A note on minimal clones

ZS. LENGVÁRSZKY

For 3 < k < n the existence of k-ary minimal clones of operations on the n-element set was proved by P. P. PÁLFY [1] who exhibited concrete examples. Here we give a very simple nonconstructive proof of this theorem.

First we prove the following claim:

Let (A, \leq) be a partially ordered set and k a natural number such that the cardinality of an arbitrary antichain in (A, \leq) is at most k-1. Then the arity of any nontrivial monotone semiprojection on (A, \leq) does not exceed k.

Indeed, let f be a monotone semiprojection on (A, \leq) with arity $m \geq k+1$. Without loss of generality we may assume that f is a semiprojection to the first variable x_1 . Let a_1, \ldots, a_m be arbitrary elements of A. By assumptions for some i and j, $2 \leq i \neq j \leq m$, $a_i \leq a_j$ holds. For $1 \leq l \leq m$ we define the elements b_l and c_l by

$$b_{l} = \begin{cases} a_{i} & \text{if} \quad l = i, j, \\ a_{l} & \text{if} \quad l \neq i, j, \end{cases} \quad c_{l} = \begin{cases} a_{j} & \text{if} \quad l = i, j, \\ a_{l} & \text{if} \quad l \neq i, j. \end{cases}$$

Since f is monotone,

$$a_1 = b_1 = f(b_1, ..., b_m) \leq f(a_1, ..., a_m) \leq f(c_1, ..., c_m) = c_1 = a_1,$$

i.e. f is trivial.

In order to prove Pálfy's theorem, let k and n be natural numbers such that $3 \le k \le n$. Suppose we have an n-element poset (A, \le) such that the cardinality of an arbitrary antichain is at most k-1 and f is a nontrivial, monotone, k-ary semiprojection on (A, \le) . Since A is finite, there exists a minimal clone C contained in the clone generated by f. Let g be a nontrivial function of minimal arity from C. Then g is a semiprojection (see [2]) with arity m. Clearly $m \ge k$; on the other hand g is also monotone, hence $m \le k$ by our previous claim, i.e. m = k.

We will be done if for all k and n, $3 \le k \le n$, we give an n-element poset (A, \le) and a nontrivial, monotone, k-ary semiprojection f on it. For this aim let A be an

n-element set and $u_3, ..., u_k$ distinct fixed elements in $A, L = A \setminus \{u_3, ..., u_k\}$. Let \leq be a parial order on A such that the distinct elements u and v are comparable if and only if $u, v \in L$ (see the diagram).

Then any antichain of (A, \leq) has at most k-1 elements. Define a k-ary operation f by

$$f(a_1, ..., a_k) = \begin{cases} a_2 & \text{if } a_1, a_2 \in L \text{ and } a_3 = u_3, ..., a_k = u_k \\ a_1 & \text{otherwise.} \end{cases}$$

Since $|L| \ge 2$, f is a nontrivial semiprojection to the first variable. Suppose that $a_1 \le b_1, \ldots, a_k \le b_k$. If $a_1, a_2 \in L$ and $a_3 = u_3, \ldots, a_k = u_k$, then $b_1, b_2 \in L$ and $b_3 = u_3, \ldots$ $b_k = u_k$, hence $f(a_1, \ldots, a_k) = a_2 \le b_2 = f(b_1, \ldots, b_k)$. If either $a_1, a_2 \in L$ or $a_3 = u_3, \ldots, a_k = u_k$ does not hold then either $b_1, b_2 \in L$ or $b_3 = u_3, \ldots, b_k = u_k$ does not hold. Thus, $f(a_1, \ldots, a_k) = a_1 \le b_1 = f(b_1, \ldots, b_k)$, i.e. f is monotone, completing the proof.

References

- [1] P. P. Pálfy, The arity of minimal clones, Acta Sci. Math., 50 (1986), 000-000.
- [2] I. G. ROSENBERG, Minimal clones I: The five types, in: Lectures in Universal Algebra (Proc. Conf. Szeged, 1983), Coll. Math. Soc. János Bolyai, Vol. 43, North-Holland (Amsterdam, 1986); pp. 405—427.

BOLYAI INSTITUTE ARADI VÉRTANÚK TERE 1 6720 SZEGED, HUNGARY