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Distributive congruence lattices of finite algebras 

P. P. PÁLFY 

To the memory of András Hulin 

The most famous open problem in universal algebra is the representation of 
finite lattices as congruence lattices of finite algebras. The general question is very 
hard, and in essence it is a group theoretic problem (see [12], [10], [9]). Though, 
representing finite distributive lattices is an easy job. Perhaps the most standard 
way to do this is by starting with a boolean lattice B containing the given finite 
distributive lattice D and then adding the closure operation / : B ^ B , defined by 
f(x)-/\{y£D: it is easy to see that Con (B; V, A , / ) = £ ) . Another result 
which shows that it is extremely easy to find congruence representations for finite 
distributive lattices, due to QUACKENBUSH and WOLK [ 1 4 ] , states that for any finite 
distributive sublattice D of Eq (A) — the lattice of equivalence relations over the 
set A — containing the equality and the total relation, some (unary) operations 
can be defined on A so that the congruences will be exactly the members of D. It 
was shown by P. PUDLÁK [ 1 3 ] that only the distributive finite lattices have this 
property, i.e. for any other finite lattice there is a representation by equivalences 
which is not the congruence lattice of any algebra defined on the given set. 

In this paper we deal with the problem of representing all finite distributive 
lattices as congruence lattices of finite algebras belonging to some given class of 
algebras. For completeness we will cite some known results as well. The answer is 
positive for lattices (DILWORTH), groups (SILCOCK [ 1 8 ] ) , solvable groups (Theorem 
2.2), modules (trivial, see Proposition 4.1), 2-unary algebras (Theorem 5.3), tran-
sitive permutation groups regarded as unary algebras (TŰMA [19], see also Proposi-
tion 5.5), algebras of any given type except the 1-unary (Corollary 6.1). There exist 
finite distributive lattices which are not representable as the congruence lattice of a 
finite ring (Proposition 3.1), of a 1-unary algebra (Corollary 5.2). 
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Throughout the paper D will stand for a finite distributive lattice with minimal 
element 0, J will denote the set of join-irreducible elements of D (0 is not regarded 
to belong to J), and n = \J\, the length of D. 

1. Lattices. For lattices we only recall some well-known results. The most basic 
one is the following, which was first obtained by R. P. Dilworth (mentioned in [1] 
without proof), see also G . GRATZER and E . T. SCHMIDT [ 4 ] . 

1.1. Theorem. Every finite distributive lattice is isomorphic to the congruence 
lattice of a finite lattice. 

The congruence lattice of a finite modular lattice is always boolean, but this is 
no longer true for infinite modular lattices. The following remarkable result is worth 
digressing from our topic of distributive congruence lattices of finite algebras. 

1.2. Theo rem (E. T. SCHMIDT [16]). Every finite distributive lattice is iso-
morphic to the congruence lattice of a modular lattice. 

R. FREESE [ 3 ] proved that the lattices can be chosen to be finitely generated. 
For more detailed discussion we refer the reader to E. T. SCHMIDT'S lecture 

notes [17]. 

2. Groups. The question for groups was first dealt with by J. KUNTZMANN [8] 
in 1947, but his construction was not correct (see [15], p. 101). The solution came 
thirty years later: 

2.1. Theorem (H. L. SILCOCK [18]). Every finite distributive lattice is iso-
morphic to the congruence lattice (i.e. the lattice of normal subgroups) of a finite group. 

Silcock's construction is based on wreath products of nonabelian simple groups, 
but he also announced the solvable version of the result, see [18], p. 371. However, 
his construction of solvable groups with given distributive lattice of normal sub-
groups is rather complicated and has not been published. Since we deem our con-
struction quite natural, we prove it here: 

2.2. Theorem. Every finite distributive lattice is isomorphic to the lattice of 
normal subgroups of a finite solvable group. 

Proof . All groups which will appear in the construction will have the property 
that in any chief series (i.e. maximal chain of normal subgroups) 1 =iV0<A^1<... 

the chief factors Ni+1fNi (/=0, 1, ..., n—1) are elementary 
abelian ^¡-groups for pairwise different prime numbers pt (/>, will be called the 
characteristic of Ar

i+1/Ar
i). Then any chief series of G has this property by the Jordan— 

Holder theorem. It implies that in any factor group G/N, no two minimal normal 
subgroups MJN and MJN can be isomorphic, as N<Ml<M1M2 is extendable 
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to a chief series of G. This property will enable us to make use of a theorem of 
R. KOCHENDORFFER [7], which ensures the existence of a faithful irreducible repre-
sentation of GfN over the p-element field for any prime p not dividing the order of 
G/N. (This is in fact a strong sufficient condition derived from the necessary and 
sufficient condition given by Kochendorffer.) In other words this means that there 
exists an elementary abelian p-group A and a homomorphism (p: G-*Aut (A) 
with Ker <p—N such that there are no nontrivial subgroups of A invariant for the 
group of automorphisms (p(G). 

The construction will go by induction on the length of the finite distributive 
lattice D. Let a be an atom in D, b = \J{x£D: xAa=0}, then aAb=0. Let Dx be 
the distributive lattice {xfD: x^a}. By the induction hypothesis, there exists a 
finite solvable group G with chief factors of different characteristics whose lattice 
of normal subgroups is isomorphic to Dx. Let B be the normal subgroup of G cor-
responding to a\!b£Dx. Choose a primep not dividing the order of G. By the cited 
result of Kochendorffer, there exists a faithful irreducible representation of G/B 
over the /»-element field, i.e. we have an elementary abelian /»-group A and a homo-
morphism q>: C-»Aut (A) with Ker cp=B and <p(G) acting irreducibly on A. 
Now form the semidirect product G=AG with respect to (p. Then the irreducibility 
of the representation (p implies that A is a minimal normal subgroup of G, and by 
the choice of p, the characteristics of the factors in a chief series of G are also pair-
wise different. 

Now let N*3G. Since A is a minimal normal subgroup of G, it follows that 
either N^A or Nf)A=1. In the first case, N=A(NDG) with NClG^G. In 
the second, N^CG(A)=AXB, and as N contains no elements of orders divisible 
hyp, we have N^B. Conversely, if Nx<aG, then AN^G: if Nx<iG and 
then Nx c G. Hence the lattice of normal subgroups of G is isomorphic to D. 

The proof was based on an idea from the author's earlier work [11]. 

Solvability in Theorem 2.2 cannot be replaced by nilpotency: 

2.3. P ropos i t ion . If the lattice of normal subgroups of a finite nilpotent group 
G is distributive, then G is cyclic, and the lattice is a direct product of chains. 

Proof . Let 0(G) denote the Frattini subgroup of G. Then G/<£(G) is abelian, 
it is a direct product of some cyclic groups of prime orders. If two generators had 
the same prime order then the lattice of (normal) subgroups of G/$(G) would not 
be distributive. Hence G/<P(G) is cyclic, therefore G is a cyclic group itself. Now 
the lattice of normal subgroups of G is isomorphic to the lattice of divisors of the 
order of G. 

3. Rings. For rings the answer to our representation problem is negative: 
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3.1. P ropos i t ion . No finite associative ring has congruence lattice (i.e. lattice 
of ideals) isomorphic to 

Before proving this proposition, let us note that the finiteness of the ring is a 
crucial requirement, since the following is true: 

3.2. Theorem ( K . H. KIM and F. W. ROUSH [6]). Every finite distributive lat-
tice is isomorphic to the lattice of ideals of some (regular) ring. 

Proof of P ropos i t i on 3.1. By way of contradiction assume that a finite 
ring R has the indicated lattice of ideals. Let I, Ax, A2, A3 be ideals of R as shown. 
We shall reach the final contradiction in several steps. The first observation is ob-
vious: 

1) Rj/=AijI®A2II®A3II, the direct summands are simple rings, in particular 
any of them is either a ring with unit or a zeroring of prime order. 

2) P = 0. 
Let J(R) be the Jacobson radical of R. Since R/J(R) is semisimple, its ideal lattice 
is boolean. Hence we have / ( / ? ) 5 / . So lis a nilpotent ideal, and by the minimality 
of / i t follows that / 2 = 0 . 

3) If AJI is a ring with unit then there is an idempotent e^Ai for which et+I 
is the unit of A J I. 
Let a+I be the rait of A/I (for simplicity we leave out the index i in the proofs of 
steps 3, 4 and 5). Then a2=a+t for some t£l. Now the required element 
is e=a-H—2at. 

4) In the situation of step 3, either ej=0 or etx=x for all x£I. 
We show that el is an ideal of R. Obviously, eIRQel. On the other hand, since 
e is central in Rjl, ReIQ(eR+I)IQeI+0=eI. If el^Q then el=l and by the 
finiteness of I the left multiplication by e induces a permutation on I. Since e is 
idempotent, it is the identical permutation. 
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5) In the situation of step 3, £¡7=0 and Ie~ 0 cannot hold simultaneously. 
Let x£A be an arbitrary element. Then x—ex£l and le=0 imphes (x—ex)e=0. 
So xe=exe and symmetrically ex=exe, therefore xe=ex for all x£A. Hence 
eA=Ae is both right and left ideal of R. We have eAj± 0, since e=e2£eA. How-
ever, eAf)I=0, as for exf_eA(~)I it follows that ex=e(ex)£el=0. This contra-
diction proves that el=0=le is impossible. 

6) If AJI and A JI are rings with unit (My) then ej=l and e ; / = / can-
not hold simultaneously. 
Otherwise, by step 4 we would have et X X ~~~ Qj X for all x£l, hence c^Ann, / . 
This left annihilator is an ideal, but the least ideal of R containing e,—e} is At+Aj 
which contains e{ and e} as well, a contradiction. 

7) If AJI is a ring with unit and Aj/I is a zeroring then ej= 0. 
If not, then etx=x for all x£l by step 4. In particular, eiI=eiAJ=I. Since AJI 
is a zeroring,' A)QI, IA2QP=0 hence also IAj=0. Define B={y£Aj: e,y=0}. 
B is an ideal of R, since RBQRAjGAj, e;RB<^(Ret+F)BQite.B+7^.=0 and 
BRQAjRQAj, eiBR=0. For the left multiplication by et, k\ A}^A}, X{y)=eiy 
we have A2=A, hence ^ = K e r A©Im X=B@I. This is a contradiction. 

8) AJI and AJI (i^j) cannot be both zerorings. 
Since R is directly indecomposable, its additive group is a /»-group for some prime 
p. Hence AJI and AJI would be isomorphic zerorings and thus there would be 
another/» —1 ideals between 7 and At+Aj. 

9) Conclusion. We have already eliminated all possible cases. If all of AJI, 
AJI, AJI axe rings with unit then step 6 implies that e,7=0 for at least two indices 
i and symmetrically = 0 for at least two j's. Hence for some i we have eiI=0=Iei 

contrary to step 5. By step 8, there cannot be more than one zerorings among the 
direct summands. If AJI is a ring with unit and AJI is a zeroring, then step 7 gives 
that ej=0 and by symmetry let=0 as well, again a contradiction by step 5. 

4. Modules. First we present a very elementary construction of a module with 
given finite distributive lattice of submodules. A similar result for modules over 
group algebras was obtained by S. M. Vovsi [20]. 

4.1. P ropos i t i on . Every finite distributive lattice is isomorphic to the con-
gruence lattice (i.e. lattice of submodules) of a finite module. 

Proof . Recall the definitions of n and J in the introduction. Let F be an arbi-
trary finite field, M= F", R the subspace of n by n matrices over F with row and 
column indices from J spanned by the elementary matrices etJ for i ^ j in J (clearly, 
J? is a ring), and let R act on M in the obvious way. We claim that the submodules 
of the /^-module M a r e the F-subspaces spanned by the vectors et, i(LI, for a he-
reditary subset 7 of J. Indeed, let N be a submodule, m£N, m= 2fieu f&F, 

t r. i 
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then for /¡9^0 we get £¡=(1 //¡)eum£N. Hence N is spanned by some of the e.'s. 
Since ei}£R for i ^ j (in / ) , it follows that / = {ifJ: e£N} is hereditary. The 
converse is obvious. 

4.2. Example. 

D R 

is the ring of all 

matrices of the form 

"n 0 oi •> a u 

0 . flo3 am an 

0 0 a33 0 

0 0 0 ai4_ 

( « i j t f ) 

Notice that the ring R depends on the lattice D. If we would like to have modules 
over the same ring we could take the direct sum of all these rings, or the free (non-
commutative) ring with infinitely many generators. It would be desirable to choose 
a finite ring, however* it is not possible. 

4.3. P ropos i t i on . For any finite ring R, there exists a finite distributive 
lattice D (in fact a chain) such that no finite R-module has lattice of submodules 
isomorphic to D. 

Proof . Let J(R) be the Jacobson radical of R. Since R is finite, J(R) is nil-
potent, i.e. J(R)r=0 for some positive integer r, and R/J(R) is semisimple. Suppose 
that the submodules of the jR-module M form a chain 0 = A f 0 < M 1 < . . . < M n _ 1 < 
<M„=M. On one hand, J(R) annihilates Mi+1jMi ( /=0, 1, ..., n— 1), since it is 
a minimal .R-module; on the other hand, if MjIMl ( 0 i s annihilated by 
J(R) then it can be regarded as an i?//(/?)-module, hence it is semisimple, which 
forces _/=/+!. Thus we have J(R) • M I + 1 =M ; (i=0, 1, . . . ,« — 1). Now it follows 
by induction that 

J(R) M | q otherwise. 

Since J(R)r=0, we have «—/"=0, n ^ r . Hence no chain longer than r is repre-
sentable as the congruence lattice (i.e. lattice of submodules) of an -R-module. 

5. Unary algebras. The 1-unary algebras with distributive congruence lattices 
have been determined by D. P. EGOROVA [2]. In order to formulate her result we 
need some notation. Let (A; f ) be a 1-unary algebra, for afA we put f°(a)=a, 
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/ ' ( a ) =/(«), fi+1(a)-f(fi(a)), / = 1 , 2 , . . . . On the set ZU{°°} we define the 
operation / b y / ( « ) = « + 1 for n£Z and = According to [2] the iso-
morphism types of 1-uriary algebras with distributive congruence lattices are the 
following: 

It is quite easy to determine their congruence lattices. Let C(t) denote the chain of 
length t (i.e. having t+1 elements), D (r) the lattice of divisors of r, and L+1 the 
lattice obtained from the lattice L by adding a new maximal element to it. Restri-
cting our attention to finite algebras, we obtain that the congruence lattice in case 
(1) is isomorphic to C(t)xD(r), and in case (2) to C(t)x(D(rs) + ]). Hence we 
have: 

5.1. P r o p o s i t i o n . If the finite distributive lattice D is isomorphic to the con-
gruence lattice of a finite I-unary algebra, then either D is a direct product of chains 
or D = C0X (C1 X. . .XCk + l) for some finite chains C 0 , C l 5 ...,Ck. 

Now it is easy to exhibit a finite distributive lattice which is] not representable 
as the congruence lattice of a (finite) 1-unary algebra, cf. [5], p. 209, where this 
example is credited to J. Johnson and R. L. Seifert. 

5.2. Co ro l l a ry . No finite l-unary algebra has congruence lattice isomorphic to 

On the other hand, two unary operations already suffice. 

5.3. Theorem. Every finite distributive lattice is isomorphic to the congruence 
lattice of a finite 2-unary algebra. 

Proof . For the sake of simplicity suppose / = { 1 , 2, ..., n), and let J'= 
= {0, 1, ..., n). Choose pairwise different primes pl,p2, ...,p„>n, and let />„=1. 
For the base set of the algebra we take A = {(J, k): j£J', — and we 

(1) 

(2) 

(3) 

(a\f<+'(a) = / ' (a ) ) , ¡ È 0 , r ë l ; 

(a, b\f'+r(a) =f'{a), f°{b) = b>, 

/ = 0, r s l , s S 1 and g.c.d.(r, s) = 1 ; 

four infinite algebras: ZU {«>}, Z, NU {=}, N. 

Ô 
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define the two unary operations by 

and 
if k = pj-1 

(( • - t ( k ' 0 ) i f k = 0 o r k 

(j,k) otherwise. 
i n J 

We claim that any nontrivial congruence of the algebra (A; / , g) has one nontrivial 
class {(J,k): O ^ k ^ P j — l} where 7 '={0}U/ for some hereditary subset 
I of J, the other classes are singletons. The proof of this statement is straightforward 
and left to the reader. Hence we see that Con (A; / , g) = D. 

5.4. Example . 

D J 

(A ;./, g) 

(1,0) (3,0) (3, 10) 

(2,0) (2,6) 

Notation: f-

(0,0) 

-, £ — (fixed points are not denoted) 

P . P . PALFY and P . PUDLAK [12] showed that every finite lattice is representable 
as a congruence lattice of a finite algebra if and only if every finite lattice is iso-
morphic to an interval in the subgroup lattice of a finite group.. (In fact, the interval 
[H, G] is isomorphic to the congruence lattice of the unary algebra on the set of 
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left cosets of the subgroup H in the group G, with the operations being the ¡permu-
tations defined by left multiplications by the elements of G.) For finite distributive 
lattices we construct suitable intervals by applying Silcock's theorem (see 2.1). 
J. T U M A [ 1 9 ] has given another construction recently. 

5.5. P ropos i t i on . Every finite distributive lattice is isomorphic to the congru-
ence lattice of a unary algebra where the operations form a transitive permutation 
group. 

Proof . Let G be a finite group with Con G=D (see Theorem 2.1). Take the 
diagonal subgroup A = {(#, g): g£G} of GxG. It is easy to prove that the sub-
groups K containing A have the form K—A • (A^X 1), where K^G, KxX 1 = 
=ÄTl(GX 1). Hence the interval [A, GxG]=Con G^D. 

6. Type. In virtue of Corollary 5.2 not every finite distributive lattice is represen-
table as the congruence lattice of a 1-unary algebra. However, if the type contains 
at least two operations then Theorem 5.3, while if it contains an operation which 
is at least binary then Theorem 2.1 is applicable. Hence we obtain: 

6.1. Coro l la ry . Let us given any type except the I-unary. Then every finite 
distributive lattice is isomorphic to the congruence lattice of a finite algebra of the 
given type. 

Acknowledgments. The author is indebted to E. T. Schmidt and E. Fried for 
helpful comments. 
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