Acta Sci. Math., 51 (1987), 309318

Non-Arguesian configurations in a modular lattice
ALAN DAY?") and BJARNI JONSSON?)

To the memory of Andrds Huhn

1. Introduction. In [1] we showed that if L is non-Arguesian, then there exist,.
in the ideal lattice of L, elements p,, a€5%, and g;, Be5F, that are related to
each other in a manner similar to the ten points and ten lines in a non-Arguesian
configuration in a projective plane. In the lattice case, however, each p, is a point in
aplane P,, and each g, is a line in the plane Q,, with all of these planes being inter-
vals in the ideal lattice of L. Actually our construction yielded thirty two intervals
I,=u,jz,, pn<S5, and it was shown that, with at most two exceptions, these intervals
are non-degenerate projective planes. The exceptional intervals, I, and I, were
shown to be projective geometries of dimension three or less.

Our present objective is to describe in greater detail how the various intervals I,
fit together. The notation and terminology of [1] will be in effect. A non-Arguesian
perspectivity configuration (or PC), d, will be called prime if d covers d, in PC(L).
These PC’s and their associated intervals I,=u,/z,, p &S5, will be the primary
objects of our investigation. To simplify the notation, we write I, for I, I; for
Lijys 1+ for I ., ete.

It is easy to see that if, 9£u<v=5 (< means ‘““is covered by”), then the planes.
I, and I, are either transposes of each other (possibly equal) or else they are con-
nected by a two dimensional gluing (either loose or tight). Much less is known
about the intervals I, and I;. In the examples that have been constructed so far,
these too are non-degenerate projective planes, but we do not know if this is
always the case. We do however show that, if I, is either 2 or 3 dimensional, then.
it is non-degenerate. By duality, the same holds for I5.
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There are two further technical conditions that apply to PC’s. A PC, 4, is called
stable if, whenever two intervals of the form I; and I;; are transposes of each other,
they are equal. This supposed restriction causes no real loss of generality since we
will show that, for every non-stable d, there exists a stable prime e with e<d. A PC,
4, is called Boolean if the two functions p—z, and p-u, of 2°into L are both
lattice homomorphisms. Clearly, if d is Boolean, then L:=U{l,: uS5} is a
sublattice of L of finite length. A fundamental result states that, if d is both
Boolean and stable, {I,: puS5} consists of 2" planes where 0=r=3. In this
case the length of L’ is at most 9, and each simple subdirect factor of L’ has length
6 or less.

Much less is known about the case when d is stable but not Boolean. We do
show however that in this case the twenty planes, I,, 2=|u|=3, are distinct from
each other and from the planes of the form I; or I;. Hopefully this case will
be broken down eventually into subcases for which reasonable descriptions can
be found.

Some examples of the above cases can be found in [3].

2. The gluings. Throughout this section we work with a fixed prime PC, 4, in
a modular lattice, L.

Lemma 2.1. For distinct i, j€S, z;z;=z,.

Proof. By definition, z, is the meet of all the entries in the matrix d. Since
each diagonal entry is the meet of all entries in its row (or column), it follows that
z, is the meet of the diagonal entries in d. For distinct i,j, k€5, we have

Ziz;= (d*ijd*ik)(d*ijd*jk) = d*ikd*jk = z.

Consequently z;z;=z,.

Lemma 2.2. Forall u,vCSs,

(D) zy+z, = 2,4y, if uNv#P;
(2) Zuzvzzynv, l.f NUV#S;
3) u,tu,=u,y,, if pulv=0;
@ wu,=u,,, if pUvs=5.

Proof. Statement (1) and its dual (4) are, respectively, parts (2) and (1) ot
{1; Lemma 5.2]. It therefore suffices to prove (2). Moreover we may assume that
=], pNvcv, and |uUv|=4. We consider four cases:
(A) lul=2; Iv|=3; luNv|=1. Wemay assume pu={i,j} and v={i, k, m}. Then
zpzv = d*ij(d*ik+d*im) = d*ii.= = zpﬂv'

(B) lul=3; |v|=3; |uNv|=2. We may assume u={i,j,k} and v={i,j, m}.
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Then i . ;
Z,2y = (d*ij+d*jk)(d*ij+d*jm) = d*ij = Zij = Zpnyee

©) |ul=2; [v|=2; |luNv|=0. We may assume p={i, j} and.v={k, m}. Then
d*ud*km = d*-ij(d*ik'l'd*im)d*km(d*ik"*' d*]k) ='d*iid*kk = ZiZp = Zo,

by 2.1. ‘ _
(D) lul=1; |v|=3; |uNv|=0. We may assume p={i} and v={j, k, m}. Then

, 202y = Z3ZijZjm = ZiZj = Zos
by (A) and 2.1. ‘ :

Lemma 2.3. For i€5, the four elements, dju; with j=i, are four points in
general position in the plane.I;.

Proof. Let i, ], k, m, n be the distinct members of 5. Then, by computing with
intervals,

dijuiz; = dijtpedi;uam(dy+dip) 22 (@it +di+ dig)(di+diy) =
(by transposition)
= (du + d:k + dm) ulkm/ (dlk + d;m) - utkm/ (dlk + d:m)

Now dy+d,, is a line in I, and is therefore covered by uy,,. Thus z;<dju;
for each j=i. To see that the four points are in general position, we compute

(dijus+dgu)dipu; = (dy;+dy) di = dyy = 2;.

Theorem 2.4. If u and v are non-empty proper subsets of 5 with u<v,
then either
z, < 4,z, and (u,+2,) < u,
or
z,=u,z, and (u,+z,)=u,.

Proof. The intervals I, and I, are of the same length and have comparable
upper and lower endpoints. Consequently, z,<u,z, if and only if (u,+2z,)<u,,
and z,=u,z, holds just in case (u,+z,)=u, is true. Therefore we need only show
that for each u<v, at least one of the four conditions holds. By duality, we need
only consider |u|=1 or 2.

Assume that p={i} and v={i,j}. By 2.3, z;<u,d;; whence u,z‘j must equal
one of those two elements. Thus z,<u,z, or z,=u,z,

Assume now that u={i,j} and v={i,j, k}. By the Main Theorem of [1], the
element g=d;;+dy is a line in the plane I,, and qu, is a line on the point d;; in 1.
Now z,=u,z,=qu,. This last inequality must be strict sinee

dijzijp = dij(zij+ z) = zy+dyyza = zi+ 2= z;; < dye
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Therefore the length of u,z,/z, is at most 2 and one of our relations must
again hold. :

Lemma 2.5. For all i€5, u,z; either covers. or equals z,,.
Proof.. For distinct i, j, k, m in 5,
UpZ; = ZiUiUjp = z,ul,m,, and z,=zz; =z d,,(d_,k-i-d,,,,) = z,(dﬂ‘-l-d im)
Since ( +d;)<ujym, the conclusion follows.
Lemma 2.6. Any four of the five elements, z;, i€S, are independent over z,.
Proof. If i,j, k, m€S are distinct, then |
2(z;+ 2+ 2,) = 2, Zjum = Zo.

. Theorem 2.7..The following conditions are equivalent: i
(1) The five elements, z;u,, i€S, are points in general position in I,;
(2) 1, is a non-degenerate 3-space;
(3) length (7,)=4;
@) z,<zu,, for all ic5. .3

Proof. Now [1; Theorem 5.4] gives us that length (7,)=4. Thus (1)=(2)
and (2)=(3) are. trivial. If z,=zu,, for some ic5, then I,=(z;4+u,)/z;, a sub-
interval of a length 3 lattice. Therefore (3)=(4). Finally if (4) holds, then the z;u
are five points in I, by 2.5. By 2.6, any four of these pomts are independent. From
length (I)=4, we deduce (1) '

Corollary 2.8. If the condztzons of the theorem hold then for each t€5 I
transposes down onto the interval u,jz;u, and u, _2' (z5u,: s£1).

Theorem 2.9. If length (1,)=3, then at least two of the intervals I, transpose
down onto I,. Thus in this case as well, I, is a non-degenerate projective space (i.e.
a plane).

Proof. Since any four of the elements z;u, are independent, at least one out
of each four must be z,. Therefore at least two-of the five such elements must be
z,. But this forces, for these i, J; to-transpose down onto I, smce both mtervals are

the same length

"Theorem 2.10. The duals of2 7, 2 8 and 29 also hold In parttcular szs is of
Iength 3 or 4, it is a non- degenerate prcyectwe space

3. Boolean conﬁguratlons. The definition of a Boolean conﬁguratlon in Section’l
contams redundancies.- We -already  know, for instance, that. whenever ufv20;

z,+2,=z,n, holds for any PC. In this section we. will reduce the number of con-
- s et IR E Moot Tl AR



Non-Arguesian configurations 313

ditions needed to be checked in order to show that a PC, 4, is.Boolean. As before,
we assume that d is a prime PC in a modular lattice, L. : .

Recall that a subset UC L is called distributive if it generates a dlstrlbutwe
sublattice of L. A 3-element subset U={a, b, ¢} is distributive if either (a+b)c_"'
=ac+bc or (a+c)(b+c)y=ab+c. : y ‘ :

Lemma 3.1. The following conditions on a prime PC are equwalem
M) z,+z,=z,y, forall p,v<S5;

() z,4+2z,=2,y, for some p,v=0 with p\v=9, and qu#S

€)) {zl i Zixs Zjg} 18 distributive for all pairwise distinct i, j, k€S;

@) {z;j, zu, zjx} is distributive for some pairwise distinct i, J, kES
(5) {dss, das, dss} is distributive.

Proof. By 2.2, (1} is equivalent to z,+z,=2z,, with the added condition that
upand v are disjoint. By noting that z,=dy3d,y, z3=dp3dsy, and z,g3=ds3(ds,+ds,),
(5) is equivalent to z,+z,=z,,, with pu={2} and v={3}. By using the special.
automorphisms of PC(L), we get that (5) is equlvalent to z,+z,=z,,, with the,
added constraint that u and v are disjoint singletons. This Iast property and 2.2.
however easily imply that z,=2 (z;: i€u) for all pS5 and this implies (1). Tl_lere-
fore (1) is equivalent to (5).

A priori, (1) implies (2). Conversely, assume that (2) holds with g or v a non-
singleton. If p={i} and v2{j, k}, then C R

Zi' = ij(Zu+Zv) = Zi-l.—z,-jzv = Z,+Z_, :
If u= {z j} and v={k, m}, then . ‘
Zuk - Zuk(z +Zv) - Zu+zukz = Zu+zk

Thus this case reduces to the previous one. Therefore (1)&(2)«=(5).
Now for dlstmct i,J, kes, {zijs zus Jk} is dlstrlbutlve 1f and only 1f

ZU (Zlk+zjk) - Zu sz+Zu ij
The left side of this equation is z;;, and the right side is” z, +z Thus (4) implies
(2) and (1) implies (3). This completes the proof.y i - . BN R

Lemma 3.2. For a PC, d, the followmg are equwalent S L
() z,2,=2,q, for all u, vCs; o -
() z,z,=z,q, for some’ 1, V=5 with pUv=5 ané uﬂv;éﬂ

3 {zuk, iim> Zijny 1S distributive for all distinct i, j, k, mes;

W {ziji> Zijm» Zijn} - U5 distributive for some distinct: i, j, k, me5: ..

Proof. In considering (2), we may assumé¢ that /|j}=|v|.> The possible-values
for §= Iul and t—|v| are therefore . . T :
6,8 = (4 4), 3, 4), G, 3) and (2, 4).

C o,

bid
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For each of these four ordered pairs, (s, t), we define:

V) 2,2, = 2,q, for all g, v with uUv =35, .|;1| =s, and |v|=1¢;

G 2zuz,= 2z, for some u,v with pUv=35, |ul=s, and || =1

We claim that (3), (4), and each of the eight statements above are equivalent to

each other.
Assume that i, j, k, m, n are all distinct in S, and consider the equation

() Z;jkm Zijkn = Zijk -
This can be rewritten as

@it zim) @ije ¥ 2ij) = zip
and since z;,2;;,=2;;=2;y,, this is equivalent to

('* *) {Zijk’ Z; jms Zijll} is distributive.

Since (*) is {i,J, k}-symmetric and (* %) is {k, m, n}-symmetric, it follows that both
conditions are invariant under all symmetries of the indices. Therefore (3), (4),
(Va), and (3,,) are equivalent.

If (V4) holds, then

Zijk Zijmn = ZijkmZijkn Zijmn = ZijmZijn = Zij»

and thus (Vs) holds. On the other hand if (33,) holds, say z;;z z;;, then

ijmn=—<ij>
Zijkm Zijms = Zim+ Zijk Zijmn = Zimt Zij = Zijm
and (34,) holds. Consequently, (V) is equivalent to both (3,,) and (V;,).
If (V3,) holds, then

Zijk Zimn = Zijk Zikmn Zijmn = ZijZik = Zij>
and thus (V33) holds. On the other hand if (333) holds, say z,;z;,,=z;, then
Zijk Zijmn = Zijt ZijeZimn = 23+ 2 = 24

and (333) holds. Consequently, (V,4) is equivalent to both (3 ;) and (Vss).

A similar argument shows that each of the statements (3,4) and (V,,) is equiv-
alent to (V,,). Therefore (2), (3), and (4) are equivalent.

To obtain (2) implies (1) we need only consider complementary subsets of 5.
Assuming (2), we obtain ’

ZiZjkmn = Zij Zik Zjimn = 212 = Zos B0 2y;Zinn = Zijk Zipm Zamn = ZpZm = Zo-
Thus (2) implies (1) and the proof is complete.

Corollary 3.3. If, for some non-empty proper subsets, pCvsS, z,=z,, then
d is Boolean.
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Proof. The inclusion pcCv implies that u,=u,, and since I, and I, are both
projective planes we get equality here as well. Now let x=v\g and A=5\x=
=(5\v)Uu. We compute

Zyux = 2, = z,+2, = z,+2z,, and z,ny =2, = 2,2; = 2,2;.

By Lemmas 3.1, 3.2 and their duals, it follows that d is Boolean.
The above argument works in general to produce:

Theorem 3.4. A PC, d, is Boolean if and only if, for some distinct i, jeSs,
Z,-+Zj = Zjj, and Z'],'+Z—]j = Z9ij» and ui+u_,- = Ui, and u—,,-+u-|j = Unq;j.

4. Stable configurations. We still assume that d is a prime PC in a modular
lattice, L. .

Theorem 4.1. Let d be prime and stable. Then d is either Boolean or satisfies
(**%) Forall n,vsS, if 0cu<vcs, then z,<u,z, and u,+z,<u,.

Proof. Let d be stable, and take dcu<vcS. By 2.4 we must have I, trans-
posing up to J,, or z,<z,u, and u,+z,<u,, If the first property holds, then let
{i}=\u and take jeu. Now

szij = ul‘zijuﬂzv = sznzij = Zj.
Since d is stable, this implies J;;=1;, and hence d is Boolean by 3.3.

Lemma 4.2. Let d be a prime PC. For any x€dyyfz,, there exists a unique PC,

e, such that
e = du(x+di), e =2x, e=dy(x+dy),

and for {i,j}={0,1} and ke€{3, 4},
€ix = dik(djk'*‘em)-
M oreover if x is not less than or equal 1o zqy, then e is non- Arguesian.

Proof. The uniqueness of e is obvious for, by [1; Theorem 3.2], every PC in
L is completely determined by the elements listed above. Thus we are left with
showing the existence. This however also follows from [l; Lemma 2.4] and the
quoted theorem. If e were Arguesian, then e=e,, and

X = gy = €,00 = dyop = Zpa-

Lemma 4.3. If d is not stable, then there exists a piime PC, e<d that is both
stable and Boolean.
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Proof. If d is a prime PC that is not stable then there exists i, j€5 such that
I, transposes up to I;; but is not equal to I;;. Thus for these i and j we have

Z,-ju_,-:Z_,-, Z,'j'*‘u,':uj, and Z; < Z;.

By using the special automorphisms of PC(L), we may assume that i=0, and j=2.
Using x=dy1, in the previous lemma, we obtain a non-Arguesian PC, e, with
e<d and eyp=dy,u,. Tosee that e is prime, we note that zy=zy(d)=z,(e)<ep
(and that zo<e;). Therefore zy=2z,(e)=z,(e)<eys.

That e is Boolean follows from 3.3 and the fact that z,(e)=zy,(e), but e may
not be stable. What this e has done is replace the transpose Iy(d) up to J,(d) with
the equality Jy(e)=/,,(e). But for all i€5, direct calculations show that

z(d) = z;(e) = z;;(e) = z;;(d).

Therefore this e preserves all equalities of the form I;(d)=1I;;(d). This means that
after finitely many steps (at most 5%) all transpositions are replaced by equalities and
the resultant PC is both Boolean and stable.

Thus if L is a non-Arguesian modular lattice, we can find, in the lattice of
ideals of L, a prime (non-Arguesian) PC, d. If d is stable, then d is either Boolean
or satisfies (* % % ). If d is not stable, we can find a smaller PC, e, that is both stable
and Boolean. Therefore every non-Arguesian variety of modular lattices contains
a non-Arguesian lattice with a stable (non-Arguesian) PC. The Boolean case has
a nice finite solution which we present in the next section. By [3], there exists infinitely
many distinct stable PC’s satisfying (% % %), and these authors at least have found
no classification of them. Our only general result is the following.

Theorem 4.4. Let d be a stable non-Boolean PC. Then the twenty planes, I,,
2=|u|l=3, are distinct from each other, and from the planes, I, and 1;, i€5.

Proof. Let u=vCS5 satisty:
1=y, v/ =4, min{y),lv]} =3, and max {Ju,|v]}=2.

We wish to show that the assumption, z,=z,, leads to a contradiction. We obtain
this contradiction by producing a covering pair of subsets, x<A4, with z,=z,, and
invoking (# % %). . '

If pNv#0, then z,+z,=z,,,, and we may choose x to be the set of smallest
cardinality and A to be any cover contained in pUv. This produces our contradiction
on (* *x *x). Therefore we may conclude that

[0] pNv=49.
Therefore there exists i€u\v. But now we have for all icu

Zyugy) = Zyu@+ 2y = Zyu t+ 2, = Zpuy-
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To avoid conflict with (* % %), we must have:
icp implies [1] pgUv=5 and 4= le{1}|

21 uUv =vU{i}.
We also have jév\u and the trick above can be applied again to produce
jév implies [3] puUv=S5 and 4= l,',LU{]}I, or
[4] uUv=pU{)

Now [0] makes [2] equivalent to u={i}, and [4] equivalent to v={j}. Thus [1]
and [4] are incompatible as well as [2] and [3]. Our initial assumptions deny the con-
junction of [2] and [4], so we must have [1] and [3]. But this forces 3=][v| and |u]
which contradicts [0]. This concludes the proof.

5. Stable Boolean configurations. Throughout this section, d will be a prime,
Boolean, and stable PC in a modular lattice, L. The lattice homomorphisms,
zyu: 25~ L,

produce Boolean congruences on 2° which are, of course, determined by their respec-
tive ideals, Id(z) and Id (u), of subsets congruent to 8. Now {i}€ld (z2)ez;=
=z ofor all j=i, z;=z;efor all j#i, w;=u;eu=u,o{i}cId (). Therefore
Id (z)=1d (1), and by factoring out this ideal we produce, for some r with 0=r=35,
lattice embeddings

z,u': 2~ L.
Qur first result shows that this » can be further restricted.

S

Lemma 5.1. If d is Boolean and stable, then the set {I,: £S5} consists of 2"
planes for some r, O0=r=3.

Proof. Let i, j, k, m, n be distinct members of 5, and assume that for all s=n,
Zy,>2,. From 2.3 and stability, this implies that for all s#n, u,zg=u,dy,. 2.3
also says that {u,d,,: ssn} are points in general position in J,. But d is Boolean,
and therefore

uldm =1y zm( 1 Jn+ukzkn+u zmn) = Zmzjkmn = Zy.

This-is a contradiction. _

Thus for every n€5, there exists an s#n such that z,,=z,. Again since d is
Boolean this implies that for every. nes, - there exists an ssn .such that Zy=2,
Elementary counting now produces two distinct s€5 with z,=z,

We may therefore replace 5 by r for 0=r=3, and assume that we have lattlce
monomorphisms,

w2~ 1,

that satisfy:
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(1) I,:=u,jz, is a non-degenerate projective plane for all uCr;
(2) For all S u<vEr, z,u,<z, and u,+z,<u,.
We define L':=U{l,: uSr}. Clearly L’ is a sublattice of L of finite length.

Lemma 5.2. L’ is simple if and only if for all i€y, z;=u-,.

Proof. If our condition fails, then, for the offending i€r, L’ is the disjoint
union of the filter, {z; and. the ideal, ju.;. Thus L’ is not simple. -

Conversely, assume the' condition holds. We proceed by induction on r. If
r=0, then L’ is a non-degenerate projective plane and hence simple. If O<r=3,
take a prime quotient g/p in L’, and let 0 be the congruence it generates. Since
I’=1‘z,-U;u.,,- and z;=u-;, we must have this quotient in tz; or in ju;. By induc-
tion, @ collapses either the filter or the ideal. Since z;<u-;, induction applies also
to the other part and 6 collapses all of L’. Therefore L’ is simple.

Theorem 5.3. Suppose V is a variety of modular lattices and assume that there
exists a Boolean, prime PC in some member of V. Then there exists in V a simple non-
Arguesian lattice of length 3+r, with 0=r=3, and a Boolean, stable, prime PC,
d, in L with the following properties:

(1) L is generated by {d;;: i#j in 5};

(2) The set {I,: pS5} consists of precisely 2" planes.

Proof. By 4.3. there exists in some member L of V a PC, d, that is prime,
Boolean, and stable. By 5.1, the set {I,: uS5} consists of 2" distinct planes for
some r, with 0=r=3. We may assume without loss of generality that L is gen-
erated by the PC and is therefore the union of the planes 1,.

Since L is obviously of finite length, we may assume that its length is as small
as possible. We claim that in this case L is simple. To see this, we consider a homo-
morphism ¢: L—S, where S is simple and ¢ does not identify d,; and d,q, . Clearly
¢(d) is a (non-Arguesian) PC in S and in fact also prime and Boolean (since
¢(z,(0))=z,(¢(d)) and similarly for the ’s). The length of S therefore cannot be
less than that of L. This: makes ¢ an isomorphism and L simple. '
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