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- An irregular Horn sentence in submodule lattices
GABOR CZEDLI® and GEORGE HUTCHINSON '

Dedicated to the memory of Andrds P. Huhn

For a ring R, always.with 1, a lattice is said to be representable by R-modulées
if it is embeddable in the lattice’ of 'submodules of some unital left R-module. Let
L(R) denote the class of lattices representable by R-modules. Then L(R) is known
to be a quasivariety, i.e., to be axiomatizable by (universal) Horn sentences (cf.
e.g., [5]). Let HL(R) denote the lattice variety generated by L(R). A Horn sentence
x is called irregular (cf. [1]) if there are rings R, and R, such that HL(R,)=HL(R,)
and y holds in L(R,) but y does not hold in L(R,). Although the existence of ir-
regular Horn sentences follows from [4, p. 92], no concrete irregular Horn sentence
was known previously. The aim of the present note is to give an irregular Horn
sentence . This § was found by applying the techniques of [1] and generalizing the
methods of HERRMANN and HunN [3] and [8]. Note that regular Horn sentences
are much easier to handle, cf. [1].

Consider the following lattice terms on the set U={x, y, z, t} of variables:

P =x+y)(z+10), hy=(x+20+9),
hy = (x+0(+2), hy=(x+D(p+hy),

hy = (y+0)(hi+p), po=(he+2)y,
Go = X+2z+hs, g =PotX,

and let § be the Horn sentence

Po=qy=p=4q.

Theorem. 4 is irregular.
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Proof. Let Z, stand for the factor ring of the ring of integers modulo 4. Let
I, and I, denote the ideals of Z,[x] generated by {x*—2, 2x} and {x2, 2x}, respec-
tively. The rings R,=2Z,[x}/; and R,=Z,[x]/I; consist of eight elements. With
the notations a=x+1, and b=x+1;, we have

R ={i+ja: 0=i=3,0=j=1} and Ry={i+jb: 0=i=3,0=j=1}

Moreover, the bijection ¢: R,—~R,, i+ja—i+jb preserves the unit element and
the additive structure. Therefore, HL(R,)=HL(R,) (cf. [8, Prop. 3)). So, it suffices
to show that £ holds in L(R,) but does not hold in L(R,).

As Theorem 3.5 of [1] will be our main tool, we adopt the notations preceeding
the theorem in [1, § 3]. First, by [1, Thm. 3.5 (A)], we prove that £ holds in L(R,).
Now p;=p, and ¢;=q, for j=I1, and F°={f,, f;, f3} according to Figure 1.
We have X°=[f,], Y°=[fi—f:], Z°=[f;] and T°=[f,—f;]. Denoting k(C™:
ceU) by K™ for m=0 and k€{p,q, po, 4o, ho, Iy, Bz, b3}, an elementary calcu-
lation in Su(M°) shows that P°=[f}], Hy=[fo—f3], Hi=[/i+f:—f;] and P}=
=Py={r(fi—f2): r€R, and 2r=0}. Since 2a=0, we may choose S,={a(fy—/>)}
Let F*={f,, fo, f3, €1, €3, ..., €5} according to Figure 2.

 a(f;—f2)
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We obtain the following formmlas, each of them an easy consequence of the pre-
vious ones or Figure 2.

X =[fs, e, es—e3, €5—¢),
= [f1¥j’2, ey—e,, 63— g, e,
L= [fs, e1—€y, e4—€5, €5—~¢y),
V=[fi—fs, es—es, e,—eg,a(fy—fo) —ei),
P D [f,,es—e,, af3+e5),
HE 2 [fo—fs, e3—e5+eg, e5—eg),
HE D [fi+fo—Tss e3—eg, a(fi—fo)+e3—2e5-+eg).
Since a?=2 and 2a=0,
h—fo =—(itfa—f)+ales—es)+ala(fi—f3) +e;—2es+eq) +fH€ HE +Z 1

Therefore, we have fi=(fi—fo) +/€Pi+X =0 '=¢(C*: ccU). Hence £ holds
in L{R,) by [1, Thm. 3.5 (A)}.

Now observe that I, is included in the ideal I of Z,[x] generated by x, whence

~Z,[x}/I is a homemorphic image of R,. Therefore, if 7 held in L(R,), it would
also hold in L(Z,) by [4, Prop. 2] (or by [1, Cor. 6.1]). Hence it suffices to show that
4 does not hold in L(Z,). As suggested by [1, Thm. 3.5 (B)], we let x=2Z,f,, y=
=Z(fi—f2), z=Z,f; and t=Z,(f,—/3) in a free Z,-module with three genera-
tors f;, f;and f;. Calculation shows that py=Z,(2f, +2f), 9o=Z:2,+Z, fo+Z,f,,
p=Z,f;, and q=Z;2f;+Z,f;. Therefore, § fails in L(Z,), proving the theorem.

In {4, p. 92}, it was shown that no R,-module is-a free Z,-module (a direct sum
of cyclic groups of order 4). This is the key property allowing construction of an
irregular Horn sentence, as observed below.

Let S denote Z/p*Z, the ring of integers modulo p* for p prime and k=2.
We show that L(R)=L(S) if and only if R has characteristic p* and some (non-
trivial) R-module M is free as an S-module (that is, M is a direct sum of cyclic
groups of order p*).

Supposing L(R)=L(S), R has characteristic p* (cf. [1, Thm. 2.1]). By [6,
Thm. 1, p. 108), there is an exact embedding functor F from S-Mod into R-Mod.
For n-f=f+...+f (n times), we see that {p-1,, p*~1.1,) is exact in R-Mod
for A=F(sS)>0. Since A is a direct sum of cyclic groups, each with order dividing
p* (PRUFER, see [2, Thm. 17.2, p. 88], it follows that A is free as an S-module.

For the converse, note that an R-module M which is free as an S-module can
be regarded as a bimodule My, which induces an exact embedding S-Mod -~ R-Mod
by the tensor product functor M;Q®s —, yielding L(S)SL(R) by [6, Thm. 1,
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p. 108]. Since R has characteristic p*, there is-a ring homomorphlsm ‘S—R. Then
L(R)=L(S) (cf. [1, Cor. 6.1]). -

This result can be regarded as a corollary of the ring theory result proved in
[7]: If R and S are nontrivial rings with S left artinian, then there exists an exact
embedding functor S-Mod--R-Mod if and only if there exists a nontrivial bimodule
rAs such that A4g is a free right S-module.
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