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Non-Arguesian configurations in a modular lattice 

ALAN DAY1) and BJARNI JÓNSSON2) 

To the memory of András Huhn 

1. Introduction. In [1] we showed that if L is non-Arguesian, then there exist,, 
in the ideal lattice of L, elements pa, a£5[2], and qp, /?£5[3], that are related to 
each other in a manner similar to the ten points and ten lines in a non-Arguesian 
configuration in a projective plane. In the lattice case, however, each px is a point in 
a plane Pa, and each is a line in the plane with all of these planes being inter-
vals in the ideal lattice of L. Actually our construction yielded thirty two intervals 
Ifi—ujz^, and it was shown that, with at most two exceptions, these intervals 
are non-degenerate projective planes. The exceptional intervals, /„ and 7S, were 
shown to be projective geometries of dimension three or less. 

Our present objective is to describe in greater detail how the various intervals 
fit together. The notation and terminology of [1] will be in effect. A non-Arguesian 
perspectivity configuration (or PC), d, will be called prime if d covers d̂  in PC(JL). 
These PC's and their associated intervals I ^ u j z ^ , fiQ5, will be the primary 
objects of our investigation. To simplify the notation, we write 7f for 7{i}, I ; J for 
7{y}, 7n i for 7sx{i}, etc. 

It is easy to see that if, (-< means "is covered by"), then the planes 
7„ and 7V are either transposes of each other (possibly equal) or else they are con-
nected by a two dimensional gluing (either loose or tight). Much less is known 
about the intervals 70 and 7S. In the examples that have been constructed so far,, 
these too are non-degenerate projective planes, but we do not know if this is 
always the case. We do however show that, if 70 is either 2 or 3 dimensional, then 
it is non-degenerate. By duality, the same holds for I s . 

Received August 25, 1986. 
>) Research supported by NSERC Operating Grant A-8190. 
2) Research supported by NSF Grant DMS 860251. 



310 A. Day and B. Jonsson 

There are two further technical conditions that apply to PC's. A PC, d, is called 
stable if, whenever two intervals of the form It and ItJ are transposes of each other, 
they are equal. This supposed restriction causes no real loss of generality since we 
will show that, for every non-stable d, there exists a stable prime e with e<d. A PC, 
d, is called Boolean if the two functions ¡i—z„ and fi-^u^ of 2s into L are both 
lattice homomorphisms. Clearly, if d is Boolean, then L':= U {/„: nQ5} is a 
sublattice of L of finite length. A fundamental result states that, if d is both 
Boolean and stable, {/„: f i ^ 5 } consists of 2r planes where 0 ^ r S 3 . In this 
case the length of L' is at most 9, and each simple subdirect factor of L' has length 
6 or less. 

Much less is known about the case when d is stable but not Boolean. We do 
show however that in this case the twenty planes, /„, are distinct from 
each other and from the planes of the form or /-,;. Hopefully this case will 
be broken down eventually into subcases for which reasonable descriptions can 
be found. 

Some examples of the above cases can be found in [3]. 

2. The gluings. Throughout this section we work with a fixed prime PC, d, in 
a modular lattice, L. 

Lemma 2.1. For distinct i,jd5, zlzj=ze. 

Proof . By definition, ze is the meet of all the entries in the matrix d. Since 
each diagonal entry is the meet of all entries in its row (or column), it follows that 
za is the meet of the diagonal entries in d. For distinct i,j, k£5, we have 

z i z j = (d*i,-d*ik)(d*ijd*jk) = d*ikd*jk = zk-

Consequently zlzj=za. 

Lemma 2.2. For all n,vQ5, 
(1) z„+zv = z„Uv, if nDv^O; 
(2) z„zv = z„n v , if p U v ? i 5 ; 
(3) Mm+Mv = M„Uv, if IJ.CIv?i0; 
(4) w„Hv=w„nv, if fiUv?i5. 

P roof . Statement (1) and its dual (4) are, respectively, parts (2) and (1) ol 
{1; Lemma 5.2]. It therefore suffices to prove (2). Moreover we may assume that 

/ i f l v c v , and | / tUv|=4. We consider four cases: 
(A) | / i |=2; |v |=3; |//Plv| = l . Wemay assume n = {i,j} and v = {/, k, m). Then 

ziizv djf.im) d^i Z; ZpCw 

(B) | / i |=3; |v |=3; | ^ f lv |=2 . We may assume n = {i, j,k) and v = {/,/, m). 
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Then" 
ziizv = (¿¿.¡J+d^ jk) (d^ j + Jm) = d ^ j — z^ = z ( ,nv . 

(C) |/x|=2; |v| = 2 ; |/iPlv| =0. We may assume n={i, j ) and. v = {A:, m}. Then 

ZpZv — d*ijd*km = d*ij(d*ik + d*im)d*km(d*ik + d*jk) — d*ud*kk = zizk = za> 

by 2.1. 
(D) |^| = 1; |v| = 3* |/zflv|=0. Wemay assume fi={i} and v={j,k, m}. Then 

zuzv = ziZijZjkm = zi Zj = z„, 
by (A) and 2.1. 

L e m m a 2.3. For 5, the four elements, dijui with j^i, are four points in 
general position in the plane I¡. 

Proo f . Let i,j, k, m, n be the distinct members of 5. Then, by computing with 
intervals, 

duujzi = duuikmldijuikm(dik+dim) s= (duuikm+dik + dim)l(dik + dim) = 

(by transposition) 

= (du + dik+dim) uikJ(dik+dim) = uikJ(dik + dim). 

Now dik+dim is a line in Iikm, and is therefore covered by uikm. Thus zi-<ydijui 

for each yV i- To see that the four points are in general position, we compute 

(dy ui + dik M,) dim Uf (du + dik)dim -• du = z^ 

T h e o r e m 2.4. If fi and v are non-empty proper subsets of 5 with p-^v, 
then either 

z„ -< m„zv and (w„+zv) -< mv, 
or 

z„ = UpZy and (W/1 + ZV) = MV. 

Proo f . The intervals /„ and 7V are of the same length and have comparable 
upper and lower endpoints. Consequently, zlt^<.ultzv if and only if (K^+Z,)-^,,, 
and zM=M / tzv holds just in case (M / J +Z V )=M v is true. Therefore we need only show 
that for each /i-<v, at least one of the four conditions holds. By duality, we need 
only consider |/t| = 1 or 2. 

Assume that / i={/}.and v={i,j}. By 2.3, z ^ u ^ j whence «¡Zy must equal 
one of those two elements. Thus z ^ u ^ z y or z ^ u ^ z y 

Assume now that n={i,j) and v={/ , / , k}. By the Main Theorem of [1], the 
element q=diJ+dik is a line in the plane /„, and qu^ is a line oh the point dtJ in 
Now z^su^zy^qup. This last inequality must be strict since 

dy zut = du (zy+zik) = +du zik = ztj+zi = zi} <du. 

2 
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Therefore the length of u^zjz^ is at most 2 and one of our relations must 
again hold. 

Lemma 2.5. For all i£5, ugZi either covers-or equals ze. 

P r o o f - For distinct i, j, k, m in 5, 

u0z, = ZiUiUJkm - ZiUJkm, and za = z^j = z,i/lV(iiJt + i/7ra) = Zi(dJk + djm). 

Since (djk+djm)~<.Ujkm, the conclusion follows. 

Lemma 2.6. Any four of the five elements, zh i£5, are independent over ze. 

Proof . If i,j, k,m£5 are distinct, then 

Zi(Zj + Zk + Zm) si ztzJkm = zB. 

Theorem 2.7. The following conditions are equivalent: 
(1) The five elements, z;w0, 5, are points in general position in /„; 
(2) Ia is a non-degenerate 3-space; 
(3) length ( / J = 4 ; 
(4) zB<z iwa, for all i£5. 

Proof . Now [1; Theorem 5.4] gives us that length (7„)s4. Thus (1)=>(2) 
and (2)=>(3) are. trivial. If za=ziua, for some /£5, then / ^ f o + w j / z ; , a sub-
interval of a length 3 lattice. Therefore (3)=>(4). Finally if (4) holds, then the z;w0 

are five points in IB by 2.5. By 2.6, any four of these points are independent. From 
length (/„)=4, we deduce (1). 

Coro l l a ry 2.8. If the conditions of the theorem hold, then for each iÇ.5, It 

transposes down onto the interval ujziua and uB=^(zsua: s^i). 

Theorem 2.9. If length (/D)=3, then at least two of the intervals It transposé 
down onto Ia. Thus in this case as well, Ie is a non-degenerate projective space (i.e. 
a plane). 

Proof . Since any four of the elements zfw0 are independent, at least one out 
of each four must be z a . Therefore at least two of the five such elements must be 
z0. But this forces, for these i, to transpose down onto Ia since both intervals arë 
the same length. 

Theorem 2.10. The duals of 2.7,2.$, arid 2.9 also hold, In particular, iflsis of 
length 3 or 4, it is a non-degenerate projective space. 

• y, 3. Boolean configurations. The definition of a Boolean configuration in Section 1 
contains redundancies; We already know, for instance, that whenever 
z ( J+zx=z / i n y holds .for any PC-In this section we. wiU reduce the number of con-
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ditions needed to be checked in order to show that a PC, d, is. Boolean. As before, 
we assume that d is a prime PC in a modular lattice, L. 

Recall that a subset UQL is called distributive if it generates a distributive 
sublattice of L. A 3-element subset U = {a, b, c} is distributive if either (a+b)c= ' 
=ac+bc or (a+c)(b+c)=ab+c. 

Lemma 3.1. The following conditions on a prime PC are equivalent: 
(1) z^+z^z^ for all n, vi5; 
(2) z^+zv=z ( l U v for some /i, with /xflv=0, and / iUv^5 ; 
(3) {ztJ, zik, zjk} is distributive for all pairwise distinct i,J, k£ 5; 
(4) {zy, zik, zJk} is distributive for some pairwise distinct i,j,k£5; 
(5) {d23, d2i, dM} is distributive. 

Proof . By 2.2, (1) is equivalent to z,,+zv—zmUv with'the added condition that 
/land v are disjoint. By noting that z2=d23d2i, z3=d23d3l, and z2Z=d23(d24+d3i), 
(5) is equivalent to z f l+zv=z ( l U v with // = {2} and v = {3}. By using the special 
automorphisms of PC(L), we get that (5) is equivalent to z

fl-j-zv—zliUv with the 
added constraint that p, and v are disjoint singletons. This last property and 2.2 
however easily imply that z^—^iz^.i^ii) for all / iQ5 and this implies (1). There-
fore (1) is equivalent to (5). 

A priori, (1) implies (2). Conversely, assume that (2) holds with ji or v a non-
singleton. If n={i} and v ¡2 {j, k), then . S 

Zij = Z ;J (Z ( L +Z V ) = Z ; + ZYZV = Zi + Z j . 

If // — {/', j } and v = {k,m), then 
zijk — zijk(zp + zv) = Zij + ZijkZv = Zij + Zk. 

Thus this case reduces to the previous one. Therefore (l)<t»(2)-»-(5). 
Now for distinct /',./, k£ 5, {z;j-, zik, zjk} is distributive if and only if 

zij (zik + zjk) = ZijZik + ZijZjk. 
The left side of this equation is ztj, and the right side is zt+Zj. Thus (4) implies 

(2) and (1) implies (3). This completes the proof. , • ; . r 

Lemma 3.2. For a PC, d, the followingare equivalent: 
(1) z(,zv=z(,nv for all n, ' V • '' 
(2) zMzv=zMnv for some p., with juUv=5 ana pOvyi): . 
(3) {ziJk, zijm, zijn} is distributive for all distinct i,j, k, w£5; 
(4) {zijk, ziJm, ziJn} is distributive for some distinct i,j,k, /w£ 5. ,, 

P roof . In considering (2), we may assume that The possible values* 
for s=\fi\ and /=Iv|. are therefore . . • .. . 

(s, i) = (4, 4), (3, 4), (3, 3), and (2, 4). . 

2» 
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For each of these four ordered pairs, (s, t), we define: 

(Va) z„z„ = z„nv for all n, v with ^Uv = 5, \p\ = s, and |v| = t; 
(3 a) ZpZv = z„nv for some n, v with ¿iUv = 5, |/i| = s, and |v| = t. 

We claim that (3), (4), and each of the eight statements above are equivalent to 
each other. 

Assume that /, j, k, m, n are all distinct in 5, and consider the equation 

(*) zijkmzijkn = zijk ' 
This can be rewritten as 

(Zijk + Z ¡jm) (Zijk + Zj jn) = ZiJk 

and since ziJm zijn=ztj ^ z i j k , this is equivalent to 

( * *) {ziJk, zf Jm, ziJn} is distributive. 

Since (* ) is {/, j, ^symmetr ic and ( * *) is {k, m, «}-symmetric, it follows that both 
conditions are invariant under all symmetries of the indices. Therefore (3), (4), 
(V44), and (344) are equivalent. 

If (V44) holds, then 
zijk zijmn Zijkm Zijkn Zijmn Zijm zijn Zij 5 

and thus (V34) holds. On the other hand if (B34) holds, say z,vtz,7mn=zy, then 
zijkm Zijmn Zim zijk zijmn Zim zij Zijm 

and (344) holds. Consequently, (V44) is equivalent to both (334) and (V34)-
If (V34) holds, then 

zijkzimn ~ zijk zikmn zijmn ~ zijzik ' ziji 
and thus (V33) holds. On the other hand if (333) holds, say zljkzimn—zh then 

Zijk Zijmn = zij + zijkzimn = Zij + Zi ~ Zij 

and (333) holds. Consequently, (V44) is equivalent to both (333) and (Vss)-
A similar argument shows that each of the statements (324) and (V24) is equiv-

alent to (V44)- Therefore (2), (3), and (4) are equivalent. 
To obtain (2) implies (1) we need only consider complementary subsets of 5. 

Assuming (2), we obtain 
zizJkmn = zijzikzjkmn = z]zk = zei and ZjyZ^ = ZiJkZiJmZkmn = ZkZm ~ Za. 

Thus (2) implies (1) and the proof is complete. 

C o r o l l a r y 3.3. I f , for some non-empty proper subsets, /JCvg|S, z / i=zy , then 
d is Boolean. 
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Proof . The inclusion ficzv implies that u^uv, and since and 7V are both 
projective planes we get equality here as well. Now let x=v\ji and A=5\J<= 
= ( 5 \ v ) U fi. We compute 

Zpux — zv = zv+zx = zfl+zx, and zvnx = z„ = z^z^ — zvzx. 

By Lemmas 3.1, 3.2 and their duals, it follows that d is Boolean. 
The above argument works in general to produce: 

Theo rem 3.4. A PC, d, is Boolean if and only i f , for some distinct i, j£5, 

zi + zJ = zlj, and zli + z1J = zltJ, and ui + uj=uiJ, and u^ + u-^j = ulu. 

4. Stable configurations. We still assume that d is a prime PC in a modular 
lattice, L. 

T h e o r e m 4.1. Let d be prime and stable. Then d is either Boolean or satisfies 

(***) For all 5, if 0 c ^ « < v c 5 , then z^u^z^ and u^+Zy^u,. 

Proof . Let d be stable, and take 0 c r ^ < v c 5 . By 2.4 we must have /„ trans-
posing up to 7V, or Zp^ZyU,, and wM+zv-<wv, If the first property holds, then let 
{ /}=v\ / i and take j£fi. Now 

UjZtj = Uj Zij Up Zv = UjZ^Zij = z,. 

Since d is stable, this implies 7U=7,, and hence d is Boolean by 3.3. 

L e m m a 4.2. Let Abe a prime PC. For any x£d02/z0, there exists a unique PC, 
e, such that 

e<>i = d01(x+d12), e„2 = x, eiz - d12(x + d0l), 

and for {F,7>={0, 1> and 3 ,4}, 

eik = dik(djk + e01). 

Moreover if x is not less than or equal to z02, then e is non-Arguesian. 
Proof . The uniqueness of e is obvious for, by [1; Theorem 3.2], every PC in 

L is completely determined by the elements listed above. Thus we are left with 
showing the existence. This however also follows from [1; Lemma 2.4] and the 
quoted theorem. If e were Arguesian, then and 

X = e02 — C ^ . 0 2 — = Z 0 2 -

L e m m a 4.3. If d is not stable, then there exists a prime PC, e < d that is both 
stable and Boolean. 
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Proof . If d is a prime PC that is not stable then there exists 5 such that 
Ii transposes up to /l7 but is not equal to 7iy. Thus for these i and j we have 

zu uJ = 2J > zu + "¡ = uJ > a n d 2' < 2i • 

By using the special automorphisms of PC(L), we may assume that i=0, and j=2. 
Using x=d02u0 in the previous lemma, we obtain a non-Arguesian PC, e, with 
e<d and e02=dt)2un. To see that e is prime, we note that z0=z0(d)^z02(e)<e02 

(and that z0<e02). Therefore z0=z0(e)=z02(e)^é»02. 
That e is Boolean follows from 3.3 and the fact that z0(e)=z02(e), but e may 

not be stable. What this e has done is replace the transpose 70(d) up to /02(d) with 
the equality/0(e)=/02(e). But for all i£5, direct calculations show that 

z,(d) - z;(e) S z¡j(e) ^ z>v(d). 

Therefore this e preserves all equalities of the form /¡(d)=7,y(d). This means that 
after finitely many steps (at most 52) all transpositions are replaced by equalities and 
the resultant PC is both Boolean and stable. 

Thus if L is a non-Arguesian modular lattice, we can find, in the lattice of 
ideals of L, a prime (non-Arguesian) PC, d. If d is stable, then d is either Boolean 
or satisfies ( * * * ) . If d is not stable, we can find a smaller PC, e, that is both stable 
and Boolean. Therefore every non-Arguesian variety of modular lattices contains 
a non-Arguesian lattice with a stable (non-Arguesian) PC. The Boolean case has 
a nice finite solution which we present in the next section. By [3], there exists infinitely 
many distinct stable PC's satisfying ( * * * ) , and these authors at least have found 
no classification of them. Our only general result is the following. 

Theorem 4.4. Let A be a stable non-Boolean PC. Then the twenty planes, 
are distinct from each other, and from the planes, I¡ and 7-|¡, i£5. 

Proof . Let satisfy: 

1 — \lA> M — 4, min {\p\, |v|} ^ 3, and max |v|} ^ 2. 

We wish to show that the assumption, z(1=zv, leads to a contradiction. We obtain 
this contradiction by producing a covering pair of subsets, with zx—z^, and 
invoking ( * * *). 

If fiOv^Q, then z/t+zv=zMUv, and we may choose * to be the set of smallest 
cardinality and A to be any cover contained in p U v. This produces our contradiction 
on (* * *). Therefore we may conclude that 

[0] /iflv = 0. 

Therefore there exists i£(i\v. But now we have for all i£fi 

ZVU{¡} — Zvl){i} + Zv = 2vU{i} + ZM = Z,,Uv 
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To avoid conflict with ( * * * ) , we must have: 
implies [1] /iUv = 5 and 4^vU|{i} | , or 

[2] /iUv = vU{i}. 

We also have j£v\ji and the trick above can be applied again to produce 

j€v implies [3] ¡.tUv = 5 and 4 s |»U{/}|,. or 

[4] n\Jv = ti\J{j}. • 

Now [0] makes [2] equivalent to n = {i}, and [4] equivalent to v = {./}. Thus [1] 
and [4] are incompatible as well as [2] and [3]. Our initial assumptions deny the con-
junction of [2] and [4], so we must have [1] and [3]. But this forces 3s |v | and \p\ 
which contradicts [0]. This concludes the proof. 

5. Stable Boolean configurations. Throughout this section, d will be a prime, 
Boolean, and stable PC in a modular lattice, L. The lattice homomorphisms, 

z, u: 2s — L, 

produce Boolean congruences on 2s which are, of course, determined by their respec-
tive ideals, Id (z) and Id (u), of subsets congruent to 0. Now {i'}€ld (z)-e>z{= 
=za<=>for all jVi , z i j = z j o f o r all yVi, uiJ=uJ<^ut=uB<^{i}^ld(u). Therefore 
Id (z)—Id (M), and by factoring out this ideal we produce, for some r with 
lattice embeddings 

z', u': 2r - L. 

Our first result shows that this r can be further restricted. 

Lemma 5.1. If A is Boolean and stable, then the set {/„: /f!=5} consists of 2r 

planes for some r, 

Proof . Let i,j, k, m, n be distinct members of 5, and assume that for all s^n, 
zs„>z„. From 2.3 and stability, this implies that for all s^n, unzsn—undsn. 2.3 
also says that {u„dsn: s^n) are points in general position in /„. But d is Boolean, 
and therefore 

M;„ ^ uizi„(ujzjn + ukzkn + umzm„) is zinzJkmn = zn. 
This is a contradiction. 

Thus for every w£5, there exists an s ^ n such that zOT=z„. Again since d is 
Boolean this implies that for every «65, there exists an s^n such that zs=za. 
Elementary counting now produces two distinct s£5 with z,=z0. 

We may therefore replace 5 by r for and assume that we have lattice 
monomorphisms, 

z, u: 2X — L, 
that satisfy: 
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(1) Ip := ujzp is a non-degenerate projective plane for all p Q i; 
(2) For all z„wv-<i» and «(1+zv-<«J. 
We define L':= U {/„: pQt}. Clearly Li is a sublattice of L of finite length. 

Lemma 5.2. L' is simple if and only if for all r, zi^uli. 

Proof . If our condition fails, then, for the offending i£r, L' is the disjoint 
union of the filter, fz,- and the ideal, i«n i . Thus L' is not simple. 

Conversely, assume the condition holds. We proceed by induction on r. If 
r—0, then L' is a non-degenerate projective plane and hence simple. If 0</ -^3 , 
take a prime quotient q/p in 7/, and let 9 be the congruence it generates. Since 
L' = tZjUlw-ü and z ^ M ^ , we must have this quotient in \z( or in \u-ii. By induc-
tion, 9 collapses either the filter or the ideal. Since z^u^, induction applies also 
to the other part and 0 collapses all of L'. Therefore L' is simple. 

Theorem 5.3. Suppose V is a variety of modular lattices and assume that there 
exists a Boolean, prime PC in some member of V. Then there exists in V a simple non-
Arguesian lattice of length 3 +r, with and a Boolean, stable, prime PC, 
d, in L with the following properties: 

(1) L is generated by {du: i ^ j in 5}; 
(2) The set {Iß: ¡xQ5} consists of precisely 2r planes. 

Proof . By 4.3. there exists in some member L of V a PC, d, that is prime, 
Boolean, and stable. By 5.1, the set {7 :̂ / ¡^5} consists of 2r distinct planes for 
some r, with We may assume without loss of generality that L is gen-
erated by the PC and is therefore the union of the planes Iß . 

Since L is obviously of finite length, we may assume that its length is as small 
as possible. We claim that in this case L is simple. To see this, we consider a homo-
morphism q>: L^-S, where S is simple and (p does not identify d01 and d^01. Clearly 
q>(d) is a (non-Arguesian) PC in S and in fact also prime and Boolean (since 
(pfepiify^z^tpiii)) and similarly for the u's). The length of S therefore cannot be 
less than that of L. This makes q> an isomorphism and L simple. 
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