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Representation of 2-distributive modular lattices of finite length 

BJARNI JÓNSSON*' and J. B. NATION**» 

Dedicated to the memory of Dr. András Huhn 

1. Statement of the theorem. In this note we prove the following result. 

Main Theorem. Suppose L is a 2-distributive modular lattice of finite length 
n. If V is an n-dimensional vector space over a division ring D with |D| then 
L can be embedded in L(V). 

Here L(V) is the lattice of all subspaces of the vector space V. To say that L 
is 2-distributive means that it satisfies the identity 

a(x + y + z) — a(x + y) + a(x + z) + a(y + z). 

A special case of this theorem, the case when L is of breadth 2, was proved in 
HERRMANN [3]. 

2. Preliminaries. A lattice is said to be «-distributive if it satisfies the identity 

a 2 xi= 2 a 2 xj-
o a i s n o s i s n j ^ i 

This concept was introduced by András Huhn and was investigated by him in a 
series of papers. His original definition, in HUHN [5], required the lattice to be mod-
ular, but this condition was dropped in [4]. We shall adhere to the revised termi-
nology, although all the lattices under consideration here will be modular. The 
following two results will be needed. 

Theorem A (HUHN [ 4 ] , Theorem 3 . 1 ) . The dual of an n-distributive modular 
lattice is n-distributive. 
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T h e o r e m B (HUHN [5], Theorem 1.1). An algebraic modular lattice is n-dis-
tributive i f f it does not contain as a sublattice (the lattice of all subspaces o f ) a non-
degenerate projective n-space. 

In one direction, this result can be strengthened: If an algebraic modular lattice 
fails to be «-distributive, then it contains a non-degenerate projective «-space as 
an interval, not just as a sublattice. This shows that the result proved here is in a 
sense "best possible". For suppose that L is a modular lattice of finite length, and 
that L is not 2-distributive. Then L contains as an interval a non-degenerate 
projective plane P. If P is not Arguesian, then there does not exist any embedding 
L*—L(V), with V a vector space over a division ring D, but if P is Arguesian, then 
such embeddings can at most exist for division rings having the same characteristic 
as the coordinate ring of P. 

In order not to have to interrupt the argument later, we state and prove here 
two simple observations that will be used in the proof of the main theorem. 

Lemma C. Suppose V is a finite dimensional vector space over a division ring 
D. Then V is not the union of fewer than |D| proper subspaces of V. 

Proof . Suppose | / |< |D | , and suppose V¡, are proper subspaces of V. 
Let K= (J V¡. Assuming that A is a subspace of V, we prove by induction on 

the dimension of A that if AQK, then AQV¡ for some i£l. This is certainly true 
when dim A^]. Assuming that «>1, and that the claim holds whenever dim A < n, 
we consider the case dim A=n. Then each proper subspace of A is contained in 
some V¿. Since A has |D| subspaces of dimension n—1, it follows that at least two 
of these, say B and C, are contained in the same V¡, whence A=B+C^V¡. 

Lemma D. Suppose L and Li are modular lattices of the same finite lenght. 
Jf the mapping f : L—L' is one-to-one and preserves the covering relation, then f 
is an embedding of L into Li. 

Proof . By duality, it suffices to show that 

( i ) m m = f ( a b ) 

for all a, b£L. The mapping is obviously monotone, so (1) holds whenever a and 
b are comparable. For the case when a and b are not comparable, we use induction 
on the lengths of the intervals a/ab and b/ab. If both intervals have length 1, then 
a and b are distinct covers of ab, and / (a) and / (b) are therefore distinct covers 
of f(ab), so that (1) holds in this case. For the inductive step, we assume that ab<c<a 
and let d=b+c. Then ad—c and bc=ab, hence by the inductive hypothesis, 
/(a) f (d)=f(c) and f(b)f(c)=f(ab). Again using the monotonicity of f we 
infer that (1) holds. 
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3. Proof of the Main Theorem. We are going to show that every embedding 
F: a¡0t—A[0, where a is a coatom in L and A is a coatom in L(V), can be extended 
to an embedding G: L*-*L(V). From this the theorem follows by induction on n. 

Let M be the set of all minimal elements of the set {x£L: x^a}. We need 
to look at some properties of the elements of M. 

The elements of M are obviously join irreducible. For any x^a, the element 
a+x=1 covers a, and ax is therefore covered by x. Consequently, 

x = ax+p whenever x ^ pdM. 
In particular, 

p + q = p + a(p + q) for all p,q£M. 

The most important fact about the elements p £ M is that the set 

Cp = {p+g: qiM) 
is always a chain. In other words, any two joins p+q and p+r, with q, r£M, 
are comparable. Suppose this fails. Then r^p+q, hence r(p+q)^a, and similarly 
q(P+ r)—a- Consequently, 

(P + q)(P + r)(q + r) = q(p + r) + r(p + q)^a. 

But using the dual of the 2-distributive law, we find that 

a+(P+q)(P+r)(q+r) = 

= [a+(p+q)(p + r)][a+(p + q)(.q+r)][a+(p + r)(q + r)] ^ 
a+p)(a + q)(a+r) = 1. 

This contradiction proves that Cp is a chain. 
Finally, we note that, for p, q£M, 

CpnCq = Cpn{l/(p + q)). 

Certainly, the set on the left is included in the set on the right. To prove the opposite 
inclusion, consider any c£Cpf}(ll(p+q)). Then c^p+q, and c=p+r for some 
r£M. Consequently c=(q+p)+(q+r), and recalling that Cp is a chain, we infer 
that c=q+p or c—q+r. In either case, c£Ct, as was to be shown. 

It will be convenient to have a fixed notation for the elements of the chain Cp, 
say 

cpo < Cpi cpxp. 

We also fix a one-to-one mapping / : L—D\{0} and a vector t;£V\A, and for 
each cdaj0 we pick a vector a ( c ) £ F ( c ) \ | J F(d). Such a vector always exists 

d<c 
by Lemma C. Associating with each pZM the vector 

= 2 f(cpi№acp(t+1)), 
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we are now ready to describe the mapping G: L—L(V). For x^a, we let 
G(x) = F(x), but if xi£a, then there exists p£M with pSx. For each such p we 
let 

Gp(x) = G(ax)+D^p. 

We claim that Gp(x) is actually independent of p. To see this, consider another 
element q^M with qSx. The element p+q is in both Cp and Cq, say p+q = cpk = 
=cqm. For i<k we have acpil+1)^a(p+q)^ax, and therefore x(acp(i+1))eG(ax). 
Consequently, 

Gp(x) = G{ax)+D(£- 2 /(cpi)a(acp(i+1)>). 

From this, and the corresponding formula for Gq(x), we infer that Gp(x)=Gq(x). 
Dropping the subscript, we therefore have a well defined mapping from L to L(V). 

It is easy to check that x^y implies G(x)^G(y). We need to check that 
x < y implies G(x)<G(j) . Since c$A, this is clear when x ^ a . If x ^ a, then 
y=ay+x, which implies that ay ^ x, sothat ax<ay. Butthen G (ay) G (ax) + D>/ 
whenever Hence G ( X ) < G ( J O -

The mapping G preserves strict inclusion, and since the lattices L and L(V) 
have the same length, it follows that G preserves the covering relation. To prove 
that G is an embedding, it suffices by Lemma D to show that G is one-to-one. We 
shall do this by showing that G(x)^G(y) implies x ^ v. 

Suppose G(x)^G(y). If x^a and y=a, then it obviously follows that x=y. 
The case x^a and y^a is excluded, for we would then have G(x)^A and G(y)^A. 
Next suppose x^a and y^a. Choosing q£M with q=y, we then have 
G(x)rSG(ay)+Dcq, hence G (x) ̂ Af](G (ay)+DQ=G (ay)+(AC]D£q)=G (ay), 
and consequently x ^ a y ^ y . Finally suppose x ^ a and y ^ a . If x y ^ a , then we 
can choose p£M with p=xy, and we have x=ax+p and y=ay+p. From the 
fact that G(ax)^G(y), we infer by the preceding case that axsy,. and since pSy, 
we conclude that x ^ y . 

To complete the proof, it suffices to show that it cannot happen that x ^ a , 
y ^ a and xySa. Assuming that these three conditions are satisfied, we choose 
p,q£M with p^x and q^y. Then G(x)=G(ax)+D£p and G(y)=G(ay)+D£q, 
and the condition G(x)^G(y) therefore implies that cpeG(ay)+D^q. Thus 
Cp-rj+s^q for some rj£G(ay) and sdD. Actually 5=1, because ^p—scq€A. 
Let cpk be the term in the chain Cp that precedes p+q, and let cqm be the term in 
Cq that precedes p+q. Let 

Pp = 2 f ( c p i ) * ( a c p ( i + i ) l y P = 2 f(cp,)<x(acp0+1)), Omi^k 

and define fiq and yq similarly. Then yp=yq, and therefore 

(/M-f(cqm))d(a(p+q)) - -t,~pp+^G(ay + acpk + acqm). 
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Since oi(a(p+q)) does not belong to G(d) for any d<a(p+q), it follows that 

a(p + q)^ay+acpk+acqm, 

Recalling that p+q=q+a(p+q), we infer that 

p ^ q+ay+acpk + acqm. 

Since p is join irreducible and L is 2-distributive, it follows that p is included in thé 
join of some two of the four elements q, ay, acpk and acqm. In fact, since p^a, we 
have p^q+w for some {ay, acpk, acqm). But each of these three inclusions 
readily leads to a contradiction: p-^q+ay would imply p=y, hence xy^a; 
p^q+acpk would imply p^(q + acpk ) cpk = qcpk+acpk ES a ; and p^q+acqm would 
imply p^c q m . This establishes the contradiction, and completes the proof of the 
theorem. 

4. Connections with other representation problems. Modular lattices arise naturally 
in many contexts, and each source gives rise to a representation problem. The "most 
general" representation problem to receive extensive attention is the problem of 
representing a lattice as a lattice of permutable equivalence relations. The (modular) 
lattices for which such a representation exists are said to be of type 1. The discovery 
that there exist modular lattices that are not of type 1 led to the introduction of a 
six-variable identity, stronger than the modular law, that holds in every lattice of 
type 1. This identity holds in (the lattice of all subspaces of) a projective plane iff 
the plane is Arguesian, and the lattices in which the identity holds are therefore 
called Arguesian. Of course every modular lattice that contains a non-Arguesian 
projective plane as a sublattice is non-Arguesian, but as might be expected, the 
Arguesian identity can fail for other, more subtle reasons. However, the geometric 
flavor of these original examples carries over to a surprising extent to the general 
case. It is shown in DAY and JÓNSSON [ 1 ] that if a modular lattice L fails to be Argu-
esian, then the ideal lattice of L contains a "non-Arguesian configuration" of ten 
points and ten lines. These twenty elements, however, may he in up to twenty distinct 
non-degenerate planes that constitute intervals in the ideal lattice. In particular, 
therefore, every 2-distributive modular lattice L is Arguesian, for the ideal lattice 
of L is also 2-distributive and therefore does not contain a non-degenerate projective 
plane as a sublattice. We do not know whether every 2-distributive modular lattice 
is of type 1, although it seems likely that this is the case. In fact, we conjecture that 
a modified version of the result proved here is true without any restriction on the 
length of the lattice. 

Conjec tu re . For any 2-distributive modular lattice L, and division ring D, L 
can be embedded in L(V) for some vector space V over D. 
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After the research reported here was completed, we received a prepublication 
copy of a research announcement, H A I M A N [ 2 ] , describing the construction of a 
lattice that is Arguesian but not of type 1. This important result confirms a conjecture 
of long standing, and it gives increased importance to various ongoing efforts to 
obtain positive representation results for special classes of modular lattices. Our 
result falls into that category, but it may have a special significance in this context. 
In D A Y and J 6 N S S O N [ 1 ] it was shown that if a modular lattice fails to be Arguesian, 
then its ideal lattice either contains as an interval a bad plane, or else it contains 
two or more planes that are badly fitted together. It seems likely that a similar result 
holds for type 1. Our result gives some credence to this conjecture, for it shows that 
if a modular lattice of finite length is not of type 1, then it must contain as an interval 
a non-degenerate plane. 
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