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A decomposition theorem for modular lattices containing an «-diamond 

RALPH FREESE1 

Dedicated to the memory of András Huhn 

In the 1930's Von Neumann developed his concept of an «-frame in order to 
study the coordinatization of complemented modular lattices. In the late 1960's 
and early 1970's A. P. Huhn revived a variant of this concept, which he called 
«-diamonds, and used it in his work on modular lattices which were not necessarily 
complemented. He developed the basic theorems for this concept including the 
result that «-diamonds (and «-frames) are a projective configuration for the class 
of modular lattices, [12]. This means that if f : L-++M is a surjection of modular 
lattices and M contains an «-diamond then this «-diamond can be pulled back 
through / to an «-diamond in L. 

One of the main themes of modern lattice theory has been the study of lattice 
varieties. By Birkhoff's theorem, in order to study varieties one needs to understand 
the operators H, S and P (the closure of classes of algebras under homomorphisms, 
subalgebras, and direct products, respectively). In the post Jónsson's theorem era 
of the 1970's, the major unsolved problems on varieties of lattices centered on H. 
It is here that Huhn's result is so useful. Von Neumann showed that associated 
with each «-frame (and hence each «-diamond) in a modular lattice is a ring. This 
fact, together with Huhn's projectivity result, has played a crucial role in many of 
the most important results on modular varieties, certainly in the author's best work. 

In this paper we prove the following decomposition theorem, analogous to 
Fitting's lemma, for finite dimensional modular lattices containing an «-frame. 
The definitions will be given below. 

Theo rem 1. Let L be a finite dimensional modular lattice containing a span-
ning n-frame, «^4. Then L is a finite direct product of lattices Lt where the ring, 
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R(Li), associated with (the frame in) Lt has prime power characteristic or the field 
of rational numbers Q is a subring of R(Li). 

One of the deepest and most important results on modular lattices containing 
an «-frame is Christian Herrmann's characterization of all subdirectly irreducible 
modular lattices generated by an «-frame, n ? 4 [9]. Herrmann's result builds on 
Huhn's idea of representing automorphisms of frames [13] and the author's result 
[5] which proves Herrmann's result in the case that the ring associated with the 
frame has prime characteristic. With the aid of his theorem Herrmann was able 
to prove the following very powerful result on varieties of modular lattices. Let 
Ji0 denote the variety generated by all subspace lattices of vector spaces over Q. 

Theorem 2 . (HERRMANN [9]). Every variety of modular lattices which contains 
Jl0 either .is not generated by its finite dimensional members or does not have a finite 
equational basis. 

. The following corollary illustrates the power of this theorem. Let Jl denote the 
variety of all modular lattices and let Jl fand Jl(i denote the variety generated by all 
finite (respectively finite dimensional) modular lattices. Let s i be the variety of all 
argiiesian lattices. (The arguesian law, which is due to JONSSON [ 1 4 ] , is stronger than 
the modular law and related to Desargues law in projective geometry.) 

Coro l l a ry 3. si is not generated by its finite dimensional members. Neither 
Jlr nor. Jl fd is finitely based. Moreover, Jl ^^ Jl < Jl. 

Since Herrmann's proof of Theorem 2 uses his characterization described above, 
his proof is quite lengthy. We use the decomposition theorem to give a short proof 
of his theorem. 

The first two sections of this paper give the basic definitions and some results 
about these concepts. Theorem 1 is proved in the third section. The fourth section 
proves Herrmann's result, Theorem 2. The fifth section uses a new result of the 
author to show that the lattices Herrmann used to prove his theorem have a repre-
sentation by permuting equivalence relations, i.e., a type I representation. The sixth 
section examines the case of 3-frames. In this case the "ring" associated with the 
frame may not really be a ring. Nevertheless, an analogue of Theorem 1 can be 
proved. 

1. Preliminaries. We use + and • or juxtaposition to indicate lattice join and 
meet. An n-frame in a lattice L is a subset {at, c^: iAj and 1 S / ^ « } of L such 
that 

n 
(1) Of V fly.= A «*. 

jVi *=1 
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(2) . a,- • c v = aj - ^ = aj • = A <*ki 
. k 

(3) fl; + Cy = a j + Ctj = di + d j , 

(4) cl7 = c ; i , 

(5) (cy+c,t)(fl; + a*) = cik 

for all distinct i,j, k between 1 and «. A set {ax, ..., a„} is called independent over 
hkak if (1) holds. An n-frame in L is called a spanning n-frame if Akak—0L and 
Vkak

 = 1 L• Let , Cij} be an «-frame, «^4 , in a modular lattice L. The ring 
associated with this frame is, (where we use © and <8> to denote the addition and 
multiplication to avoid confusion with the lattice operations) 

(6) R = {x£L: x+a2 = a1 + a2, x-a2 = ax -a2}, 

and for x, y£R, 

(7) x®y = [(x + c13)(a2 + a3)+(.F4-d3)(a2 + c13)](ax + a2), , 

(8) x<S>y = [(x + c23)(a1 + a3)+(y + c13)(a2 + a3)](a1 + a2). 

By Theorem 8.4 and Lemma 6.1 of [15] R is a ring with zero ax and unit c12. 
From now on L will denote a lattice containing a fixed spanning «-frame, «=4, 
and R(L) will denote the ring associate with this «-frame. At the end of the paper 
the case «=3 will be discussed. 

Lemma 1.1. An element x£R(L) is invertible if and only if x+a1=a1+a2 

and x - a 1 = 0 . 

Proof . An elementary proof is given in [6]. 

An element b in L is called homogeneous (with respect to the frame {a,, Cy}) 
ifZ?;=a;-&, z = l, ...,«, satisfy ¿> = V;2>; and 

(9) bj = aj(bi+cij). 

Whenever b is homogeneous, we shall use the notation b^a^b. The next lemma 
can be proved with easy calculations. 

Lemma 1.2. (i) Let k^n and suppose that we have an element bk£L such 
that 0sbk^ak. Let b—a^+c^, i?±k, and fc=VThen b is homogeneous. 

(ii) If b is homogeneous then {a^+b, c^+b} is an n-frame which spans the 
interval 1 /b, and {at • b, cu • b} is an n-frame spanning b/0. 

We denote the rings associated with these frames by R(l/b) and R(b/Q). More 
generally, if are both homogeneous, then {are+b, Cy-e+b} is a frame 
which spans efb. Its ring is denoted R(e/b). 
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2. Stabilizers. One of the difficulties of these concepts is that if x£R(L) it 
does not follow that x+b£R(\/b). If b is homogeneous we define the stabilizer of 
b, denoted Rb, by 
(10) Rb = {*<=*(£): bx ^ x+b2), 

where, of course, bi—arb. We say that x£R(L) is stable if it is in Rb for every 
homogeneous b. (This differs slightly from Herrmann's use of this term in [8].) The 
next lemmas collect the basic information on stable elements. 

Lemma 2.1. Let L be a modular lattice containing a Spanning n-frame and 
let b be a homogeneous element. Let x£R(L). Then the following are equivalent: 

(0 x£Rb, 
(ii) x+b€R(llb), 

(iii) x-b£R(b/0). 

Proof . Suppose that JC satisfies (i). To show that x+b£R(llb) we need to 
prove that (x+b)(a2+b)—b. Using (i) and the independence of the a,'s we calculate 

(x+b)(a2+b) = a2(x+b) + b = a2(ax+a2)(x+b)+b = 

= a2(x+(ax + a^)b)+b = a2(x + bx + b^) + b = 

— a2(x + b^)+b = a2-x + b2 + b = b. 

Thus (i)—(ii). To see that (i)—(iii) we need to show that x • b+a2 - b=bx+b2. 

x- b + a2 - b = x- b + b2 — (x + b^)- b — (x+bx + b2)- b = x • b + bx + b2 = 

= x-iaj+a^)- b + bi+b2 = x- (bx + b2) + bx + b2 = b1 + b2. 

Nowif x-b£R(bl 0) then x • b+b2=b1+b2. Hence bx^x+b2. Hence (iii)—(i). 
Similarly (ii)—(i). 

Lemma 2.2. Rb is a subring of R(L) closed under taking inverses when they 
exist. The maps x>--x+b and x^-»x-b are ring homomorphisms form Rb to R(\/b) 
and R(b/0), respectively. 

Proof . By (9) both ax and cX2 (the zero and one of R(Lj) are in Rb. If x, y€Rb 

then using (8) and (9) 

x®y+b2 = [(x+C23) («i + a3) + (j+c13 + fc2) (^2 + a3)] (ai + ai) = 

= [(* + C23) (ax + a 3 ) + 0 * + c13 + Z?! + feg) ( a 2 + a 3) ] ( f l i + «2) = 

= K* + c23) (a1 + a3)+(y+c13 + b1 + b2 + b3) (a2 + a3)] (ax + a2) = 

= [ ( * + c 2 3 ) ( a i + a 3) + ^ 3 + ( 7 + ci3 + + b^)(a2 + a 3 ) ] ( f l i + a 2 ) EE-

S' (jc+cja+fe^iaj + a^iai + aa) = (^+c23 + i>3+b2)(iii + ci3)(a1 + a2) ^ bx. 
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Thus x®yeRb. Similarly x®y£Rb- If x is invertible in R(L) then a formula for 
x - 1 is given in [6]. Using this, one can show that x~1£Rb. 

We let <g>b denote the multiplication for R(l/b) and ®b for R(b/0). Let x, y£Rb. 
Then b^bi+y and since bi+ciJ=bJ+cij by (9), we have, 

(x+b)® b(y+b) = [(x+c 2 3+b)(ai+a 3+b)+0'+c 13+fe)(a 2+a3+b)](a 1+a 2+fc) = 

= [(*+c2 3+b1+b3)(a1+a3)+0'+c13+b)(a2+a3)+Z>](a1+a2)+b = 

= [(x+C23)(ai+a3)+0>+c13+b)(a2+a3)+b](iii+a2)+fr = 

= [(x+c23)(tfi+a&)+(y+cm+b2) (a2+a3)+fej+b2] fa+a^+b = 

= [(^+c23)(ai+03)+(>'+c13)(a2+a^](a1+a2)+b = x®y+b. 

These and similar calculations show that x>-+x+b and x—x • b are ring 
homomorphisms from Rb into R(l/b) and i?(6/0). 

Notice that this lemma implies that if x is in the prime subring of R(L) (the 
subring generated by 1) or is the inverse of an element in the prime subring then x 
is stable. 

N o t a t i o n and mot iva t ion . If S is a ring and M is a unitary left •S'-module 
then the lattice of submodules, L(M"), of the module M", contains a natural 
spanning «-frame, namely, 

¡th 
a£ = {(0, . . . ,x, ...,0): x6M}, 

¿tb jth 
c^ = {(0, . . . ,x, ..., - x , ..., 0): x£M}. 

Linear algebraic calculations show that the ring associated with this frame, 
R(L(M")), is the endomorphism ring of M. A homogeneous element has the form 
{(xl5 ..., x„): XidB} for some submodule B of M. The stabilizer of this homogeneous 
element is the subring of those endomorphisms of M which map B into itself. Simple 
calculations also show that if r£R(L(M")) then a± • r={(x, 0, ..., 0): xr=0}, i.e., 
ax-r is the kernel of r (in the first coordinate). Similarly, a2(fli+r) is the range of 
r (in the second coordinate). 

For a general modular lattice containing an «-frame, and x£ R(L), there are, 
by Lemma 1.2, homogeneous elements b(x) and d(x) such that b(x)1=a1 • x and 
d(x)2=a2(a1+x). Thus b(x) corresponds to the kernel of x and d(x) to the image. 

Lemma 2.3. Let x£R(L) and let b=b(x) and d=d(x). Then x£Rb and 
x£Rd and 

(i) x+d is the zero element of R(\/d), and 
(ii) x • b is the zero element of R(b/0). 
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Proof . Since x+02—ai+a2 , 

x + d2 = (x+fljJCx + fij) = x+a^x+a^ = x'+'ai ^ 

Thus x£Rd. Trivially x£Rb. The above calculation shows that x-srd2=x-\-al. 
Hence, 

a! + d = a1 + d2 + d = (al + a2)(x + a1)+d = x + ax + d = x + d2 + d = x + d. 

Since ax+d is the zero element of R(l/d), this proves (i). Again (ii) is trivial; 
x-b=bl, which is the zero of R(b/0). 

3. Proof of Theorem 1. 

Lemma 3.1. If then 

(u + Cja) a2 = ((« + c13) o3 + c23) a2. 

Proof . Let iv be the right side of the above equation. Then 

w + C23+c13 = ((«+c13) a3+c23) (a 2 + a3) + cls = 

= (" + cls)a8-l-C23 + c13 = m (ax + a3) + c23 + c13 = w + c23 + c13. 
Meeting.both sides with A, +a2 gives H ' + C 1 2 = M+C12. Thus since w^a2, w— 
—(wJrcX2)a2=(ii+cJi)a2, as desired. 

For x£R(L) we let x2 denote x®x. 

Lemma 3.2. Let x£R(L) and suppose that a1-x=a1-x2. Let b = b{x). Then 

(«! + *>)(* I-ft) = b. 

Proof . Since x-max+ai, a1(x+b) = ai(a1+a2)(x+Vbi)=a1(x+b1+b2) = 
^ b i + a ^ x + b z ) . (In the future we shall omit the details of these independence 
type arguments.) Thus 

(aj + b)(x+fc) = b+a^x+b) = b + a^x+b^ = & + fli(x+a2(ci2+ai-x)). 

Now we calculate, using the last lemma 

a1-x2 = ai[(x + CM) (aa + a3) + (x + c13) (a2 + a3)] = 

= ax (ax + a3) [(* + c23) (ax + a3) + (x+c13) (a2 + a3)] = 

= ai[(* + c23)(a1 + a3)+a3(x + c13)] = a1(a1 + a3)(x+c23 + a3(x+c13)) = 

= fli^ + Caa + as ia j - l -a^^ + Cja)) = a ^ x + c ^ + a ^ • x+ca3)) S 

S ai(x + a2(c23 + a3(a1-x+c13))) = a2(c12+ax - x)). 

Thus (a1+b)(x+b)^b+a1-x2=b+a1-x=b+b1=b. 
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Le mma 3.3. If L is finite dimensional and x£R(L) satisfies ax • x=0, then 
ax+x = ax+a2 and thus x is invertible. 

Proof . Suppose that Cj-x^O. It is easy to see that we have the following 
transpositions 

( a j + ^ / a j X x/0/ (ai + a 2 ) / a 2 \ c 1 2 / 0 / (a1 + a2)la1. 

Thus the dimension of (a1+x)/a1 equals that of (a1+a2)la1. Since ax+x^ax+a2, 
this forces equality and the result follows. 

Theorem 3.4.Let L be finite dimensional, x£R(L) and let b—b(x) and 
d=d(x) be the elements defined in Section 2. Suppose that x satisfies ax- x—ax • x2, 
then x+b is invertible in R(l/b) and a1 = bi +dx. 

Proof . That x+b is invertible in R(l/b) follows from Lemmas 1.1, 3.2, and 
3.3. Now let ex—bx + dx and let e=b+d be the homogeneous element associated 
with ex (cf. Lemma 1.2). By Lemma 2.3 x£Rb and Rd. From this it follows that 
x£Re. Now since e^d, e is a homogeneous element for the frame {at+d, c^+d} 
and by Lemma 2.1 x+d£R(]fd)c since x+d+e—x+e. By Lemma 2.2 we have 
three ring homomorphisms, / : Rd-+R(l/d), g: R(\ld)e—R(l/e), and h: jRe — 

1/e). Clearly, g(f(x))=h(x). Since f(x)=x+d is the zero element of R(\/d) 
by Lemma 2.3, h(x)=x+e is the zero element of R(\/e). However, x+b is inver-
tible in R(l/b). By Lemma 2.3 there is a homomorphism of R(l/b)e into R( 1/e) 
and the image of x+b is x+b+e=x+e. Thus x+e is an invertible element 
of J? (1/e). Checking the definition of the ring of a frame one sees that the only way 
an element of the ring can be both zero and invertible is if the frame is trivial. Thus 
e = l and thus ax • e=ax=bx+dx, as desired. 

Theorem 3.5. Let L be finite dimensional, x£R(L) and let b=b(x) and 
d=d{x) be the elements defined in Section 2. Suppose that x satisfies a, +x=cr l+x 2 , 
then x • d is invertible in R(d/0) and 0 -bx-dx. 

Proof . Since x ^ a l + a « , we have using (9) 
d2 = a2(ax + x) = a2(ax + x2) = 

= a 2f a l + (X+C13)(a2+a3) + (-X:+C23)(al+a3)] = 
= a2[(x + c13)(a2+fl3)+(x + a1 + c23)(a1 + fl3)] = 

= a2[(x + c13)(a2 + a3) + a1 + a3(x + a1 + c23)] = 

= a2[(x+c13)(a2 + a3)-l-a3(x+a1 + c23)] = fla^+Cis + flaix+flx + Cga)) = 

= a 2 [*+ c i3+a 3 (c 2 3 +(x + a,) (a2 + a3))] = fl2[^+c13 + a3(c23 + a2(ji:+a1))] = 

= a 2 [x+(a i+a 2 ) ( c i3+ a 3 (c23+a 2 (-̂  + a i)))] = «2 [^ + «1(̂ 13 + 03(^23+ «2(^ + 01)))] = 

= a2[x+a1(c13 + a3(c23 + d2j)] = a2[x + ax(cx3 + d3)] = a2(x+dx). 
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Thus d^^x+dx and so 'x-d+dl=d(pc+dl)^d-d2=di. Hence x d+dl=dl+di. 
By an argument similar to the proof to Lemma 3.3, this in turn implies x-d-dx= 
—x-dx—0, and thus x-d is invertible in R(d/0) by Lemma 1.1. If we let e=b-d 
then by the argument of the last theorem, x • e is both the zero and invertible 
in R(e/0), showing that e=0. Hence, bx-dx=0, as desired. 

It is easy to see that for x£R(L), ax • x^ax • x2^ax • x 3 ^ . . . , and ax+x^ 

+x2^a1+x3^.... For example, to see the former let y£R(L). Then 

ax-(x®y) = ai[(x + c23)(a1 + a3)+0>+c13)(a2+a3)] = 

= ai[(^+c23)(a1+a3)+a30+Cj3)] = a i (x+c 2 3 +a 3 0+c 1 3 ) ) ^ a x - x 

from which ax • x S ax • x2 S . . . follows. 
Now i fL is finite dimensional there is a k such that a1-x2k=ax • x* and ax + x 2 t = 

= a 1 + x i . Thus we have the following corollary. 
Coro l l a ry 3.6. Let L be a finite dimensional modular lattice containing a 

spanning n-frame, nS4, and let x£R(L). Then there are homogeneous elements 
b and d such that b and d are complements, x£Rbf]Rd, for some k, x* is the 
zero of R(b/0) and x is invertible in R(d/0). 

Proof . As above we choose k such that ax • x2k=ax • x* and al+x2k—ax+xk. 
Let b=b(xk) and d=d(xk). Now the result will follow from the previous results 
once it is shown that x£RbC\Rd. To see that x£Rb we need to show that bx^x+bz, 
i.e., ax • y?-^x+a2{c12+ax • x*). We will actually show ax • xk^x+a2(c12+a1 • x*-1), 
which is stronger by the above remarks. We argue by induction on k. It is clear when 
k=1. Now ax-xk—ax[(x+c23)(ax+a3)+(x^~1+cx3)(a2+a3)]. By the same argu-
ment as given in the displayed calculations in the proof of Lemma 3.2, this is equal to 
ax(x+c23+a3(ax-xk~1+c13)). This equals a1(x+a2(c23+03(^1 ••x*~1+<:i3)))» since 
x^ax+a2. By (9) the latter equals ax(x+a2(ax • x^^+c^ ) ) . Thus ax • xk= 
=ax(x+a2(ax • xk~1+cX2))^x+a2(c1o+a1 • xk~1), as desired. The proof that x£Rd 

is similar. 

Theorem 3.7. Let L be a finite dimensional modular lattice containing a 
spanning n-frame, n^ 4, andlet p be aprime. Then L canbe decomposed as L=Z^X 
XL2 in such a way that the characteristic of R^L^) is a power of p and p is in-
vertible in R(L2). 

Proof . We viewp as an element of R(L). As in the last corollary there is a A; 
such that ax+p2k=ai+pk and ax • p2k=ax • pk. We again let b=b(pk) and d=d(pk). 
Let Lx=b/0 and L2=d/0. By the last result pk is zero in R(b/0)=R(Lx) and is 
invertible in R(d/0)=R(L2). Hence the characteristic of i?(Zo.) is ps for some s^k, 
and p is invertible in R{L2). Also b and d are complements. Since L is modular, 
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this implies that L ^ x L ^ L (this is a "folklore" theorem of lattice theory, see [1] 
p. 73). In order to show that L{XLt=L we need to show that b and d are a distri-
butive pair, i.e., for any u£L, b, d, and u generate a distributive sublattice of L 
(see Theorem 5.2, p. 33 of [15] or 15.9 of [2]). Now we use the following easy result 
(see Lemma 5.1, p. 36 [15]): if both (b\ d) and (b", d) are distributive pairs and if 
b'.d=0=b"-d, then (b'+b", d) is a distributive pair and d(b'+b")=0. Now if 
(b, d) is not a distributive pair then by repeatedly applying this result there are 
indices s and t such that (bs, dt) is not a distributive pair, i.e., there is a u£L such 
that the sublattice generated by bs, dt, and u, (bs, d„ u), is not distributive. Then 
(bs, dt, u(bs+d,)) is also nondistributive. Hence we may assume that u^bs+dt. 
Thus the sublattice generated by u, bs, and d, will be a (nondistributive) homomorphic 
image of the following: 

Note that 

bs(u+dt)/bs-u/(u+bs)(u+d,)/u \ d,(u+bs)ldt-u. 

Since L is finite dimensional we may assume that bs • u-<bs(u+dt). Let es=u-bs, 
fs=bs(u+dt), gt=u-dt, and h,=d,(u+bs). We let e be the homogeneous element 
associated with es using Lemma 1.2. We define homogeneous elements f , g, and h 
in a similar way. Now since /¡+e>-e, / is the join of the atoms above e. This 
implies that f / e is complemented, see 4.1 of [2]. A complemented modular lattice 
containing an «-frame, nS4 , is isomorphic to the lattices of subspaces, L(V), of 
an «-dimensional vector space, V, over a skew field F, see 13.4 and 13.5 of [2]. Since 
e s t , and pk is a stable element of R(b/0), and pk is zero in R(b/0), the characteristic 
of F is p. By a similar argument h/g is isomorphic to the lattice of subspaces, L(U), 
of a vector space, U, over a skew field K in which pk, and hence p, is invertible. 

Since b-d—0 we have that f/eff+g/e+g and h/g y h+e/e+g and 
(f+g)(h+e)=e+g. Thus both L(V) and L(U) can be embedded into f+h/g+e. 
Moreover, since the atoms of f+h/e +g join to / + h , f+h/e +g is a complemented 
modular lattice of length 2«. Now 

L+e+gje+g / fs+u+e+glu+e+g = h,+u+e+g/u+e+g \ ht+e+g/e-\-g. 

3 
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Since the /¡-1-е are part of an «-frame, f+e+g/e+g is projective to fj+e+g/e+g 
for any i and j. Similarly, ht+e+g/e+g and hj+e+g/e+g are projec-
tive. Hence f+g is the join of pairwise perspective atoms in f+h/e+g. 
Consequently, f+h/e+g is a simple, complemented modular lattices and thus 
isomorphic the lattice of subspaces of a vector space. But this vector space lattice 
contains subspace lattices of different characteristics, an impossibility. This contra-
diction proves the theorem. 

To prove Theorem 1 is now easy. Let L be a finite dimensional modular lattice 
containing an «-frame, « ^ 4 . If every prime is invertible in R(L), then Q is embed-
ded in R(L). If p is not invertible in R(L), then with p invertible in 
R(L2) and the characteristic of R(Lx) a power of p by the last theorem. Now we 
apply the same procedure to L2. Since L is finite dimensional, this must stop after 
finitely many steps and we arrive at the conclusion of the theorem. 

4. Herrmann's Theorem. In this section we use Theorem 1 to prove Herrmann's 
result. Let p be a prime and let R=ZP be the ring of p-adic integers. Recall that 
the only nonzero ideals of J? are pkR, k=0, 1, .... Thus the lattice of submodules 
of J? as a left .R-module, L(RR), is a descending chain with 0, i.e., the dual of co + 1. 
Hence LX=L(RR") also has the ascending chain condition. If we let at be the sub-
module of R" generated by (0, ..., 1, ..., 0), 1 in the ith place, ctj the submodule 
generated by (0, ..., 1, •••, —1, ...,0), where the 1 and —1 are in the /'b and jth 

position, then {ai; c f j} is an «-frame in LX. Now in a modular lattice the relation 
which identifies a and b if a+b/a-b is finite dimensional is a congruence which 
we denote here by 0 . Note that {aJ0, с1}/0) is a spanning «-frame of LJQ and 
that a JO covers 0 in LJ0. As in the last section this implies that LJO—L^F") 
for some skew field F. Since the operations of R(Lx) are defined from the lattice 
operations, the homomorphism I^—I^/© induces a ring homomorphism of R(LJ) 
into F. It is not hard to see that each member of the frame is the greatest member 
of its ©-class. Consequently the only element of R{Lx) which is ©-equivalent to 
at is ax, i.e., the ring homomorphism R-+F is a monomorphism. Hence R is a sub-
ring of F. Thus the field of fractions, QP of R = ZP, is a subfield of F. (Actually it 
is not hard to see that F— QP and that the homomorphism of L^ onto L^/0 is given 
by the tensor product: £/>->-T/<g> K QP. This follows from the flatness of QP a s Z p -
module, see 3.32 of [16].) In particular F is uncountable and has characteristic 0. 

Since Lx satisfies the ascending chain condition, each element х of Lx/0 has a 
largest inverse image, denoted ax. Thus a is a meet preserving map from Lx/0 into 
Lx mapping the frame in LJ0 to the frame of Lx • 

Now let S be the nonmodular lattice obtained from L ( Q Q " ) by adjoining an 
extra element e which is between 0 and 1 and a complement of all other elements. 
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Since Q is embedded in F, L ( Q Q " ) is a sublattice of L(FF") in a natural way. (This 
map sends a subspace U to U®QF, which is just the F-subspace generated by U.) 
Extend this map to S by mapping e to a point which is on no rational hyperplane. 
For example, e can be sent to a one dimensional subspace spanned by a vector in 
F" whose coordinates are linearly independent over Q. Combining this map with 
a we obtain a meet embedding of S into Z.l5 which is canonical on the frames. We 
also use a to denote this map. Thus a maps e to a rank 1 free submodule, and hence 
•x(e)/0 is dually isomorphic to the ordinal co + l. 

Let ¿0 be the lattice which is dual to except we use the prime q in place of p. 
{L0 may be taken to be the lattice of subgroups of the direct product of n copies 
of the Prüfer group Zq~.) Then there is a join embedding ß of S into L0 such that 
\jß(e) is isomorphic to co + l. Let 

APQ = {(m, V)£L0XL1: 3X(=S, ß(x) 3= u, v S a (x)} . 

It is easy to check that this is a sublattice which contains the spanning frame 
(c;j, cy)}. By the above remarks the interval (1, a(e))/(ß(e), 0) is isomorphic 

to(<u+l)X(co + l)d. Welet e*€L0 denote the upper cover of ß(e) and e^Li the lower 
cover of ct(e). We let Lpg be the lattice obtained from APQ by adjoining a new element 
a so that (e*, a(e))/(/?(e), e^) is isomorphic to M3. Since (ß(e), x(e)) is both join 
and meet irreducible in APQ, it is easy to see that Lpg is a modular lattice. The interval 
(1, a(e))l(ß(e), 0) of Lpq is drawn below where the solid lines indicate coverings. 

Now 2 i (L 1 ) sZ p and simple linear algebraic calculations show that this iso-
morphism is given by !••-»•{(—x, rx, 0, ..., 0): x£ Zp}. Below we identify r and this 
submodule. Again by linear algebraic calculations we have that at • r— {(>>, 0, ..., 0): 
r j=0}. In our case Zp is an integral domain. Hence we have - r = 0 
for each r€ Zp except r—0. Similarly, we have that (a, +p)a2={(0, px, 0, . . . , 0): 
x£ Zp}. Since pZp is the unique maximal ideal of Zp, (a1+p)a2 is the unique 
lower cover of a2m L^. 

5* 
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Recall that L0 is isomorphic to the lattice of subgroups of the direct product of 
n copies of Zq». In general the ring associated with the direct product of n copies 
of a module is the endomorphism ring of the module. Thus in our case R(L0) = 

End ( Z 4 - ) s Zq. With the aid of these facts, it is not hard to verify that in L0 

ax+r=ax+a2 for all r£R(L0) except and that ax-q is the unique 
atom below ax. It follows that in Lpq (a^ ax)-(q, q)=(ax-q, 0 )>0 , and 
[(ax,ax)+(p,p)]-(a2,a2)=(a2!(a1+p)a2)^(ai, (¡2). Now in L0 ax-P(e) = 0 so 
that flj -q+P(e)>~P(e). Hence in Lpq 

(«1 • q, 0)1(0, 0) / (e\ a(e))/(p(e), a(e)). 
Similarly, 

{P(e),CL(e))l{p(e),e^/ (1, 1)/(1, a1+/» + fl3+ ...+flj \ (a2,a2)J(a2,(a2(ai+p))). 

Thus in Lpq (a2, a2)/(a2, +p)) and (ax • q, 0)/(0, 0) are projective prime quo-
tients. 

We will show that Lpq is not in J(fi. Suppose that Lpq£ Ji(&. Then Lpq is a 
homomorphic image of a lattice M which is residually finite dimensional. By HUHN'S 

theorem, [12], M has a frame {ah cy}, which we may assume spans M, mapping 
onto the frame {(«¡, at), (c¡j, ctj)} in Lpq. By an easy application of Dedekind's 
transposition principle, we have, in M, that axqj0 and ch]a2(ax+p) have nontrivial 
subquotients which are projective. Thus there are elements bx, cx, f2, g2£M such 
that 0^cx<bx^ax-q and a2(ax+p)^g2<f2^a2 and b,Jcx and f j g 2 are projec-
tive. Let b, c,f,g(LM be the homogeneous elements associated with bx,cx,f2,g2, 
see Lemma 1.2. Since M is residually finite dimensional, there is a homomorphism 
ip: M-*-K with K finite dimensional such that By Theorem 3.7 

where R(KX) has characteristic pl for some i, and p is invertible in 
R(K2). Let nt: i= 1,2, be the projection homomorphisms. 

Since q is in the subring of R(M) generated by 1, it is stable. Thus by Lemma 2.2, 
q in R(b/0) is the element q • b. But since bx^ax-q~q, q • b=q(bx+b2)=bx+q • b2 = 
=bx. Thus R(b[0), and hence R(b/c), has characteristic q. Since a2(ax+p)^g2, 
we have, by joining ax to both sides, +g. Hence 
p+g^Q+g, which implies that p=0 in R(l/g). Thus p—0 in R(f/g), again by 
Lemma 2.2. 

It follows that in Kx, R(Tzx\lt(b)/nx\l/(c)) satisfies ^=0 . But R(KX) satisfies 
p'=0 and thus R(nx\l/(b)/Ttxip(c)) also satisfies p'=0 by Lemma 2.2. Since p and 
q are relatively prime, this ring must satisfy 1=0, i.e., nxip(b)=Ttx^/(c), so that 
(ij/(b), \l/(c))ekeTnx. Hence (^(h), ^ (c^Gker tc1. Similarly (<K/2), <Mg2))£ker tc2. 
But ty(bx)№(cx) projects to 1 p ( f M ( g 2 ) . Thus (\p(bj), ^ ( c ^ i k e r Piker k2=0. 
Hence \j/(bx)=il>(cx), a contradiction. Hence Lpq$Jifi, as claimed. 

Let p+ be the first prime after p. The next step in the proof is to show that any 
nonprincipal ultraproduct of {Lpp+: p a prime} hesin Jia. This is a fairly standard 
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argument and we shall only sketch it. HERRMANN'S original proof [9] contains more 
details. 

Let L=(Ilp JLpp+)/<% be a nonprincipal ultraproduct of {Lpp+}. The cor-
responding ultraproduct of rings R=(IIpZp)/% has characteristic 0 and every 
prime is invertible, since these facts hold in Z p for almost all p. Hence Q is a subring 
of R. Now the ultraproduct (IJp is a lattice of submodules of a module 
over R. Since Q QR, this may be viewed as a module over Q. Hence this lattice 
can be embedded into the lattice of subspaces of a vector space over Q. Let A = 
=(npApp+)l<%. Then A can be embedded into the direct product L(V0)XL(V1) 
of vector space lattices over Q. Now A is just L with the element removed. 
Also in L and in A we have (i7 (P(e), eJ)/W<(II (¿9(e), a(e)))/<^-<(i7 (e*, a(e)))/<%. 
By changing V„ and Vx we may assume that (e*, a(e))/(P(e), a(e)) and 
(P(e), a(e))/(/?(e), e j have the same dimension. Now L(V0)XL(V1) is a sublattice 
of L(V0XV1) and L can be embedded into this lattice by choosing a to be a common 
complement of (e*, e j and (P(e), a(e)) in (e*, a (ej)/(p(e), O - Thus L£M0. 

Now the proof of Theorem 2 can easily be completed. If X is a finitely based 
variety with J/0QJf then the ultraproduct (npLpp+)l^i lies in J f . Since i f is 
finitely based there must be a prime p such that Lpp+£tf. Since Lpp + *M, *fC is 
not generated by its finite dimensional members. 

For Corollary 3, the fact that is a result of FREESE [4]. The rest of 
the corollary follows from the fact that which is proved by HERRMANN 

a n d H U H N i n [11] . 

5. Type I representations. It follows from the results of FREESE, HERRMANN 

and H U H N [7] that if "V is a variety of algebras all of whose congruences are modular 
then Lpq is not in the variety generated by the congruence lattices of the algebras 
in "V. Indeed, in the last proof we showed that (a2, a2)l(a2, a2( f li+/')) and 
(ax • q, 0)1(0, 0) are projective prime quotients in Lpq. Let b be the homogeneous 
element of L0 with b1=a1-q and let d be the homogeneous element of with 
d2=a2 fa+p), see the notation before Lemma 2.3. It follows from Lemma 2.3 that 
R(bj0) has characteristic q in L0 and R(l /d) has characteristic p in Thus in Lpq 

the ring of the frame in (b, 0)/(0,0) has characteristic q and the ring of the frame 
(1,1)/(1, «0 has characteristic p. The projectivity above shows that the quotient 
(bx, 0)/(0, 0) in the first frame is projective to (1, d+aj)/{l, d) in the second. Now 
Proposition 2 of [7] shows that this situation cannot occur in a modular congruence 
variety. Thus Lpq cannot be in any modular congruence variety. 

In light of the above result it is of interest to decide if Lpq has a representation 
as a lattice of permuting equivalence relations (known as a type I representation). 
The following theoreni of the author shows that it does have such a representation. 
The proof of this theorem will appear elsewhere. 
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Theorem 5.1. Let L be a modular lattice containing an element a which is 
both join and meet irreducible. If the sublattice L—{a} has a type I representation 
then L has such a representation. 

Summarizing these results we have: 

Coro l l a ry 5.2. The lattices Lpq all have a type I representation. If p^q and 
CtC is a variety of algebras all of whose congruences are modular, then Lpq is not in 
the lattice variety generated by the congruences lattices of the members of 3C. 

6. 3-frames. Throughout the previous sections we dealt with «-frames where n 
was at least 4. In this section we show that an analogue of Theorem 3.7 holds for 
n=3. The definition of the ring R determined by a frame with « = 3 given in (6) 
makes perfect sence. Moreover addition and multiplication, as given in (7) and (8), 
are well-defined. However, it is not true that (R, ©, <g>) satisfies the ring axioms, 
as the lattices associated with non-Desarguesian projective planes show. In partic-
ular neither operation is necessarily associative. We will call a term in © and <g> 
and the constant 1 and no variables a prime term if its evaluation in Z is a prime. 
Thus [(1 ©1)®(1 ffil)]ffil is a prime term. By a prime in R we will mean the evalua-
tion of a prime term in R. By a power of x£R we mean the evaluation of some 
term in only <8> and the variable x. 

Theorem 6.1. Let L be a finite dimensional modular lattice containing a span-
ning 3-frame. Let (R;, ffi, <g>) be the algebraic structure defined by (6), (7) and (8), 
and let p be a prime in R. Then L can be decomposed as L=Lj XL2 in such a 
way that in R(LX) some power of p is zero and p is invertible in R(LS). 

Proof . The proof is essentially the same as Theorem 3.7. For the most part 
one simply notes that the proofs work for «=3. There are two places where some 
care is necessary. Define the symmetric power, x1"3, of x£R by x [ 1 '=x, and 
x1"+1]=x1"3 ®x[n]=(xw)2. Now before Corollary 3.6 we showed that ax • x^a x (x®y) , 
for x,y£R. A similar argument shows that ax+(x®y)^ax+y. From this we see 
that ax-x^ax-x133^... and ax-\-x^Lax++xMs.... Hence, by 
the finite dimensionality of L, it follows that some symmetric power y of x satisfies 
ax -y=ax • y2 and ax+y=ax+y2. 

The other place that requires care is the proof, in Theorem 3.7, that (b, d) is a 
distributive pair. This required a vector space argument. However, the proof showed 
that if (b, d) failed to be a distributive pair then L contained a simple complemented 
sublattice of dimension 2n=6. Since 6 > 4 the classic coordinatization theorem 
(see 13.4 and 13.5 of [2]) shows that this sublattice is isomorphic to the lattice of 
subspaces of a vector space. Moreover the proof of Theorem 3.7 shows that this 
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sublattice will have two three-dimensional sublattices. The "rings" determined by 
the frames of these three dimensional intervals must be real rings because they lie 
inside a vector space lattice. In one of the rings, a power of p is zero and in the other, 
it is invertible. This is of course impossible in a vector space lattice. 
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