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Idempotent algebras with restrictions on subalgebras 

ÁGNES SZENDREI 

Dedicated to the memory of András P. Huhn 

We study some consequences of an interesting property of idempotent algebras, 
namely, that their direct squares have enough reduced subalgebras in the following 
sense: For arbitrary idempotent algebra 31, every reduced subalgebra 23 of any 
finite power 91" («>1) of produces reduced subalgebras in 9l2, unless © is a 
subdirect product of pairwise isomorphic, simple, locally affine subalgebras of 91 
(see Theorem 1.1). Section 1 contains also some applications. It follows that an 
idempotent algebra is locally quasi-primal if and only if it has no nonsingleton, 
locally afline subalgebras, and its square has no reduced subalgebras (Corollary 1.2). 
More generally, an idempotent algebra is locally para-primal if and only if its square 
has no reduced subalgebras (Corollary 1.3). For comparison, recall Rosenberg's 
Theorem [9] implying that in order to verify a finite algebra 91=(A; F) to be primal, 
one has to exclude the existence of certain types of subalgebras in 9t" with n run-
ning up to n=\A\. 

In Section 2 we determine, up to local term equivalence, all idempotent algebras 
(of cardinality greater than 2) having no nonsingleton proper subalgebras (Theorem 
2.1). They turn out to fall into three types: (a) locally quasi-primal algebras, (b) 
algebras locally term equivalent to the full idempotent reduct of a simple module, 
and (c) algebras whose clones of local term operations form a family of disjoint 
descending (cu-fl)-chains; these (co+l)-chains are related to "higher dimensional 
crosses" among the subalgebras of finite powers of the corresponding algebras. 

This description is applied in Section 3 to finite algebras with minimal clones. 
It is proved that a finite algebra (A; p) with p a Mal'tsev operation has a minimal 
clone if and only if p arises from an elementary Abelian group on A (Theorem 3.1); 
furthermore, a finite idempotent groupoid with minimal clone is term equivalent 
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to an algebra of this form if and only if it has a minimal nonsingleton subgroupoid 
of cardinality greater than 2 (Theorem 3.2). 

The investigations in Sections 1 and 2 were partly inspired by the problem of 
determining the maximal subclones of the clone J A of all idempotent operations 
on a finite set A, which was raised by I. G. Rosenberg during the Séminaire de 
Mathématiques Supérieures on "Universal algebra and relations" (Montreal, 1984), 
and was solved independently by several participants. Here the solution is derived 
from Theorem 1.1 (see Corollary 1.4 in the case when A is finite). 

0. Preliminaries 

For a nonempty set A, the clone of all operations on A will be denoted by <PA, 
and for n ^ l , will designate the set of w-ary operations on A. We write 
|X| for the cardinality of A. Recall that an operation f^d'^ is said to preserve 
a subset B of Ak (&£ 1) iff B is a subuniverse of the algebra (A;f)k. For arbitrary 
mapping g: AyX.-.XA^A^ ( n ^ l , Ax, ..., An+l^A) we define a subset gD 

of A"+1 by 
go = {(g(*i, •••, *„),*!, ...,*„): ..;X„€An}. 

For arbitrary operations f,f'£QA, f is said to commute with f iff / preserves 
i f ) a- It is easy to see that the commutativity of operations is a symmetric relation. 
If 7i: B—C is a bijection [or n: A-*A is a permutation], then na will also be 
called a bijection [or permutation, respectively]. 

We now introduce some notation for constructions that will be used to produce 
subuniverses from subuniverses. Let B be a subset of Ak (A:Si). We will write 
k for the set {1, ..., k} indexing the components of B. For an /-tuple (i\, ..., /,)€k 
we define the projection of B onto its components t\, ..., by 

PTh,...,iiB= {(*.!' •••>*;,): (*i> •••,**)££}. 
In particular, if l=k and ..., ik is a permutation of 1, ..., k, then prf . B 
arises from B by rearranging the components. The property that, up to the order 
of their components, the subsets B and B' of Ak coincide, will be denoted by B^B'. 
For a nonvoid subset / of k with ...,//}, ^ < . . . < / j , we write pr¡B for 
prfi> tiB. The symbol B^iB1yx...XBk will be used to designate that piiB=Bi 

for all ¡'€k. For B^BjX.- .XB^ and for arbitrary bijections n-,: B r*Ci (C^QA, 
k) we set 

7rt] = {(XjTii, ..., xknk)\ (x-l5 ..., xk)eB}. 

If l s / g i and (flJ+1, ..., ak)£Ak~l, then we define the subset of A1 arising from 
B by "substituting the constants fl/+1, ..., ak for the (/+l)-st up to the £-th com-
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ponents" as follows: 
B(xlt ..., x„al+1, ...,ak) = { f a , ..., x,)£A': (*l5 ..., x„al+1, ...,ak)£B}. 

Let be a clone on A. We say that an operation can be interpolated by 
operations from <i? iff for every finite subset S of A" there exists an operation 
agreeing with g on S. The clone is called locally closed iff it contains every operation 
that can be interpolated by its members. For an algebra 21=(A; F) the operations 
that can be interpolated by term [polynomial] operations of 91 are called local term 
[polynomial] operations of 21. It is easy to see that the local term [polynomial] op-
erations of 21 form a locally closed clone, which will be denoted by ^7oc(2t) [^loc(2I)]; 
moreover, ^¡oC(2I) [^loc(2I)] is the least locally closed clone containing the clone 
ST{SS) [resp., ^(21)] of term [polynomial] operations of 21. Clearly, if 21 is finite, 
then J70c(2t) = 5"(2l) and ^ loc(2l)=^>(2I). Two algebras with the same uni-
verse are called term equivalent [locally term equivalent] iff their clones of term 
operations [local term operations] coincide. It is well known that the algebras are 
determined, up to local term equivalence, by the subuniverses of their finite powers 
in the following sense: For an algebra 2 l=(A ; F) andfor fZ@A we have /6^^.(21) 
if and only if / preserves every subuniverse of each finite power of 21. 

Let A=(y4; + , —, 0) be an Abelian group. An algebra 2 l=(A; F) is said 
to be affine [locally affine] with respect to A iff the Mal'tsev operation x—y+z is 
a term operation [resp., local term operation] of 21, and every operation (hence 
every local term operation) of 21 commutes with x—y+z. The Abelian group A 
is called elementary (or more precisely, an elementary Abelian q-group) iff for some 
prime q, qa=0 holds for all a£A. 

1. Reduced subalgebras of finite powers of idempotent algebras 

Let A be a nonempty set. A subset B of Ak (k = l) is said to be directly inde-
composable iff B^(pr J B)X(pr J B) holds for all partitions {1,1} of k, and B is 
reduced iff it is directly indecomposable and no projection p r f j B of 
B is a bijection. A subalgebra of some finite power of an algebra is called reduced 
iff its universe has this property. The size of B is the cardinal max {| prf B \: 1 ^i^k}. 

The main result of this section is 

1.1. Theorem. Let <$l=(A; F) be an idempotent algebra. For any 2 and 
for arbitrary reduced subuniverse B-^B1X..-XB„ (B1, ..., B„QA) of 21" one of 
the following conditions holds: 

(1.1.1) 3I2 has a reduced subuniverse of the same size as B ; or 
(1.1.2) ®,=(B,; F) (1 ^i^ri) are isomorphic locally affine subalgebras of 21, 

moreover, there exist a division ring K and a vector space KB1=(B1; + , K) such 
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that ©j is locally term equivalent to the full idempotent reduct of the module (End ^¡Bi • 
For arbitrary isomorphisms 7tf: *©x (1 ^i^n), the subuniverse B ^ , ...,nn] 
of 91" has the form 

(1) *[Jti, .... n . ] « 

% {(jt, •••> yu-1. Suiyi, •••» yu-i), •••> gnCji, •••> J„-i)): yi, Ju-lSBx} 

for some u£ n (mS2) and for some operations gu, (k®x)-
This is an extension of Theorem 4.3 (see also the remark following its proof) 

in [13] to not necessarily finite algebras. Before sketching the proof, which is quite 
similar to that of the finite version, we present several applications. 

Theorem 1.1 yields nice criteria for idempotent algebras to be locally quasi-
primal or para-primal, respectively. Recall that an algebra 21=04; F) is called 
locally quasi-primal, or quasi-primal if 91 is finite, iff every operation preserving all 
isomorphisms between subalgebras of 91 is a local term operation of 21 (A. F. PIXLEY 
[5], [6]). Equivalently, 21 is locally quasi-primal iff 2Ifc has no reduced subuniverses 
for k (see P . H . KRAUSS [2]). Combining the latter characterization with Theorem 
1.1 we immediately get 

1.2. Coro l la ry . An idempotent algebra 2I=(vi; F) is locally quasi-primal if 
and only if 21 has no nonsingleton, locally affine subalgebras and 2I2 has no reduced 
subalgebras. . 

An algebra 21=(A; F) is called locally para-primal iff for every for 
every subuniverse B of 21*, and for every set / g k which is minimal with respect 
to the property that the projection B—prjB is one-to-one, the equality p r / B= 
= JJp t iB holds (see [14]). This concept arises from the definition of para-primal 

i£I 
algebras, introduced by D. M. CLARK and P. H. KRAUSS [1], by simply omitting the 
requirement that 21 be finite. Thus the finite locally para-primal algebras are exactly 
the para-primal algebras. It is easy to see that every locally quasi-primal algebra 
is locally para-primal. 

1.3. Coro l la ry . An idempotent algebra 21 = (A; F) is locally para-primal if 
and only if 212 has no reduced subalgebras. 

Proof . The necessity is an immediate consequence of the definition of local 
para-primality. Conversely, if 2I2 has no reduced subalgebras, then by Theorem 1.1 
every reduced subuniverse B of any finite power of 21 is as described in (1.1.2). Now 
it can be checked without difficulty that B satisfies the condition required in the 
definition of local para-primality. This implies that the same holds also for arbi-
trary subuniverses of finite powers of 21. Hence 21 is locally para-primal. 
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We note that for finite algebras 91 Corollaries 1.2 and 1.3 can be strengthened 
further; see Corollaries 4.5 and 4.13 in [13]. 

Let JA denote the clone of idempotent operations on A. Clearly, JA is locally 
closed. Applying Theorem 1.1 we can determine the locally closed clones sitting 
"high up" in the lattice of locally closed subclones of J A (in the terminology of [11] 
these clones, or more precisely the corresponding relations, form a generic system 
for , which is as irredundant as possible). We call the subsets 

X'f* = (^X{a2})U({a1}X^) (a1; a2£A) 

of A2 crosses, and we write X" for X"'" (aCA). For a subset B of some power of A 
the clone of all operations on A preserving B is denoted by Pol, {B}. 

1.4. Coro l la ry . Let A be a set with \A\ s=2. Every locally closed, proper 
subclone of JA is contained in one of the clones Ji

AC\Po\A {B} where 
(1.4.1) B<zA, |B |£2 ; or 
(1.4.2)1 B=nD for some permutation n of A with at most one fixed point 

such that all nontrivial cycles of n are of the same length q for some prime q; or 
(1.4.2)2 B=nD for some permutation n of A with at most one fixed point such 

that all nontrivial cycles of n are of infinite length; or 
(1.4.3)! B = Xa for some a£A; or 
(1.4.3)2 B=Xa> a' with {aua2}=A. 

These clones are locally closed, proper subclones of JA. The maximal locally closed 
subclones of JA are exactly those of types (1.4.1), (1.4.2)1, (1.4.3)j and (1.4.3)2. 

Proof . To prove the first claim let ^ be a proper subclone of and assume 
<€ is locally closed. Then for the idempotent algebra 21=(A ; <T). 
If 91 has a proper subuniverse B with |B|&2, then <gQSAr\FolA {B} with B of 
type (1.4.1), and we are done. Therefore we suppose from now on that the singletons 
and A are the only subuniverses of 9i. Since m<z..?A, if 91 is locally quasi-primal, 
then 91 has a nonidentity automorphism o. As the set of fixed points of each auto-
morphism of 91 is a subuniverse of 91, it follows that every nonidentity power of <7 
has at most one fixed point. Thus, either %=o is of type (1.4.2)2, or some power 
n of a is of type (1.4.2)!, implying in both cases that q>QJA DPol, {7tn}. If 91 is 
locally para-primal but not locally quasi-primal, then by Corollary 1.3 and Theorem 
1.1 9C is locally term equivalent to the full idempotent reduct of the module (EndKA)A 
for some vector space KA over a division ring K. Therefore every translation xn=x+a 
with a ¿¿0 is an automorphism of 91 which is of type (1.4.2)! or (1.4.2)3 according 
to whether the-characteristic of K is prime or zero. Hence we conclude again that 

g H Pol, {rcD}. Finally, if 91 is not locally para-primal, then by Corollary 1.3 
9I2 has a reduced subuniverse B. Obviously, B ^ A x A . Since the sets B(a,x) and 
B(x, a) are nonempty subuniverses of 91 for all a£A, it follows that B is a cross; 
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say B=Xai'\ Clearly, hencc X"""< is also a subunivcrsc oí Si2. 
Incase ar/-cia the set prx (A'"1' fl X"*') — {a,, aa} is a subuniverse of A, hence 
ax~a.¿ or \A\~2. Thus B is of type (1.4.3)! or (1.4.3),,, and obviously WgJ^n 
fl Pol^ {B}. This condueles the proof of the first claim. 

As regards the second assertion, it is straightforward to check that the clones 
J^PlPolA{B} listed in the corollary arc locally closed and are properly contained 
in JA . A case-by-case analysis shows also that, except for the obvious coincidcnccs 
implied by the equalities 

Pol, = Pol^ {(^)D} if n is as in (1.4.2)i, 1 < k < q, 
and 

Pol^iZ"!-««} - Pol^X«»-«.} (fl1; a.£A), 

any two clones listed in the corollary and such that not both are of type (1.4.2)2 

are incomparable. Therefore the clones jPAnPolA{B} with B of type (1.4.1), 
(1.4.2),, (1.4.3)! or (1.4.3)2 are indeed maximal among the locally closed, proper 
subclones of JA. Finally, if B—nD is of type (1.4.2)2, then JAÍ1 Po\A {7tn } is 
not maximal, since 

^ n P o l ^ o l c ^ n P o U i r c O a } for every integer / > 1 . 

The proof of the corollary is complete. 

We now sketch the proof of Theorem 1.1. The first lemma is the same as Lemma 
4.4 in [13], excepting that the algebra is not assumed to be finite. As the proof carries 
over without change to this more general situation, we do not go into the details 
here. 

1.5. Lemma. Let F) be an idempotent algebra with \A\ >-1, and 
assume 9l2 has no reduced subuniverses of size rn for some cardinal m (1 <m'^¡A¡). 
Furthermore, let B^BjX-.-XB,, (n=2) be a directly indecomposable subuniverse 
of 91" of size m. Then 

(1.5.1) 58i=(B¡; F) (l^i^ri) are isomorphic subalgebras of 9!, and 
(1.5.2) for arbitrary isomorphisms nt: 93¡^93x (lS/Sw) the subuniverse 

B[nx, ...,nu] of 2Í" has the form (1) for some u£n (u=2) and for some operations 

The following statement is an important intermediate step in the proof of 

Lemma 1.5 (cf. Claim 1 in the proof of Lemma 4.4 in [13]). 

1.6. Lemma. Under the assumptions of Lemma 1.5 B has a projection 

B = pr,, ilcB ^ BhX...XBh ({h,..., 4} S n) 

with k^2 such that 
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(1.6.1) \Bh\=m for all I (1 =£/=§&). 
(1.6.2) p r L { J ) B = ]J B. for all j (1 r£jsk), and 

(1.6.3) B(xx, bz, ...,bj-x, xz, bJ+x, ..., bk) is a bijection B^B^ for all j 
(2s/si/c) and for all elements b^B^ ¡-/j). 

Notice that condition (1.6,3) implies the existence of a function g: B^X-.-X 
XBlk-^Bit such that B=ga, moreover, g(b2, ..., bj^y, x, bJ+x, ..., bk): B^B^ 
is a bijection for all j and for all elements ( 2 s l ^ k , ¡¿¿j). This 
leads to the following definition. A function h : C2X... XC,„~>CX (m^2, Cx, ..., C,„E-
^A) is said to have the constant substitution property iff for every j (2sjsm) 
such that h depends on its y'-th variable, and for arbitrary elements c,£C, ( 2 ^ I s m , 
h ' j ) , the unary function 

h(c%, •.., Cj-i, x, Cj+i, ..., c,„): Cj -»- Cy 
is a bijection. 

The next result is a special case of Theorem 2.1 in [14] (cf. also Proposition 3.4 
in [13]). 

1.7. P ropos i t i on . Let B be a set with | £ |>1 , and (ti a clone on B con-
taining all the constants. Assume 

(1.7.1) every surjective operation in has the constant substitution property, 
(1.7.2) (£ contains a surjective operation depending on at least two of its vari-

ables, and 
(1.7.3) for every quasigroup operation in also contains the corresponding 

left and right divisions. 
Then there exist a division ring K and a vector space KB=(B; +,K) such that 
V=0>(K B). 

Now we are in a position to prove the theorem. 

P roof of Theorem 1.1. Let B be of size m, and assume (1.1.1) fails for St. 
Then n>-2 and the conclusions of Lemma 1.5 hold for B. Therefore we have to 
prove only the claims for 93x and that in the representation (1) of B[n1:, ...,n„] 
we have gu, ,..,g„e0>(KBx). 

In what follows, all operations occurring are defined on By. Let denote the 
set of all operations commuting with every basic operation of 23j (and hence with 
every local term operation of S j ) . It is easy to see that (€ is a clone on By satisfy-
ing (1.7.3). Since 93x is idempotent, <6 contains all the constants. Furthermore, 
every operation gj (urSj^ri) occurring in the representation (1) of B[nx, ..., n„] 
described in Lemma 1.5 belongs to

 (

6, as (g^)^ is a projection of B[nx, ...,%„]. 
These operations gj (it^jslri) are obviously surjective; moreover, since (1.1.1) 
fails and B is reduced, therefore each of them depends on at least two of its vari-

17 
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ables. Finally, we show that every surjective operation has the constant sub-
stitution property. We may assume without loss of generality that g depends on all 
of its variables. If, say, g is k-ary, then ga is a directly indecomposable subuniverse 
of 2 l t + 1 of size m. As no proper projection of ga can satisfy condition (1.6.3), 
we conclude that (1.6.3) holds for g Q , implying that g has the constant substitution 
property. 

Thus Proposition 1.7 applies for the clone Consequently there exists a vector 
space KB1=(_B1\ + , K) over some division ring K such that Hence 
Sui ••••> SaZ^(K^i)- Furthermore, it is easy to see that the clone of the full idempotent 
reduct of the module (End kBl)®i coincides with the clone t>* of all operations com-
muting with each member of <€. Therefore it remains to prove that = 
The inclusion ^ is trivial by the definition of c€. 

Before verifying the reverse inclusion observe that the singletons are the only 
proper subuniverses of Indeed, if SczBi (SV0) is a proper subuniverse of 
S x , then x^—x^y implies that 

U = {(*!, x2)ZB\: x,-x2eS} 
is a subuniverse of 23* (and hence of 2l2). Since pr l i /=pr 2C/=B 1 , U^ B\, and by 
assumption U is not reduced, therefore it follows that U is a bijection. Hence 151 = 1. 

Now let and let C be an arbitrary directly indecomposable subuniverse 
of ©r

t for some integer ' i fe l . Since has no nonsingleton proper subalgebras, 
we have either C^B[ so that C is of size m, or |C| = i = l . If /=1, then / ob-
viously preserves C. Suppose 1^2. Lemma 1.5 implies then that C has the form 

c ^ {G>1, ...,yB-i,fv{yi, :.,yv-1), •••,/ ,0>i, J „ - i ) ) : yi, •••,yv-i€£i} 

for some v (2-^v^t) and some operations /„ , . . . , / ,€0B i- The sets ( f j ) a (v^j^t) 
are projections of C, yielding that /„, . . . , / , € T h u s / commutes with /„, . . . , / , , 
implying that / preserves C as well. This means that / preserves every directly 
indecomposable subuniverse of each finite power of 93,. Hence it preserves also 
all subuniverses of finite powers of S l 5 that is, /€>^ioc(®i)- Therefore ??* = 
— as was to be proved. 

2. Plain idempotent algebras 

Recall that an algebra is called plain iff it is simple and has no nonsingleton 
proper subalgebras. Clearly, for an idempotent algebra the property of having no 
nonsingleton proper subalgebras implies simplicity. As we shall see in this section, 
having no nonsingleton proper subalgebras is a rather strong constraint on idem-
potent algebras: up to.local term equivalence, there are only "a few" plain idem-
potent algebras. 
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In the description of plain idempotent algebras an important role will be played 
by the "higher dimensional crosses" 

n i 

XZ = U (AX...XAX{A}xAX...XA), n £ 2 , 
i=l 

where a is a fixed element of the set A. Obviously, XI—X". For and a£A 
let denote the clone of all idempotent operations on A preserving X£. Further-
more, put D ^k- Since for arbitrary element b^A, br=a, we have 

23Jt<0) 
X°{x>, ...,xn_1,b)=Xa

n_1, therefore 
ara Ofa ~} a^a a^a azra 

•A ~ = ••• = -A = Sk + 1 =•••= 
For a permutation group G acting on A we will denote by J"A{G) the clone of all 
idempotent operations on A commuting with every member of G. 

2.1. T h e o r e m . Every plain idempotent algebra (il~(A; F) with M | s 3 is 
locally term equivalent to one of the following algebras: 

(2.1.1) (A; JA(G)) for a permutation group G acting on A such that every 
nonidentity member of G has at most one fixed point; 

(2.1.2) the full idempotent reduct of the module (End kA)A for some vector space 
KA=(A; +,K) over a division ring K; 

(2.1.3) (A; J ^ ( G ) n j ^ 0 ) for some k (2^/c^co), some element 0£A, and a 
permutation group G acting on A such that 0 is the unique fixed point of every 
nonidentity member of G. 

R e m a r k s . 1. It is not hard to show that every algebra locally term equivalent 
to an algebra in (2.1.1) or (2.1.3) is plain. The same is well known to hold for (2.1.2), 
too. Note that the algebras in (2.1.1) are locally quasi-primal. 

2. The conclusion of the theorem fails for 2-element algebras. Obviously, every 
2-element algebra is plain, and Post's description [8] of all clones on a 2-element 
set (or Corollary 1.4 above) shows that, up to term equivalence, there are more 
2-element idempotent algebras than those of types (2.1.1)—(2.1.3) listed in the 
theorem. 

The first step of the proof of Theorem 2.1 is based on Theorem 1.1. 

2.2. P r o p o s i t i o n . For a plain idempotent algebra 21=(A; F) with \A\^3 
one of the following conditions holds: 

(2.2.1) 21 is locally quasi-primal, or 
(2.2.2) there exist a division ring K and a vector space KA=(A; +, K) such 

that 21 is locally term equivalent to the full idempotent reduct of the module (EndKA)A, 
or 

(2.2.3) there exists an element 0^4 such that X° is the only reduced subuniverse 
of 2I2, moreover, 0 is the unique fixed point of each nonidentity automorphism of 21. 

17* 
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. Proof . Since 91 has no nonsingleton proper subalgebras, Theorem 1.1 implies 
that 91 is of type (2.2.1) or (2.2.2), or 9I2 has a reduced subuniverse. Assume thé 
last possibility holds for 91, and let D be a reduced subuniverse of 2l2. Obviously, 
D^AXA. Using that the subuniverses D(x, a), D(a, x) ÇaÇÂ) of 91 are singletons 
or equal to A, we can conclude that D is a cross, say D=Xa(al5 as£A). We 
must have flx=a2> since otherwise prl(X""'vriXai,"')='{a1', ds) would be a non-
singleton proper subuniverse of 91. It follows now that there is at most one cross 
among the subuniverses of 9l2. Indeed, it Xb and Xe (b, cÇA, b^c) were subuniver-
ses of 9I2, then pr1(XTlXc) = {b, c} would again be a nonsingleton proper sub-
universe of 91. Thus there is an element 0ÇA such that A"0 is the unique reduced 
subuniverse of 2t2. This implies in particular that X°[n, n\=X° for arbitrary auto-
morphism n of 21; hence n fixes 0. Furthermore, since the fixed points of an auto-
morphism of 91 form a subuniverse in 91, 0 is the only fixed point of each noniden-
tity automorphism of 91. . . . . 

Now we discuss in more detail the algebras 9Ï of type (2.2.3). To show that 
every such 91 is locally term equivalent to an algebra in (2.1.3), we determine the 
subuniverses of finite powers of 21. For a natural number mê2 and for a family P 
of subsets of n we set 

Y„°P • U 
I£P 

where 

A<"-I> = A1X...XAn wi,h ^ = I _7; 

Since the element 0 is fixed throughout this discussion, we omit the superscript 0 

in F° p and X°. Clearly, Yn PQX„ unless nÇP, and equality holds if P is the set 
of («—l)-element subsets of n. Let us call a subset C of A" irredundant iff pr(C=y4 
for all j£n and no projection pri yC (/,/£ n, i ^ j ) of C is a permutation of A. 
Clearly, all reduced subsets of A" are irredundant. 

2.3. P ropos i t ion . Let 21=(A; F) (\A\ =;3) be a plain idempotent algebra 
satisfying condition (2.2.3). Then for every integer nS2, every irredundant subuni-
verse of 21" is of the form Y„ P for some family P of subsets of n. 

The case n=2 is a consequence of (2.2.3): A2 and X„ are the only irredundant 
subuniverses of 2I2. The next three steps of the proof will be carried out in Lemmas 
2.4 through 2.6. 

2.4. Lemma. The claim of Proposition 2.3 is true for n=3. 

Proof . Let C be an irredundant subuniverse of 2P. Clearly, its projections 
pr ;>JC (i,j£3, iVy) are also irredundant, and hence equal /i2 or X2. 
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If pr1 2C=pr1 3C==pr2 : iC=.Y2 . then every triple from C has at least two 
components 0. Thus 

(2) C Q (A X {0} X {0}) U (,{0} XAX {0}) U ({0} X {0} X A). 

Since ptjC—A, the subuniverse C(x l5 0, 0) of must contain A — {0}. Thus the 
assumption | /4 |s3 and the plainness, of 91 imply that C(x1,0,0)=A, hence 
AX {0}X {0}QC. By symmetry it follows that equality holds in (2). 

Suppose pr 1 2 C = p r 1 8 C=X 2 , prS 3C = A2. Then, clearly, 

(3) C C ( i x { 0 } X { 0 } ) U ( { 0 } x ^ x 4 

Since for arbitrary (a, b)£A2 with we have (a, 6)£pr2 3C, therefore 
(x, a, b)£C for some x£A. However, pr 12C=X2 yields that x=0 . Hence for 
all bZA the subuniverse C(0,x1,b) contains the set A — {0}, implying that 
C(0,xl,b)=A. Thus { 0 } X A X A Q C , which together with pxxC = A shows that 
we have equality in (3). 

Assume now that pri2C=X2 and prx 3C=pr2_3C=/42. Then 

C ^ X . X A = (4X{0}X^)U({0}X4X4). 

As in the previous case, we get that { 0 } X A X A Q C , and similarly (interchanging 
the role of the first and second components) Ax{0}xAQC. Thus C=X2xA. 

By symmetry it remains to consider the case pr12C = pr13C=pr2>3C — A2. 
If C=A3, we are done, so assume that C^A3. First we show the required equality 
C=XS under the additional assumption that there is an element c£A with 
C(c, A*!, x2)=A2. In this case we have C(xx, x2, {c\XA for all b£A. Taking 
into account that C(x1,x2,b) is a subuniverse of 9t2 and pr¡C(x } , x2,b)=A for 
i£2 (the latter follows from pr1>3C=pr23C=v42), we get that C(x1; x2, b) equals 
X2 or A2 for every b£A. Since C^A3, the former has to hold for at least one b£A, 
implying that c—0. On the other hand, pr 12C=A2 ensures that there is a b'£A 
with C(x1, x2, b')=A2. Therefore the same argument as before (with c replaced 
by b') yields that C(xx, x2, b) = A.2 if and only if b—0. Hence 

c = u (C(x,, x2, b)x{b}) = (/!2X{0})U U (Z2X{6}) = 
biA biA 

Finally, suppose that for all elements c£A the subuniverses C(c, xx, x2), and 
symmetrically also C{x1, C, x2), C(XJ, A2, C), of 9L2 are distinct from A". Since their 
projections onto each component are equal to A, we get that each of these subuni-
verses is either X2 or an automorphism of 91. Since all automorphisms of 91 fix 0, 
and pr12C=A2, we conclude that there exists an element b€A such that 
C(xx, x2,b)=X2. Then C(0, xx, x2) ¡5 AX {6}, implying that C(0, X], x2)=X2 and 
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¿=0 . This shows that C(x l5 x2, c)=X2 if and only if c=0. and by symmetry the 
same holds for the subuniverses C(x l5 c, x2), C(c, x2) as well. 

Consider now the set 

D = {(x,y,z)(iAs: there is a u£A such that (x, y, u), (u, y, z)£C}. 

It is easy to check that D is a subuniverse of 9l3. Furthermore, p r 1 2 C=pr 2 3C=A2 

implies that 2D=pr2 3D=A2. Choosing u=0 in the definition of D we get 
that AX{0}XAQD. Hence D satisfies the additional assumption under which we 
can conclude that D equals X3 or A3. Then for arbitrary elements a, b£A — {0} 
we have (0, a, b)£D, that is (0, a, c), (c, a, b)£C for some c€A. However, 
C(0,x1,x2) = X2 implies that c = 0 and (a,b)£X2, a contradiction. Thus this 
case cannot occur, completing the proof of Lemma 2.4. 

2.5. Lemma. For arbitrary integer 3 and for every subuniverse C of 91" 
satisfying prB_^C=A"~1 for all i£n, we have C = A" or C = Xn. 

Proof . We proceed by induction on n. Clearly C is irredundant, therefore 
by Lemma 2.4 the claim is true if ?i=3. Let now n ^ 4 , and suppose C^A". Since 
the subuniverses C(x1; ..., Xi-1; a, xh ..., *„_]) (/'6n, a£A) of 91"-1 satisfy the 
assumption of the lemma, we get from the induction hypothesis that 

C(X1; ..., a, xh ..., x„-l)=A"~1 or X„for all a£A and i'£n. 

We have C(b,xl5 ..., x„-1) = Aa~1 for at least one b£A, because pr a_ lC=A"~ 1 . 
Since C?±An, there also exists an element c£A such that C(.Y15 . . . , c)=X„_1. 
Thus 

Xn.x = C(Xl, ..., c) 3 {b}XA"-2, 

yielding b = 0. Consequently 

{ A"-1 if h = 0 
1 . (b£A), 
X„otherwise whence C = Xn, as required. 

2.6. Lemma. For arbitrary irredundant subuniverse C of 91" (n = 3) the sub-
universes C(xx, ..., X[_i, 0, Xj, .... x„-i) ('€n) of 2t"_ 1 are also irredundant. 

Proof . By symmetry it suffices to prove the statement for C=C(x1,..., xn_x, 0). 
Firstly, let l S i ' s « - 1 . As D=pr j nC is an irredundant subuniverse of 9l2, we 
must have D=A2 or D=X2. Thus pr1C=D(x, 0)=A. Secondly, let 
•mn—1. Clearly, D'=pri j nC is an irredundant subuniverse of 2I3. Thus, making 
use of Lemma 2.4, one can easily see that the set pr; JC=D'(x1, x2, 0) is not a 
permutation of A. This shows that C is irredundant. 
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P r o o f of P r o p o s i t i o n 2.3. The case n—3 is settled in Lemma 2.4, so we 
may assume that n S 4 and the claim is true for the irredundant subuniverses of 
9 1 " C o n s i d e r an irredundant subuniverse C of 91". If C contains an «-tuple with 
all components distinct from 0, then by the induction hypothesis p r n _ w C—A"' 1 

for all i£n. Hence, by Lemma 2.5, C=A". Otherwise, if every «-tuple in C has at 
least one component 0, then Lemma 2.6 and the induction hypothesis ensure for 
each z'Gn the existence of a family P,- of subsets of n— {/'} such that 

C(x 1, X ; - ! , 0, + . . . , X„) = Y„-lt]>. . 

Putting P=\JPi we get that C=YnP. 
ii n 

Making use of Proposition 2.3 we can now conclude the proof of Theorem 2.1. 

P r o o f of T h e o r e m 2.1 Let G denote the automorphism group of 91. Ac-
cording to Proposition 2.2 we have to distinguish three cases. Suppose first (2.2.1), 
that is, 91 is locally quasi-primal. Since 91 is plain, every internal isomorphism of 
91 is either an automorphism of 91, or an isomorphism between two singleton sub-
algebras of 91. Therefore ¿Floc(9l) = J^(G). Furthermore, since the set of fixed 
points of each automorphism of 91 is a subuniverse of 91, therefore each nonidentity 
member of G has at most one fixed point. Consequently 91 is locally term equivalent 
to an algebra of type (2.1.1). 

In case (2.2.2) we have nothing to prove. 
Finally, if (2.2.3) holds for 91, then we can apply Proposition 2.3. Observe first 

that for arbitrary irredundant subuniverse C of 91" («=3) such that C c l „ we have 

C = {(*!, ...,x„)£A": (xu ...,xi-1,xi+1, ..., x„)epr„_{i}C for all n}. 

Indeed, the inclusion Q being trivial, suppose (A15 ..., xn)€A" belongs to the set 
on the right hand side. Since CczX„, by Lemma 2.5 some projection of C onto 
n— 1 components is distinct from A"'1, say pra_1C^A"~1 . However, p r n _jC is 
an irredundant subuniverse of 9 1 " t h e r e f o r e by Proposition 2.3 at least one com-
ponent of (x2, ..., x„)€prn_1C equals 0, say x 2 =0. Then (xx, x3, ..., x„)€prn_{2}C 
implies that (xly y, x3 , ..., x„)€C for some y€A. Since C is of the form described 
in Proposition 2.3, we have also x2, x3, ..., X„)=(A-1, 0, x3, ..., x„)€C. 

Since 91 is a plain idempotent algebra, an idempotent operation on A is a local 
term operation of 91 if and only if it preserves the automorphisms of 91 and the 
irredundant subuniverses of finite powers of 91. By repeated application of the 
observation made in the previous paragraph it follows that for every irredundant 
subuniverse C of 91" ( n ^ l ) , an operation preserves C if and only if it preserves all 
those projections of C which are of the form Xj for some j (2^ /^w) . Thus 

= if all Xj (./==2) occur among the subuniverses of finite 
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powers of 21, and ^ , . ( 2 í ) = JA(G)Cl^r
k° (2sk<co) if k is the largest j such that 

Xj is a subuniverse of 2F. The proof of Theorem 2.1 is complete. 

Recall that an algebra 2í=(/4; F) is locally functionally complete iff á**loc(2I) = 
=6>A. In terms of subuniverses this condition is equivalent to requiring that for 
every integer n^l, A" is the only irredundant reflexive subuniverse of 2t". (B^A" 
is said to be reflexive iff (a, .... a)£B for all a£A.) Thus a slight improvement of 
a result of L. SZABÓ [12] can easily be derived from Propositions 2.2 and 2.3. 

2.7. Coro l l a ry . If 2l = (/l; F) is a plain idempotent algebra with \A 
then either 21 is locally functionally complete, or there exist a division ring K and 
a vector space KA = (A; +, K) such that 2t is locally term equivalent to the full 
idempotent reduct of the module (End kA)A. 

Proo f . By Proposition 2.2 we have to show that if 21 is of type (2.2.1) or (2.2.3), 
then for every integer n ^ l , A" is the only irredundant reflexive subuniverse of 
21". For type (2.2.1) this is well known (see P. H . KRAUSS [2]), while for type (2.2.3) 
it follows from Proposition 2.3. 

3. Two results on minimal clones 

Throughout this section projections will be called trivial operations, and the 
term trivial clone will mean the clone of projections. It is obvious that a minimal 
clone is generated by each of its nontrivial members. Thus the most natural way of 
classifying minimal clones is by their nontrivial members of least possible arity. 
Accordingly, by a result of I. G. ROSENBERG [10], the algebras (A ; f ) with minimal 
clones fall into five types: (i) / is a nontrivial unary operation, (ii) / is a nontrivial 
idempotent binary operation, (iii) / is a majority operation, (iv) / is a nontrivial 
semiprojection, or (v) f(x,y,z)=x+y+z for an elementary Abelian 2-group. 

It is well known (see J. PLONKA [7]) that for every elementary Abelian g-group 
A = ( A ; +) (q prime) the algebra (A; x—y+z) has a minimal clone. If q>2, then 
these algebras are of type (ii), since they have nontrivial binary term operations. 
In this section we present two conditions ensuring that a finite algebra with minimal 
clone be term equivalent to an algebra of this form. 

As was observed by I. G. ROSENBERG [10], an algebra (A; f ) where / is a mi-
nority operation has a minimal clone if and only if f ( x , y, z)=x+y+z for some 
elementary Abelian 2-group A=(/4; +). P. P. Palfy posed a more general question: 
For which Mal'tsev operations p is the clone of the algebra (A; p) minimal? The 
following result answers this question in the finite case. 
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3.1. Theorem. A finite algebra (A;p) where p is a Mal'tsev operation has 
a minimal clone if and only if there exists an elementary Abelian group A=(A; +) 
such that p (x, y, z)=x —y +z. 

It remains open whether the same holds true for infinite algebras (A; p) as well. 
The next result gives a characterization for those idempotent groupoids with 

minimal clones which are term equivalent to (A; x—y+z). 

3.2. Theorem. A finite idempotent groupoid (A; •) with minimal clone is term 
equivalent to an algebra (A; x—y+z) for some elementary Abelian q-group (q is 
an odd prime) if and only if it has a minimal nonsingleton subgroupoid of cardinality 
greater than 2. 

The if part of this statement can be rephrased as follows: In a finite idempotent 
groupoid (A; •) with minimal clone every minimal nonsingleton subgroupoid is 
2-element, unless (A; •) is term equivalent to (A; x—y+z) for some elementary 
Abelian ¿/-group (q is an odd prime). Since the clone of every subgroupoid of (A; •) 
is minimal or trivial, it follows that every 2-element subgroupoid of (A ; •) is either 
a left zero semigroup, or a right zero semigroup, or a semilattice. This suggests that 
in trying to determine the finite idempotent groupoids with minimal clones it may 
be useful to classify these groupoids according to the types of their 2-element sub-
groupoids. P . P . PALFY [4] has made an interesting observation in this direction by 
proving that if an idempotent groupoid (A; •) with minimal clone has a left zero 
semigroup as well as a right zero semigroup among its 2-element subgroupoids, 
then (A; •) is a rectangular band. 

We now turn to the proof of Theorems 3.1 and 3.2. As a preparation, we state 
two lemmas. 

3.3. Lemma. A finite plain idempotent algebra 23=(B; F) with |B| = 3 has 
a minimal clone if and only if it is term equivalent to (B; x—y+z) for some cyclic 
group B = ( B ; + ) of prime order. 

Proof . Let S = ( B ; F) be a finite plain idempotent algebra with | J B | S 3 . 
By Theorem 2.1 we have one of the following three possibilities for S : 

(a) S is quasi-primal, or 
(b) there exist a prime q and an elementary Abelian #-group B=(B; + ) such 

that 93 is affine with respect to B, or 
(c) JA (G) H g (©) for some element 0£B and some permutation group 

G acting on B such that 0 is the unique fixed point of each nonidentity permutation 
in G. 

Suppose S has a minimal clone. Since the clone of a quasi-primal algebra 
cannot be minimal, case (a) does not hold for S . We prove that case (c) is also 
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excluded. Assume SB satisfies the conditions in (c), and define a binary operation 
* on B as follows: 

(0 if x = 0 or j - 0 . 
, (x,y€B). 

Ix otherwise 

It is easy to check that . Hence * is a nontrivial term operation 
of SB. However, the algebra (B; *) is not term equivalent to SB, because it is not 
plain (every 2-element subset is a subalgebra). Therefore the clone of SB is not 
minimal. Thus SB satisfies condition (b), implying that x—y+z is a term operation 
of SB. Since is a minimal clone and SB is plain, we conclude that SB is term 
equivalent to (B; x—y+z) and \B\=q. This completes the proof of the only if 
part. The converse is well known (cf. J . PLONKA [7]). 

3.4. Lemma. Let 2l=(.4; f ) be a finite idempotent algebra whose clone is 
minimal, and let SB = (B; / ) be a subalgebra of SSL. If SB is term equivalent 
to (B; x—y+z) for some cyclic group B=(B; +) of prime order, then there exists 
an elementary Abelian group A = (A; + ) such that Sit is term equivalent to 
(A; x—y+z). 

P r o o f . Let |B|=<7 (q prime). For arbitrary term t let tM, resp. t s , denote the 
term operations induced by t in 21, resp. SB. We claim that for arbitrary term s, if 
s s is a projection, then s a is also a projection. Indeed, suppose s a is not a projection. 
Then by the minimality of ^"(21) we get that (A; sai) is term equivalent to 21. Hence 
(B; sB) must be term equivalent to SB, implying that s s is not a projection. Clearly, 
if sB is an z'-th projection, then s a is also an z'-th projection. Thus, for arbitrary term 
p inducing x—y+z in SB, the identities 

(4) p(x, y, y) = x = p(y, y, x), 

(5) p(p(z , y, x), z, y) = x, 

(6) p(p(p (x,y,'z),z,u),u,y) = x, 

(7) p(p(... (p(x, y, z), y, z)...), y, z) = x, 
• , 4 times 

which obviously hold in SB, are satisfied in 21 as well. By (4), p a is a Mal'tsev opera-
tion. Identifying the variables u, y in (6) we get the identity 

p(p(x , y, z), z, y) = x, 

which shows that (5) and (6) are equivalent to 

p(z, y, x) = p(x, y, z) and p(p(x, y, z), z, u) = p(x, y, u), 

respectively^ These identites imply that for arbitrary element 0£A the operations 

x+y = Pa(x, 0, and = Pa(0, x, 0) (x, y€A) 
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define an Abelian group A=(A; + , —, 0), and p„(x,y, z)=x—y+z (see Propo-
sition 2.2 in [13]). Now the identity (7) ensures that A is an elementary Abelian 
(/-group. Since 5"(9I) is a minimal clone, 91 is term equivalent to the algebra (A; p a ) = 
=(A; x—y+z), as required. 

P roo f of Theorem 3.1. The sufficiency is well known. To prove the neces-
sity consider a finite algebra 51=(A;p) with minimal clone, where p is a Mal'tsev 
operation. Let ©=(£;/>) be a minimal nonsingleton subalgebra of 91. Clearly, 
p is a Mal'tsev operation on B, too, and ^"(93) is a minimal clone. Furthermore, S 
is a plain idempotent algebra. If | B | s 3 , then by Lemma 3.3 93 is term equivalent 
to (B; x—y+z) for some cyclic group B = {B; +) of prime order. Using that p is 
a Mal'tsev operation, one can easily verify that this is true also when \B | =2. (Alter-
natively, we can draw the same conclusion for 93 by applying R. McKenzie's Theo-
rem [3] stating that every finite plain Mal'tsev algebra is either quasi-primal or 
affine with respect to an elementary Abelian group.) Thus, by Lemma 3.4, (A; p) 
is term equivalent to the algebra (A; x—y+z) for some elementary Abelian group 
(A; +). As x—y+z is the unique Mal'tsev operation in the clone of (A; x—y+z), 
the operationp coincides with x—y+z. 

Proof of Theorem 3.2. The necessity is obvious. Conversely, suppose that 
91=(A; •) is a finite idempotent groupoid with minimal clone such that 91 has a 
minimal nonsingleton subgroupoid 23=(B; •) with | B | s 3 . Clearly, ST^S) is 
nontrivial, therefore it is a minimal clone. Furthermore, SB is a plain idempotent 
algebra. In the same way as in the previous proof, Lemmas 3.3 and 3.4 yield that 
91 is term equivalent to the algebra (A; x—y+z) for some elementary Abelian 
g-group (q prime). Obviously, q—\B\ (^3), which completes the proof. 
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