^{-<PZn+i+<Pn<P»+2-2<Pn<P„+i-tiY,2<p(n, b„]) - (1 l/2n)e-*2, 
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i.e. 

t("> M~(«!2-'"«¡en)ez-'*-3"1/3n~2'3, 

<P (n, b J ) ~ («! 2"" 5161 en) e2-!'1-3'»1'ir'/3r^> 

C o r o l l a r y 5. Suppose, for i=I„ the maximum value of \l/(n, i) (for i=J„ 
the maximum value of <p(n,i)) is attained. Then for every e > 0 there exists N 
such that for n^-N 

|/„ - (2«)1/3I < en1'«, \J„ - (2«)1 '3! < en1'«. 
C o r o l l a r y 6. 

max (p(nJ)^(2Ti)- l l2(p2
n{-(pl+1+(p„<pn+2-2(pn(pn+1~(pl}-1l2, 

i.e. 

MAx <K«, j)~(N!2N-7/6/E7T)¿i~,"'z'nX'3n~2lz, 

max<p(n, j)~(n!2"-5>6/e7t)e2",/3'3"',/3«-1/3. 

The corollaries follow from the fact, that the convergence in Theorem 3 is uniform 
behind the integrals. Its reason is Statement 1, and the proof goes on the same way 
as in Harper's paper. 

3. The proof of the theorems 

In order to prove (3) and (3') we have to give the asymptotic expansion of the 
coefficients of 

(1 /}fl — 2z) exp (l/yi -2z-1) and (1 / (1 -2z ) )exp( l / /T^2 i" -1 ) 

(cf. (1), (1')). It is given in [6], in 25.3, in formula 25.35, in terms of Bessel—Wright 
functions. The asymptotic expansion of Bessel—Wright functions is given in [5], 
in 21.5, in formula 21.107. Comparing them we get (3) and (3'). By the theorem 
concerning the ratio of functions expanded in asymptotic power series ([4], 4.4, 
Thm. 5—6) we have the following expansions in the powers of n1'3: 

~ 2n+2l!3nll3+c1 + ..., cpn+ll<pn ~ 2n+21/3n1/3+d1 +.... 

Now (4) and (4') follow easily. 
In order to prove Theorem 3 we recall a well-known theorem from probability 

theory and prove an easy lemma. 



368 L. A. Székely 

Lemma. The polynomials 

Pm(t) = 2 Hm, k)t* and Qm(t) = J <p(m, k)tk 

k=0 k=0 
have m distinct, real, negative roots. 

Proo f of the lemma. We prove the statement by mathematical induction. 
It holds for P 0 ( 0 = 2o(0 = l- By (2) and (2') we have 

(7) Pm(x) = (2m - 1 +*)P m _ 1 (*)+xP;_ 1 (x) , 

(7 ') Qm(x) = (2m +x)Qm.l(x)+xQ'm_l(x). 

Let the roots of Pm^(x) be z 1 < z 2 < . . . < z m _ 1 < 0 by hypothesis. There are m—2 
roots of Pm by Rolle's theorem in (zx, zm_l). There are two other roots by 

= and PJO) = (2m-1) ! ! (see (2)), 

and 

sign Pm(zj) = sign z^P'm_i(zj) = -s ign P'm.i(- = - s ign Pm(-

A similar method applies for Qm. 
We continue the proof of Theorem 3. Let the roots of P„(x) be {—yBk: 

k=l,..., n}, the roots of Q„(x) be {—x„t: k=\, ..., n). We define the independent 
random variables Y*k and X*k by 

= 0) = yj(\+ynk), P(Y:k = 1) = 1/(1 +ynk), 

P(X„*k = 0) = x j ( 1 +xnk), P(Xn*k = 1) = 1/(1 

Let Z*N=2 Y*, S:=£X*, Fnk and Enk the distribution function of X*, Y*. 
k k 

Using (7), (7') we have 

1=1 XP„(x) x=l 

E(St) = q>n+1l(pn-(2n + 3), 

(8) - £ ( * - * < W = | ( t T ^ - o o t ) = 

_ P'Áx) ÍTOÍI _ -rn+i + ^n+2-2M„+1-rn 

Pn(x)*\Pn(x))\x=1 pm 

(we used (7) twice), 

(8') DHS*) = E(S*-E(S*ff = (-<pl+l + <pn<pn+z-2<pn<pn+l- . 

P'Áx) 
P»(x) 
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Let us define 

(9) Z„ = (l/D(Z*)){Z*—E(Z*)) = 2 (1 ID(Z:)){x:k-E(Xti), 
k 

(9') = (I ¡D (,S*)) [S*—E (S*)) = 2 {l/D(SZ))(Y:k~E(Yn\)). 
k 

From (4), (40, (8), (80 we get £>(Z*)-«>, We are in a position to apply 
the Lindeberg—Feller Theorem ([3], p. 295) for Z* and S*, since 

\X;k-E(X:k)\ S 1, | y * t - £ ( 0 S 1, 

and for a number n large enough 

2 fx*dFnk(x) = 0 , 2 " f x*dEnk{x) = 0. k |x|se k |*|se 

Since the generating function of a sum of independent random variables is the 
product of the generating functions, 

TT  X ~)~ Xnk Pn(x) ¿r X + y n k Q„(x) 

kí\l+xnk PB( 1) ' kL\ l + j „ t Q„( 1) ' 

we have P(Z*=a)=\p(n, P(S*=a)=<p(n, a)/<pn. Now the theorem is proved 
by (9), (90-
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