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Abstract Galois theory and endotheory. I 

MARC KRASNER 

Introduction 

Let us consider the situation in the classical Galois theory. Then we have a 
field extension K/k which is either normal and algebraic or algebraically closed. 
A permutation a: K—K is called an automorphism of K/k if, for each a,b£K 
and agfc, we have 
(1) o-(a-\-b) = o-a+a-b, 

(2) a • ab = (<7 • a)(<7 • b), 
and 
(3) a • a = a. 

Observe that the assumption "bijective" can be replaced by the weaker one "surjec-
tive", i.e., the automorphisms of K/k are just the surjective mappings a: K-+K 
satisfying (1), (2) and (3). This observation follows readily from the fact that fields 
have no non-trivial ideals. 

The automorphisms of K/k are known to form a group under the composi-
tion of mappings. This group, denoted by G(K/k), is called the Galois group of 
K/k. Let A be a subset of ^ a n d let G(K/k; A) denote {o£G(K/k); (\/a£A)(<r • a=a)}, 
which is a subgroup of G{K/k). Then Ak={a£K; (y<r£G(K/k; A))(<r-a=a)}, the 
set of all elements in .fiT preserved by each a£G(K/k\ A), is called the Galois closure 
of A. The classical Galois theory asks and answers the following two questions: 

(a) How to characterize Ak in terms of A and the field extension structure 
(K; x+y, xy, k) of K/kl Answer: Ak is the closure of A\Jk with respect to the 
operations x+y, xy (defined on KxK), JC-1 (defined on AT\{0}) and, if the 

characteristic p of k is not zero, \x (defined on K"= {ap; a£K}). 
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(b) Which subgroups of G(K/k) are "Galoisian", i.e. of the form G(K/k; A) 
for some AQK? When the degree [K:k] is finite then the answer is: all sub-
groups. 

Conditions (1), (2) and (3) in defining automorphisms seem heterogeneous at 
the first sight since (1) and (2) concern the preservation of some binary operations 
while (3) concerns the preservation of some elements. Yet, these conditions turn out 
to be of the same nature when formulated in terms of relations. There are two man-
ners of defining the automorphisms of K/k in this way: 

I. An automorphism of K/k is a permutation a of K such that 

(a) a + b = c oa • a + a • b = a • c, 

(fi) ab = co{a- a)((x -b) = a-c, and 

(y) for each a£fc, a = a o a • a = a. 

We can formulate Conditions (a), (fi) and (y) by saying that a preserves the rela-
tions x+y=z, xy—z and, for each a£k, x=a, where a is said to preserve 
a, say ternary, relation Q if for any triple (a ,b ,c )£K 3 we have (a, b, C)£QO 

«=>(<7 • a, a • b, a • c)6 g. 
II. An automorphism of K/k is a self-surjection n of K such that 

(a') a + b = c => (i- a + fi-b = /i-c, 

(f}') ab = c =>({i-a)(ji-b) = ¡i- c, and 

(y') for each a£fc, a — a=>n-a — a. 

If we drop the condition that ¡i is surjective and consider self-mappings of K sat-
isfying (a')> (/O and (y') then we obtain the notion of endomorphisms of K/k. It is 
not hard to show that all the endomorphisms of K/k are automorphisms, provided 
K/k is normal and algebraic. But in the general case the endomorphisms of K/k 
form only a monoid, i.e. a unitary semigroup, D(K/k) with respect to the com-
position of mappings. This monoid always contains 1K, the identical mapping of K. 
As previously, D{K/k, A) will denote the set {5£D(K/k); (\/a£A)(8-a=a)}, which 
is a submonoid of D(K/k). Further, it can be proved that {a£K; (\/8£D(K/k)) 
( < 5 i s the closure of AUk with respect to the operations x +y, xy, x~x 

p 

and, if p9±0, Yx, as before. 
We can formulate Conditions (a'), (/O and (y') by saying that 5 stabilizes the 

relations x+y—z, xy=z and, for each a(Lk, x—a, i.e. 5 transforms every system 
of values satisfying any of these relations into a system of values satisfying the same 
relation, but nothing is required for systems of values not satisfying these relations. 

In both of these manners we have a particular case of the following general 
situation: given a relational system, i.e. a base set A (here A=K) and some rela-



M. Krasner: Abstract Galois theory and endotheory. I 

tions on it (here x+y=z, xy=z and x=a for a£k). (In the sequel relational 
systems will be referred to as structures though the term "structure" has a more 
general meaning in the literature.) We consider the group G of all permutations of 
the base set preserving the given relations and the monoid D of self-mappings of 
this set stabilizing these relations. Then in Question (a) we asked what was the set 
of relations of a certain form (in our case x=a for a^K) preserved by all <r£G 
and stabilized by all SdDl The answer was that it is the set of relations x=a where 
a belongs to the closure of A(Jk with respect to some operations arising from the 
relations x+y=z and xy=z. 

The above considerations naturally raise the idea of considering any first order 
structure E/R where J? is a set of (not necessarily finitary) relations on a base set 
E, the automorphism group alias Galois group G of E/R (consisting of all permuta-
tions of E that preserve each r £-/?), and the endomorphism monoid alias stability 
monoid of E/R (consisting of all self-mappings of E stabilizing each r£R). Then 
the question analogous to (a) is how to characterize the relations on E that are 
preserved by all a£G or that are stabilized by each <5£D, respectively. Of course, 
we want the answer be somewhat similar to that 'in the classical Galois theory. 
Therefore the answer should be (and, in fact, will be) that they are the relations 
belonging to the closure of R with respect to some appropriate operations. But, 
first of all, all such relations do not form a set because any set occurs among their 
argument sets. So, at least in the first study, we have to limit the argument sets of 
the considered relations so that we fix a set X° (of sufficiently large cardinality) 
and consider the relations whose argument sets are subsets of X°. On the other 
hand, we cannot hope in this general situation that the sets 

R(X°) = {r; rQ Ex for some XQX° and each <r£G preserves r} 
and 

R(X°) = {r; rQ Ex for some X Q X° and each S£D stabilizes r} 

are the closures of R with respect to some operations on the base set E arising from 
the relations r£R. A priori, it may be hoped only that R(X°) and R(X°) are 
closures of R with respect to some set theoretical operations on relations and these 
operations do not depend on the particular choice of R. Such is the case, indeed: 
there exists a family of such operations, called fundamental operations, so that R(X°) 
is the closure (within the set of relations with argument sets included in X°) of R 
with respect to these operations while R(X°) is the closure of R with respect to a 
part of this family, called the family of direct fundamental operations. The theory 
concerning the preservation of relations by permutations of the base set and the 
Galois group is called abstract Galois theory while that dealing with the stability of 
relations by arbitrary self-mappings of E and with the stability monoid is called 
abstract Galois endotheory. Although Question (a) has the same answer for both 
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theories in the classical Galois theory, it has quite different answers in the general 
case. Question (b) in the general case asks: which permutation groups on E are 
the Galois groups of appropriate structures E/R and which monoids of self-mappings 
of E are endomorphism monoids of some structures E/R1 The answer is that any 
group and any monoid on E are such. 

Once this study with a fixed X° has been done we can introduce the classes R 
and R of all relations preserved by each o£G and stabilized by each d£D, respec-
tively, and we can study them in a non-axiomatic way. In the present paper we will 
do it roughly within the frame of Bernays—Godel axiomatic set theory albeit this 
is not the only possibility. On the deep analogy of the terminology of classical Galois 
theory, the classes R and R will be called abstract fields and abstract endofields, 
respectively. With some precaution, it is possible to consider and to study certain 
mappings between them. In particular, a bijection of an abstract field or endofield 
onto another one (with a different base set in general) which commutes with all funda-: 
mental operations is called an isomorphism. It will be proved that any isomorphism 
between abstract fields or, under certain conditions, between abstract endofields 
is of a special form called transportation of structures. After these so-called iso-
morphism theorems the notion of abstract endofield homomorphisms is also intror 
duced and a much more difficult homomorphism theorem is proved in order to 
characterize these homomorphisms. 

Let k be an abstract endofield (which may be, in particular, an abstract field), 
and let A be a subset of the corresponding base set E. Denote by k(A) the endo-
extension of k by the set of relations {x=a; a£A}, i.e., the abstract endofield 
generated by k\J{x—a; a£A}. Then k(A) does not depend on the particular choice 
of x. Such extensions k{A) of k are called its set extensions, and their study is called 
abstract Galois set theory. A theorem is proved, which describes the relations in 
k(A) in terms of A and the relations in k. As a consequence of this theorem, a family 
of partial operations on E is defined from k such that Ak={e~, (x=e)£k(A)}, the 
so-called rationality domain of k(A), is just the closure of A with respect to these 
partial operations. This result can be considered as the first step of deducing the 
answer to (a) in the classical Galois theory from that given in the general Galois 
theory. The second step is the theory of "eliminating structures'-, which will not be 
exposed in this paper. The third step starts from the main result of the second one 
and allows us to understand and to foreseee the deep reasons why Ak is the closure 

of AUk with respect to x+y, xy, x~x and \x in the classical Galois theory. 
While dealing with the theory concerning R(X°) and R(X°) then X° is of suffi-

ciently large cardinality means that card X° ^card E. In particular, when the base 
set E is finite, we can-take a finite X°. Then the fundamental operations become the 
realisations of operations in the (first order) predicate calculus with equality for 
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 as the set of object variables on the model E/R. Similarly, the direct funda-
mental operations are just the realizations of a "strongly positive" part of this 
calculus, which is generated by \J, &, 3x for x£X°, adjunctions of variables belong-
ing to Xo, equalities x¡=xj (x,, XjZX0, x^x/), and the identity. So in the general 
case the fundaméntal operations can be considered as infinitary generalizations of 
the previous finitary operations. 

Except for certain points our approach is independent from the axiom of choice, 
but this is not the cáse for the afore-mentioned theory of "eliminating structures". 

In Section 1 we give the precise notions of points, relations, structures^ etc., 
define the action of mappings of the base set on them, and introduce the Galois 
group, the stability monoid and their "invariants". The fundamental operations 
are defined and studied in Section 2. In Section 3 we study the interaction between 
mappings (and, in particular, self-mappings) of base sets and fundamental opera-
tions. In Section 4 we prove the main theorems, i.e. the equivalence and existence 
theorems, of the abstract Galois theory and endotheory, but considering only rela-
tions whose argument sets are included in some fixed set Xo such that card Xo ^ 
Scard E. In Section 5 we introduce the abstract fields and endofields, study their 
mappings and, in particular, prove isomorphism and homomorphism theorems. 
Finally, Section 6 is devoted to the abstract Galois set theory. 

Historical remarks. I found the abstract Galois theory during the summer 
vacation of 1935, submitted it to the jubelee volume of Journal des mathématiques 
purés at appliquées dedicated to J. Hadamard in 1936, and this first exposition 
[1] of the theory appeared in 1938. It is the following question that was the intuitive 
origin of this research: Let zlt..., z„ be the roots of a polynomial f ( X ) of degree 
n over some base field k, and let G be the Galois group o f f ( X ) \ how can the system 
of equations satisfied by the «-tuples (cr -z^ ...,A-Z„) (<t6G), and only by these 
«-tuples, be obtained from the rational relations among the roots zlt ..., z„? (This 
situation is somewhat obscured in the usual treatments of the classical Galois theory 
because of the use of the so-called "Galois resolvent", i.e. the replacement of the 
«-tuple (zl5 ..., z„) by a convenient linear combination of z„ 
and, in more modern treatments, because of the emphasis put on the field structure 
and the normal case.) This question led me to the fundamental operations and gave 
me the key idea to the proof of the equivalence theorem, i.e., the idea of considering 
the relation r * (cf. Section 4, later). 

This theory, as elaborated in a set theoretical frame, had certainly no precursors. 
Yet, it might be connected with some vague ideas or projects expressed before in 
much narrower contexts. A rather enigmatic phrase in the last letter by Galois 
to his friend Auguste Chevalier ("Tu sais, mon cher Auguste que ces sujets ne sont 
pas les seuls que j'aie explores. Mes principales méditations depuis quelque temps 
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étaient dirigées sur l'application à l'analyse transcendante de la théorie de l'am-
biguïté. Il s'agissait de voir à priori dans une relation entre les quantités ou fonc-
tions transcendantes quelles échanges on pouvait faire, quelles quantités on pouvait 
substituer aux quantités données sans que la relation pût cesser d'avoir lieu. Cela 
fait reconnaître tout de suite l'impossibilité de beaucoup d'expressions que l'on 
pourrait chercher. Mais je n'ai pais le temps et mes idées ne sont pas bien développées 
sur ce terrain, qui est immense") suggests that he had a vague feeling that his theory 
for roots of polynomial equations is, maybe, only a particular case of a much wider 
theory, where the polynomial relations among roots are replaced by some more 
or less arbitrary relations on convenient domains. Clearly, these domains and rela-
tions could be only as general as conceivable for him and his contemporaries. How-
ever, the mathematics of that time was not set theory but a science of magnitudes, 
i.e., of real and complex numbers and sufficiently smooth functions (in the quoted 
phrase Galois speaks, among others, of the "quantités ou fonctions transcendantes"), 
and the relations used in this mathematics were differential, functional, etc. equa-
tions and systems of equations. Some people see, in this phrase, an allusion to 
what he knew about abelian functions. But if it had been so, he would not have 
spoken of his "méditations" and he certainly would not have written "cela fait 
reconnaître tout de suite l'impossibilité de beaucoup d'expressions ..."; in fact, he 
would have spoken rather of the results known by him. 

Cayley and Silvester's theory of invariants may be considered as a vague pre-
cursor of the abstract Galois theory in some very particular case. Indeed, if A is 
an invariant of some "generic" form (i.e., its coefficients are independent variables), 
a is a value of A, and the set of all points (in some field) of all projective varieties 
for which a is the value of A is assigned to a, then this set of points is preserved 
by all elements of the projective group or some of its subgroups. So, an invariant 
A can be interpreted by the set {rAta} consisting of relations of the form rA a which 
are invariant with respect to some (very particular) groups. Remarkably enough, 
Cayley raised the problem of determining all the invariants. Yet, he could not con-
sider the definition of these groups as that of Galois groups with respect to a system 
of invariants. 

The "Galois type theories" which appeared for differential equations at the 
end of the nineteenth century (S. Lie, Picard—Vessiot, etc.) can hardly be con-
sidered as the beginning of the abstract Galois theory because they were developed, 
like the classical Galois theory, by using quite particular methods, specific for each 
case and without any more general spirit. Nevertheless they created a vague feeling 
that Galois' ideas were, in some unknown manner, applicable in a wider frame-
work. 

In some very faint sense the abstract Galois theory for arbitrary (first order) 
structures can be considered analogous to F. Klein's "Erlangener Programm" for 
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geometries (1872), though the former goes far beyond this program. Klein's main 
idea is that a geometry is a system of "all invariants" of an "arbitrary" permuta-
tion group of a "Mannigfaltigkeit" ("variety"). As no set theory existed that time 
(the first results on abstract sets were obtained by Cantor in 1873), Klein could not 
express his ideas in a precise manner. In particular, he did not give any precise 
meaning of "all invariants" of "Mannigfaltigkeit" (which seems to be a riemannian 
variety or something stronger), and his "arbitrary" groups are far from being arbi-
trary as their elements must be automorphisms of the structure of "Mannigfaltig-
keit". Anyhow, though the abstract Galois theory deals with the duality between 
permutation groups and classes of their invariant relations, it is much more than 
a simple idea of this duality. 

In my first paper [1] on abstract Galois theory the fundamental operations 
are defined almost in the same way as in this paper, but in a rather misleading man-
ner: instead of arbitrary argument sets canonical argument sets, indexed by ordinals, 
are used, whence the axiom of choice is widely used without real necessity. In later 
publications ([2] and other papers, which I do note quote) I only formulated the 
results of the theory in a clearer form by using canonical identifications (cf. Sec-
tion 3 later), but without giving new proofs because of those in [1] being easily 
adaptable to the new manner. There the essential part of the theory is developed 
for relations with a fixed, sufficiently large (i.e., of cardinality not smaller than 
card E) argument set X. The defect of this approach is that certain rather complicated 
and not very intuitive fundamental operations (called "mutations") have to be 
considered as well. That is why I return to the first manner, but without its past 
imperfections. 

I found the abstract Galois endotheory, if my memory is good, in 1964, and 
formulated it in printed form first in the paper [3] of the International Congress of 
Mathematicians, Moscow, 1966. I found the first but not-completely true version 
of the homomorphism theorem of this theory in 1966, before the above-mentioned 
congress. The gap in its proof was remarked by some my 3rd year students in 1973, 
After having tried to fill this gap unsuccessfully I found the necessary modification 
which made the theorem correct, i.e., I replaced norms by regular pseudo-norms, 
and published it in [5]. Yet, until the present paper, the abstract Galois endotheory 
(even without its homomorphism theorem) has never been published with complete 
proofs. Only some rough ideas of certain proofs were indicated in [4]. 

The idea of abstract Galois set theory (in relation with eliminative structures 
and the passage from the abstract Galois theory to the classical one) goes back as 
early as to the end of thirties. However, the proof of its main theorem was put in 
a clear form only in the first years after the second world was (1946? 1947?). This 
theorem and the characterization of rationality domains (in case of abstract fields) 
were formulated in several papers, but never with proofs. I exposed the abstract 



260 M. Krasner 

Galois theory and, after it had come to existence, the abstract Galois endotheory 
in my Seminar (1953—1959) and in my courses for 3rd year students (Clermont-Fd, 
1960—1965, and Paris, 1965—1980). 

Terminology and notations. We shall use the ordinary notations of set theory 
and mathematical logic. The set difference {x£A; x$B} will be denoted (in Russian 
manner) by A\B, though personally I prefer the notations A- -B or A~\B to 
A\B as they cannot interfere with algebraic notations. When a£A, AQA and 
<p: A—B is a mapping, the <p-image of a and A will be denoted by <p • a and <p • A, 
respectively. This will be the only mathematical use of the dot " •". The product 
of two objects, say x and y, will be denoted by xy. Similarly, the composition of 
mappings [// and (p will be denoted by cpij/ or sometimes, following Bourbaki's nota-
tion, by cpoij/. The mappings i/r C— D and cp: A—B are considered composable 
iff q>-A<^C; in this case \p(p (or \J/oq>) is the mapping A—D such that \j/(p-a= 
=[j/ -(q> -a) for every a£A. If <p\ A—B is a mapping, a£A and b=q>-a, then 
we write <p: a—b if a is an arbitrary element of A while cp: a<-*b is reserved for 
the case of fixed a. The equivalence relation {(x,y); cp-x=(p-y} on A, referred 
to as the kernel of <p in the literature, will be called the type of cp and will be denoted 
by T((p). If (p: A —B is a mapping and C is an equivalence relation oh A then cp 
is said to be compatible with C iff T(<p) is thicker than C, i.e., iff x=y (mod C) 
always implies x=y (mod T(<p)). Similarly, a mapping y: A—C is called com-
patible with a mapping /?: A—B iff it is compatible with i.e., if for every 
a£A the image y • a depends only on /? • a. 

Let F and G be two families of subsets of A and B, respectively, and suppose 
F and G are complete semilattices with respect to the union U • Consider a mapping 

F—G. This mapping is said to be additive if <P- (J X— IJ <P-X holds for 

every subfamily F of F, i.e., if commutes with the operation U. If F—G is 
additive and, in addition, F is the family of all subsets of some subset A of A, then 
4> is called A-hyperpunctual. Then we have <P • X= IJ <P • {*} for XQ A, and 

we shall write 4>-x instead of If F—G is an /4-hyperpunctual mapping 
and the image 0 • {*} of any singleton in F is a singleton (denoted by {<p • x}) 
in G, then <P is called punctual and the mapping A—B, x—cp • x is called the point-, 
mapping of <P. If q> is injective, 4> is called an injectively punctual mapping. Then <p 
induces a bijection (p° of A onto <p •A'ZB, and if is the mapping of the family 
P(A) of all subsets of A onto P{<p • A) which prolongs (p° (i.e., induced by <P), 
then clearly commutes with all boolean operations. So, if P is a subfamily of 
P{A), we have 

(J X= IJ X= U U * 
X€P X€P XZP XIP 

0 . N X = $°- N 0--3T 
XTP XIP XIP XIP 
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and, for XQA, 

<P-(A\X) = <P° • (A\X) = <p-A\q>-X = <P-A\<P-X. 

Sometimes, in order to define certain notions or to formulate certain results 
with elegance and well, we shall have to deal not only with sets but with classes 
as well. This will be done only for the sake of convenience and better understanding, 
but not for raising any question of Foundations. In fact, all we do could be done 
in the language of sets, though in a longer and more complicated way. In principle, 
the word "class" will be understood in Bernays' sense*) but in a freer and more 
naive manner of speaking. However, as it can be shown, this manner of speaking 
is only an "abuse of the language" from the point of view of Bernays' theory, since 
the existence of classes and their mappings occurring in this paper can be proved 
based on Bernaiys—Godel axioms. 

1. Relations, structures and mappings 

Let E and Xbe two sets called base set and argument set, respectively. Generally, 
for the sake of some of the proofs, we assume that E consists of at least two ele-
ments, though our results are trivially valid for a one-element base set E, too. The 
elements of Ex are called X-points while subsets of Ex are called X-relations. I.e., 
Appoints are mappings of X into E (denoted by, e.g., P: X-+E or XZ-+E) and 
.Y-relations are sets of such points. When there is no danger of ambiguity, we often 
do not indicate the argument set X. An (ordered) pair S=(E, R) is called a (first 
order) structure on E (or with base set E) provided R is a non-empty set of relations 
on E. (The argument set Xr of r£R may depend on r.) In particular, when all the 
relations in R have the same argument set, say X, then S—(E, R) is called an X-struc-
ture. By the arity of an Z-point, X-relation or .^-structure we mean the cardinal 
card X of X. We say that a structure S=(E, R) is under a set X° if XrQX° for 
all r£R. 

Let d: E-*E' be a mapping between the sets E and E'. This mapping can be 
extended to points, relations, sets of relations and structures on E in the following 
evident way: put d-P=doP (Bourbaki's notation!), d-r={d-P; P£r}, d-R= 
= {d-r\ /•£/?}, d-(E, R)=(E',d-R). In particular, when 8 is a self-mapping of 
E (i.e. E'=E), we say that S stabilizes a relation r on E (or, in other words, r is 
stable by 5) iff S-r^r. We say that a permutation a of E preserves r (in other 

*) But this does not mean that I consider the foundation of mathematics based on the Ber-
nays—Godel axioms (and, generally, based on any predicative calculus formalism) as an 
adequate one. 
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words, r is preserved by a or invariant by a) iff<r-r=r. More generally, a self-mapping 
5 of E is said to preserve r iff it stabilizes both r and its complement Ex-\r. We say 
that 5 is stabilizing or preserving on a set R of relations if it stabilizes or preserves 
•each r£R, respectively. For a structure S=(E, R) the set of all self-mappings of 
E that are stabilizing on R constitutes a monoid with respect to the composition of 
mappings. This monoid is called the stability monoid or endomorphism monoid of 
E/S (or S), and it is denoted by D(E/S) or, sometimes, by D(E/R). The endo-
morphism monoid is never empty for it always contains the identical mapping of E. 
The set of all permutations of E that are preserving on R is called the Galois group 
or automorphism group of E/S (or S) and is denoted by G(E/S) or G(E/R). 

R e m a r k 1. G(E/S) is the largest permutation group contained in D(E/S). 
Indeed, a permutation a belongs to G(E/S) iff a and <r-1 belong to D(E/S), 

whence the assertion follows. 

R e m a r k 2. Suppose R is a set of relations on E such that r£R implies 1 r = 
=Ex-\r£R. Then G(E/S) consists of the permutations that belong to D(E/S). 

This remark is a straightforward consequence of the definitions. 

Particular relations. Firstly, we mention the empty relation 0, which is the 
only relation without a unique argument set and base set. I.e., 0 can be considered 
an Z-relation on E for any X and E. The X-identity on E is Ex and is also denoted 
by I(X, E). Let C be an equivalence relation on X. Then 

IC{E) = {P£EX; (Vx£X)(\/x'£X)(x = x' (mod C)^Px = P-*')} 

is called the C-multidiagonal on E. It consists of all Appoints that are compatible 
with C. In particular, if XQX is a C-class and all C-classes but X are singletons then 

DX(E) — IC(E) = {P• Ex; ( V x x ' d X ) ( . P • x = P• xty 

is called the Z-diagonal of E. When X={x,y), 

DXti{E) = D{x,y){E) = {P£EX- P x = P y} 

is called the {x, ^-diagonal on E, and such diagonals are called simple. The relation 

1»C{E) = {Pac{E)\ T(P) = C} 

is called the strict C-multidiagonal on E, while EX\IC(E) is referred to as the 
C-antidiagonal on E. 

A relation r will be called semi-regular iff there exists an equivalence relation 
C on its argument set X such that rQIc(E) and C=T(P) for some P£r. When 
r is semi-regular then this C is unique, is denoted by T(r), and is called the type 
of r. Further, t(r)={P£r; T(P)=T(r)} is called the head of the semi-regular rela-
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tion r. If for some C, i.e. r is semi-regular and r=t(r), then r is said 
to be regular. 

An A'-point P: X—E is said to be surjective, injective and bijective if it is 
such as a mapping, while a relation r is said to be such if every Pgr is such. In 
particular, r is injective iff it is regular and T(r) is the discrete equivalence relation 
on X. 

Incase X=0 there is only one 0-point Pa(E): &—E (indeed, no two mappings 
can differ at any argument belonging to 0). Hence there are only two 0-relations: 
0 and /(0, E)={Pe(E)}. 

Let D(E) denote the monoid consisting of all self-mapping of E, called the 
symmetric monoid of E, and let S(E) stand for the (full) symmetric group of E, 
consisting of all permutations of E. For a subset A of D(E) the class of all relations 
on E that are stabilized resp. preserved by each A will be denoted by s-Inv A 
resp. p-Inv A, and will be called the stability invariant resp. preservation invariant 
of A. (Note that these classes are never sets.) When the context shows clearly what 
kind(s) of invariants is considered, the letters s or p before Inv may be omitted. 
Clearly, the mappings 4i-»-s-Inv .d and A*-*-p-ln\ A are decreasing. Further, if 
© is a family of subsets of D(E) and Inv stands for any of our two invariants, we 
have Inv( U D Inv^l. For a set X" let R(E; X°) denote the set of all 

¿ee ¿e.0 
relations on E under X°. Now the sets 

s-Inv(*°> A = s-Inv A DR(E; X°) and p-Inv(*°> A = p-Inv AC\R(E; X°) 

are called the stability and preservation invariants of A under X°, respectively. 
If R is a set of relations on E then R=s-lnv D(E/R) and p-Inv G(E/R) 

are called the stability and preservation closures of R, respectively, while 

j?(*°> = s-Imtx°) D(E/R) and = p-Inv^°> G(E/R) 

are called the stability and preservation closures of R under X", respectively. The 
main problem of the next two paragraphs is to characterize these closures in terms 
of R but without any intervention of self-mappings of E. 

2. Fundamental operations 

In order to characterize the above-mentioned closures of R in terms of rela-
tions we have to introduce certain operations acting on relations. Some of these 
operations act on sets of relations while others on single relations, but any of these 
operations results in single relations. Some of these operations are only partial, 
i.e. they are defined for (sets of) relations satisfying some prescribed conditions. 
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While defining our fundamental operations in the sequel, all relations are assumed 
to have a fixed base set E. 

I. Infinitary boolean operations: 
la. Infinitary union, lb. Infinitary intersection. Both of these operations act on 

non-empty sets R of relations, and are defined iff all r£R have the same argument 
set, say X. These operations are denoted by U • R= U r and fl • R= f ) r> and 

r£R r£R 
their results are relations with the same argument set X. 

Ic. Negation. This fundamental operation acts on any single relation r, and 
is denoted by 1 . If X denotes the argument set of r then • r=Ex\r, the comple-
ment of r in Ex, has the same argument set X. 

R e m a r k 1. The above three fundamental operations are not independent. 
Indeed, if "1 R denotes {"1 -r; r£R}, we have U R= "1(0 • 1/?) and fl R= 
= ~|(U • 1-R)- However, U and fl are independent. 

Remark 2. Two well-known properties of these operations, namieiy 
/•fl("l • r ) = 0 and rU(~l -r)=Ex, where X is the argument set of r, will be of 
relevance later. 

Remark 3. When E and X are finite then there are only a finite number of 
X-relations, whence the infinitary boolean operations are in fact the ordinary 
(Unitary) ones. 

Remark 4. We define the following preorder for sets R and R' of relations. 
Put RsR' iff there exists a surjective mapping <p: R'—R such that for every 
r'ZR' we have r'^cp-r'. A (possibly partial) operation <o, acting on sets of rela-
tions, will be said increasing if for arbitrary sets R and R' of relations RsR' implies 
co(R)Q03(/?')> provided that to is defined for R and R'. Further, an operation a> 
(possibly partial) that acts on relations is said to be increasing if for any two rela-
tions r and r' belonging to the domain of ft), rQr' implies co-rQm-r'. It is easy 
to see that the infinitary union and intersection are increasing, while the nega-
tion is not. 

II. Projective operations, which act on relations: 
Ha. Projections (or restrictions) pr x . This operation is defined for a relation 

r iff the argument set X of r contains J a s a subset. For an Appoint P: X-*E let 
(P|Af) denote the restriction of P onto X^X, and define p r x - r as {(P|X); P£r). 
This relation will also be denoted by pr£ • r, r% and, abusing the scripture, even by 
(r |Z). This fundamental operation transforms a relation with argument set X ^ X 
into a relation with argument set X. 

lib. Antiprojections (or extensions) extx.. This operation is defined for rela-
tions r with argument set XQX', and extx.-r is the cartesian product rXEx s<x. 
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With the usual identification in cartesian products, extx. • r is the set of all points 
(P, P') such that P(ir and P' is an arbitrary (Z'\A r)-point. This relation will also 
be denoted by e x t a n d 

R e m a r k 5. We can extend the operations prx and extx- to any relation r 
with an arbitrary argument set X via defining p r x - r as p r ^ n x - r and extx. -r as 
ext*u x , -r . Then we have prx p r x , =p r x n x , and extx. ext x .=ext x , u x . . 

R e m a r k 6. We have pr 0 - r={P 0 } for and p r o - r = 0 for r = 0 . 

R e m a r k 7. Both projections and extensions are increasing. 

R e m a r k 8. When relations are considered as sets of points, extensions are 
hyperpunctual mappings and projections are even punctual, if relations with a fixed 
argument set are considered. Therefore, the projections commute with U, and it 
is easy to see that the extensions commute with all boolean operations. 

R e m a r k 9. While p r J ext*,-r=r is always true, r is only a subset of 
ext* pr£ • r. If ext^prjf •/•=/• then r is said to be identical on X\X or outside 
X, and the arguments belonging to X\X are called fictitious. The operation cx= 
=ext* pr^, which preserves the argument set, is called the X-cylindrification. 
For XQX' we have Ex'=extx.-Ex and, in particular, I(X, E)=Ex=extx Ea= 
=extx-{/>„}. 

Canonical identification. Let r and r' be relations on E with argument sets X 
and X'. Let r ~ r ' mean that there exists a set X"^XUX' such that ext^- • r= 
=extx„ • r'. If this equality holds for some set X"^XUX' then it holds for every 
X"^XUX'. Consider ~ as a relation on the class of all relations on E; then ~ 
is easily seen to be an equivalence relations, i.e., ~ is reflexive, symmetric and 
transitive. As infinitary boolean operations commute with extensions, they are com-
patible with this equivalence. For we have pr£=pr|(pr£*ext*.)= 
=(pix p r f ) ext£.=pr*' ext*., whence pry • r=prx(extx- • r). Hence it is easy to 
conclude that if an JT-relation r and an Z'-relation r' are equivalent modulo ~ and 
X ^ X D X ' then prx • r=prx • r'. So projections are also compatible with this 
equivalence. Further, we have e x t - r ~ r . It is also obvious that if r and r ' have 
the same argument set X and r ~ r ' then r and r' must coincide. Therefore, for 
any X-relation r and X', there is at most one ¿"-relation equivalent to r, and there 
is certainly such an ¿"-relation if X' X. 

Relations on E can be considered modulo i.e., we may identify relations 
that are equivalent. This means that if a relation can be obtained from another 
one via omitting and adding some fictitious arguments then these two relations 
are considered the same. This identification will be called canonical. Since infinitary 
boolean operations and projections are compatible with they are meaningful 
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after canonical identification. It is trivial that extx. becomes the identical operation 
when relations are canonically identified. Further, the infinite union and intersec-
tion become defined for every set R of relations in this case. Indeed, take a suffi-
ciently large set X that includes the argument set of any r£R. Then for each r£R 
there is exactly one ¿"-relation r' such that r ~ r ' , so we can and must define U • R 
and fl • R as (J r' and H r ' , respectively. 

III. Contractive operations. 
Ilia. Contraction {cp). Given a surjection (p: X-* Y and an X-point P: X-»E 

which is compatible with <p, we can define a Y-point Q: Y-*E by the condition 
Q-y=P-x where xdtp-1 • y. The mapping that sends P to Q and maps the multi-
diagonal IT(<,)(E) onto EY=I(Y, E) will be denoted by (cp). It is easy to check 
that (cp) is injective. An .^-relation r is said to be compatible with q> iff every P£r 
(as a mapping of X into E) is compatible with <p. In this case ((p) • r= {(q>) • P; P(Lr) 
is a Y-relation. This mapping (<p), which maps the set of ^-relations compatible 
with <p into the set of Y-relations, is called the contraction (<p). This mapping is 
punctual and injective, so it commutes with the infinitary union and intersection, 
and we have (<?>)• (/ r („)(£) 0(1/-))=(<?) • {ITM(E)\r)= l((cp) • r). Clearly, cp is 
increasing. If cp: X— Y and cp': Y->-Z are surjections then (cp') • ((<p) • P) is defined 
iff P is compatible with (p'cp, and in this case ((p'<p) • P=(q>') • ((<p) • P). The same 
formula holds for relations. 

Illb. Dilatations [up]. Let ip: Y-*X be a surjection. Then for any X-point 
P: X-+E the mapping [ip]-P=P'\p: y^-P-ty -y) is a Y-point compatible with 
ip. The mapping P—lip] • P is injective and maps Ex onto the multidiagonal ITm(E). 
For an ^-relation r let [ip] • r stand for {[ip] -P; P£r}. Then [ip], called the dilatation 
[\p], is a mapping of P(EX), the set of all ^-relations, onto P{ITm(E)). Further, 
this mapping is punctual and injective. Hence it commutes with the infinitary inter-
section and union, and we have [ip]-(~\r)=ITm(E)\Jip]-r. If ip: Y-*X and 
ip'\ Z—Y are surjections then • P=[i/>'] • (OA] • P) and bp'>p]-r=[ip']-([ip]-r). 
Obviously, (ip)[ip] • r = r for every ^-relation r, and [\p](ip)-r=r for every ^-rela-
tion r compatible with \p. 

Remark 10. Every multidiagonal can be obtained by an appropriate dilatation 
from some identity. 

Note that any multidiagonal can also be obtained as an intersection of (exten-
sions of) simple diagonals. Indeed, IC{E)= f ) e x t x • Dx JE) or, up to canonical 

x = S'(C) 
identification, IC(E)= H Ac v(-£)- The strict multidiagonal lr{E) can be obtained 

x=J>(C) 
by an intersection of simple diagonals and antidiagonals. 

Contractive operations and canonical identification. Let cp: X-+ Y be a surjec-
tion and let r be an ^-relation compatible with (p. For x£X the 7X<p)-class of x 
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is a singleton, provided JC is a fictitious argument of r. If y=(p • x, 
F = y\{j>} and <p=((p\X), then <p maps X onto F, ( r \ X ) is compatible with 
(p, and ((p)-r=(qj)-(r\X)XEiy\ Thus y is also a fictitious argument of (<p)-r. 
More generally, if r is identical outside XQX, then q> is injective on X\X, (p=(<p\X} 
maps X onto F = Y\cp -(X\X), ( r |Z) is compatible with cp, (^)-(r |Z)=(((p)-/- |F} 
and (q>)-r is identical on Y\Y. So, (<p)-(r\X)~((p)-r. 

Two relations, say r and r' with respective argument sets X and X', are equiv-
alent if and only if ( i r \ x f ] x ' ) = ( r ' \ x n x ' ) and both are identical outside XilX'. 
Indeed, r ~ r ' iff extx u x , - r=ex t x u x , - r ' , and we can use the equalities {r\XC\X')= 
=(ext x u x , • r \XC\X') and {r'\XC\X')={extxux,-r'\XC\X:'). Furthermore, if r and 
r' are equivalent, r=extx-(r |XflA"). 

Let r and r' be relations with respective argument sets X and X', and let 
<p: X—Y and <p': X' — Y be mappings. The pairs (r, cp) and (r',<p') will be 
said equivalent iff r ~ r ' and, furthermore, there exists a subset X of XC\X' such 
that (<p\X)=((p'\X) and r is identical on X\X. (Note that in this case ( r | Z ) = 
=( r ' |X) and r' is identical on X'\X.) Let (ir,(p)~(r',q>') denote that (r, cp) 
and (/•', <p') are equivalent. It is easy to see that this binary relation is in fact an 
equivalence. 

Similarly, let r be an ¿'-relation, r' be an ¿"-relation, further let \ji: Y—X 
and : Y—X' be surjections. Then the pairs (r, \jj) and (r', ij/') are said to be 
equivalent iff r ~ r ' and there exists a subset X of XC\X' such that (a) -X= 

(this set will be denoted by F) and (^|F)=(iA'|F), (fi) (¡l/\Y\Y): Y \ F — 
-X\X and (ij/'\Y'\Y): Y'\Y-X'\X are bijections, and (y) r and r' are 
identical outside X. Note that if (r, \j/) and (r\ \j/') are equivalent then [ij/]-r~ 

Floatage. Floating equivalences. Free and semi-free intersections. For a bijection 
cp: X-+ Y, every ¿f-relation r is compatible with (p. Then the contraction (<p), which 
coincides with the dilatation [<p-1], is called a flotage (of arguments). A subset X 
of ¿"such that (<p\X) is the identity mapping is called an anchor set of the floatage 
{(p), while the maximal anchor set of (cp) will be called its anchor and is denoted by 
A(q>)= {x£X; <p • x=x}. The elements of A(<p) are referred to as anchor arguments. 
When considering a floatage with an anchor set X, we say that we let the arguments 
outside X float. 

Two relations, say r and r' with respective argument sets X and X', are called 
floatingly equivalent (in notation ryr') if there exists a bijection q>: X-+Y such 
that (cp) • r ~ r ' . It is easy to verify that this binary relation is really an equivalence, 
called floating equivalence. The existence of a floatage (cp) such that (cp)-r=r' is 
called restricted floating equivalence and is denoted by When we allow float-
ages with a fixed anchor set X only then we obtain the analogous notions of semi-
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floating and restricted sermfioating equivalences of anchor X (in notation r~fr' 
and resp.). 

Let r be an ¿"-relation and let XQX. It is clear that the X-projection of r 
does not change when we let the "dumb" arguments x(LX\X float. We have 
also seen that (r\X) is invariant under canonical equivalence. Therefore pr x • r = 
=pr x -r ' , provided r'. In particular, it is without changing pr y • r that 
we can let the "dumb" arguments float so that their images avoid some pre-
scribed set If it is so then the image of г by this floatage is said to be re-
gularized for X. 

Let R be a set of relations on E, and let Xr denote the argument set of r£R. 
For each r£R take a floatage (<pr) so that the sets Yr=q>r-Xr (r^R) be pairwise 
disjoint. If У is a set including U Yr then П exty (<p,) • r does not depend, 

r£R r£R 
modulo floating equivalence, on the choice of floatages (<pr) and of Y. Hence 
n exty ((pr) • r can be called the free intersection of r£R; it is determined up to 

гея 
floating equivalence. When we take Y= U Yr then П exty (q>r) • r is clearly the 

r€R 
cartesian product JJ (<pr) • r, which is equivalent to ]J r. So the free intersec-

r(R r€R 
tion is, up to floating equivalence, the (complete) cartesian product. The free inter-
section of all r£R will be denoted by П f-R. 

Given a set X and a set R of relations r on E and with argument sets Xr, the 
semi-free intersection of anchor X of R is defined as follows. Put Xr=XC)Xr and 
choose floatages (<pr) with anchor sets Xr so that XC\(pr- =0 and the sets 
(pr • {Xr\Xr), r£R, be pairwise disjoint. Further, take a set У including all <pr- Xr. 
Then f | e x t r (<Pr) • r> called the semi-free intersection of anchor X of R and denoted 

r ?R _ 

by i l ® . R, does not depend, up to semi-floating equivalence of anchor X, on the 
choice of У and that of (pr (г£Л). 

Lemma 1. Let R be a set of relations r with argument sets X„ let XrQXr, 
and put X= (J Xr. Then 

'€Я 

П ex t x pr x r . r = p r x . ( n f ) - i ? ) . r€R J 

Proof . Put Q= П ex t z pr x .f and д*=ртх-(Г\{/)• R). Let П(/> be re-

presented by П e x t x u r (<pr) r where <pr: Xr-»X,U Yr are bijections subject 
reR 

to the previous conditions. I.e., the Yr are pairwise disjoint and Y'= (J Yr is 
_ _ _ _ r£R 

disjoint from X. An AT-point P: X—E is in Q iff for every r£R (P|A"r) is a point 
such that there exists an (A,\J r)-point P'r with ((P\Xr), Pr') belonging to r. But 
this is equivalent to (<pr) • ((P\Xr), P't)£{<pr) • r and, as (<pr\Xr) is the identity map, also 
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to the existence of a yr-point P"-((pr\Xr\IR)-P^ such that (P,P r")eextXurp (<?,)• r. 
Since the sets Y

R
 are pairwise disjoint, for any set {P": Y

R
— E ; r£R} of points 

there exists exactly one point P": Y'-E such that (P"\Y
R
)=P* holds for each 

r£R. Clearly, (P, P")eext x u r (q> r ) -r is equivalent to 

(P, P'0€extXUy extx u r£<Pr) •r = extZur(?r) * r. 

Thus the simultaneous existence of all P"\ Y
T
-*E with (P, P") belonging to 

ext X u r (cpr)• r is equivalent to the existence of a single P": Y'—E such that 
(P, P ^ e e x t f y j r , (<p,)-r for every r£R, i.e., (F,P" ) belongs to f ) ext x u r , (<pr)-r— 

r g R 
= H extr (q>r) • r, which is equivalent to P€Q*. I.e., P£Q is equivalent to P^Q*, 

which completes the proof. 
The operations la, lb, Ic (U, f l , ~|), Ha, l ib (prx,extx,)> Etta and Illb 

((<p), [i/r]) are called fundamental operations. The increasing fundamental opera-
tions, i.e. all but the negation 1 , are called direct fundamental operations. Two 
miliary operations, namely IVa: (adding to any set of relation) the empty relation 0 
and IVb: (adding) the 0-identity 7(0, E ) = { P

E
} , are also considered as direct funda-

mental operations. These two miliary operations are combinations of the rest of 
the fundamental operations when we start from a nonempty set R of relations. 
Indeed, take an r£R, then 0 = r n ( l r ) and 7(0, £')=pr0-(rU("lr)). Yet, they 
are not combinations of direct fundamental operations in general. 

If r ~ r ' or ryr' (or, in particular, r ~ r ' , rx~fr' or r~fr') then each 
of r and r' can be obtained from the other by a suitable combination of direct funda-
mental operations. On the other hand if we identify the canonically equivalent 
relations, we can drop all extensions from (direct) fundamental operations. When 
passing from relations to floatingly (and even restricted floatingly) equivalent ones is 
permitted, we may fix a representative set X(c) of cardinality c for each cardinal 
c, e.g., we may put X(c)= {a; a, is an ordinal and a<<»(c)} where ©(c) denotes 
the smallest ordinal with cardinality c. (I follow Cantor's point of view rather than 
that of von Neumann. In fact, the second point of view has been adopted in my 
first paper [1] on abstract Galois theory, while the first one in all of my other 
papers.) 

When the axiom of choice is admitted, contractions become combinations of 
projections and floatages, while dilatations become combinations of extensions, 
floatages and intersections with simple diagonals. Indeed, if q>: X—Y is a surjec-
tion, for each y£Y we can choose an x(y)£X such that cp-x(y)=y. Put 
X= {*(;>); y£Y}. As {(p\%)'. X—Y is a bijection, ((<p|Z)) is a floatage, and 
(<jj). r=(cp\X) prx • r, provided r is compatible with (p. Similarly, if ^ : y—Xis a surjec-
tion, ^-«-^(x) is a mapping of X into 7 such that ij/-y(x)=x, and F={j>(x); x£X) 
then ¡¡?=(t/r|F): j(;t)—* is a bijection of F onto X. Hence [ i i s a floatage, 
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and for any ^-relation r we have 

W-r = extY&]-rn(n fl D-y,y). , ye T ysXTM) 

When the image of <p or is finite, the axiom of choice is not necessary for the 
above results. - ° 

We say that fundamental or direct fundamental operations are used below X°, 
if these operations are used only for" relations with argument sets included in X° 
and only when these operations result in relations whose argument sets are also 
included in J f 0 . I.e., in case of pr x , extx., (cp: X-~ Y) and [ip: Y-*X] the inclusions 

X'QX0 and YQX° are-also required. In particular, if .E is finite and 
these operations are used below some finite X° then they are equivalent to the realiza-
tions of operations of the predicate calculus with equality on the finite model E, 
the set of object variables being X°. Indeed, any A'-relation r on E (where XQ X°) 
can be considered as the realization of some predicate Pr=Pr(X) on E. Further, 
P,ur.=P,\/Pr., Prnr.=Pr&Pr., Plr=~\Pr, Ppry.r=(Bx1)...(Bxs)Pr where 
fo,..., Pextx,.r=Pr(X') where Pr(X') is the predicate obtained from 
Pr=Pr{X) by adding the set A " \ Z o f fictitious variables, if <p: X-~ 7is a bijection and 
X={xl7 ...,x„} then Piq>yr=Pr9) is a predicate such that P^\(p-xlt..., (p-xn)= 
=P r (x 1 , ..., x„), and we have PBx ^={x=y). The direct fundamental operations 
are equivalent to the part of predicate calculus generated by \J, &, existential quanti-
fiers, addition of fictitious variables, substitutions of object variables, the inequality 
xt7^x{ and equalities x—Xj (in particular, x—xj). In the general case we may 
consider the fundamental operations as realizations on models of an (unlimited) 
infinitary generalization of predicate calculus, and direct fundamental operations as 
that of certain "positive" part of it. 

Lemma 2. For any relation r there exists a set Rr of relations with the same 
argument set such that 

(1) every relation in Rr can be obtained from r by a combination of direct funda-
mental operations; 

(2) all the relations in Rr are semi-regular, and for each point P of an arbitrary 
relation s£Rr there exists a relation s£Rr such that sQs and Pgi(s); and 

(3) r = U -R r . 

P roof . Firstly, every multidiagonal is obtained by a successive use of direct 
fundamental operations (starting from the empty set!). Indeed, it is obtained by 
dilatation from some identity I(X, E)=extx • 1(9, E). Let P be a point of r with 
type T(P) and let rP=rC\IT{P)(E). Put jRr={rP; P€r}. Then (1) is clearly sat-
isfied. It is easy to see that rP is semiregular and of type T(P), and P€t(rp). For 
PZsZR, we have s=raQr where Q is a point of r such that P is compatible with 
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T(Q). Then T(P) is thicker than T(Q), so ITlP)(E)QInQ)(E) and rPQra=s. Put 
s=rP, and (2) is clearly satisfied. Finally, P£rPQr implies 

r={P; P € r } = U ^ i U rPQr, 
Pír Pír 

which yields U U rt—r-, i-e- (3) holds. 
Pír 

The set Rr constructed in the previous proof is called the semi-regular decomposi-
tion of r. 

Formalism of fundamental operations. If we apply a (generally infinite) com-
bination of fundamental operations to relations, we obtain an operation, which 
can be represented, by a (generally infinite) formula of the "fundamental operation 
calculus". The best way of denoting these formulas is to use (generally infinite) 
trees with finite branches. By a tree we mean an unoriented, connected graph with-
out loops, without circles (i.e. closed paths), and with a distinguished vertex, called 
its root. Let T be a tree with root r. Then for any vertex v in T (in notation, v£ T) 
there is exactly one path in T that connects v and r, provided v^r. Let w be the 
vertex next to v onthis path. Now w is called the father o f f , while v is called the son 
of w. A vertex v^r has one and only one father, while the set S(v) of sons of v 
can be of arbitrary cardinality. Vertices without sons are called extremities of T. 
We shall write if v^v' and v is on the path connecting r and «/• For a vertex 
v the set {v'; v^v'} of vertices spans a subgraph, called the subtree of T of root v. 
The number of edges in the path connecting v and r is denoted by h(v) and is called 
the height of v. In particular, h(r)=0. Let h(T)—sup h(v) be called the height 

viT 

of T, which is a non-negative integer or T is called of finite or infinite height 
according to h(T)7± <» or h(T)= «>. 

A branch of T is a maximal linearly ordered set of vertices together with the 
edges connecting them. We shall deal only with trees without infinite branches. 
I.e., we always assume that our trees have no infinite, linearly ordered sequence of 
vertices v ^ v ^ v ^ . . . . For such trees there is another invariant, the so-called 
depth, which is more important than the height. Given a tree T, a mapping v from 
its vertex set into the class of ordinals is called a depth function of T if for any vertex 
v£T we have v(v)= sup (v(«)+l) (in particular, v(v)=0 for any extremity 

«€S(B) 

of T). If a tree has a depth function then it cannot have infinite branches. Indeed, 
if r = V

0
< V

1
C V 2 < c , < . . . were an infinite branch then v(Ü0)>V(«J>V(w2)>V(V

3
)>... 

would be an infinite decreasing sequence of ordinals, which is impossible. As to 
the converse, admitting the denumerable axiom of choice, we can prove the fol-
lowing . 

Lemma 3. Any tree without infinite branches has one and only one depth function. 

2• 
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Proof . Assume that a vertex v£T is irregular in the sense that the lemma is 
not true for the subtree TB. I.e., T0 has no depth function or lias more than one 
depth functions. Then v must have at least one irregular son u. Really, if for all 

S(v) the subtree T„ has a unique depth function v„, then the mapping v„ defined by 
V0(H>)=VU(W) if w£Tu and «€S(v ) and, further, vB(v)= sup (*.(«)+ 1) is a depth 

function of Tv. As the restiction of this v„ to any Tu, u£S(v), "is unique by the 
assumption^ v„ is the only depth, function of Tv, which is a contradiction. Thus 
we have seen that any irregular vertex has an irregular son. Now, if the lemma is 
not true for a tree T, then its root r is irregular as T=Tr. Hence an irregular son 

of r, then an irregular son r2 of rlt etc. cán be chosen. I.e., the dénumerable axiom 
of choice yields the existence of a denumerable sequence r=r0 , rx, r 2 , . . . of irre-
gular vertices such that each r¡, / >0, is a son of r t - v But then r 0 < r i < r 2 < . . . con-
tradicts the fact that T has no infinite branch. 

When T is a tree without infinite branches and v is its unique depth function, 
d(T)=v(r) is called the depth of T. Any ordinal can be the depth of some tree: 
The depth of T is finite iff h(T) is finite; in this case d(T)=h(T). 

A formula is a mapping -Ffrom the vertex set of a tree T without infinite branches 
such that 

(1) F(v) is a fundamental operation provided v is not an extremity, and F(v) 
is either U or fl if S(v) is not a singleton; 

(2) for any extremity v with father w, F(v) is a relation set variable denoted by 
X(v) (with capital X) provided {w} and F(w) is U or D,and F(v) is a rela-
tion variable x(v) in all other cases. 

Note that F(u) and F(v) may coincide even for distinct extremities u and v. 
Let E be a base set. A map F' from T is called an E-formula if it is obtained 

from some formula F via replacing certain relation set variables X(v) and certain 
relation variables x(v) at all of their occurrences by some relation sets R(v) and some 
relations r(v), resp., on E. Clearly, X(u)=X(v) or x(u)=x(v) must imply R(u)— 
= R(v) or r(u)=r(v), respectively. 

Given a base set E and a formula F, let <P(F)= {F(v); v\ is an extremity of T}. 
A mapping Q of 4>(F) is called the system of values of variables of F if Q • F(v) is 
a set of relations on is with the same argument set when F(v)=X(v) is a relation 
set variable while Q • F(v) is a single relation on E when F{V)=x{v) is a relation 
variable." A mapping t(g) from the vertex set of T, í(Q): v-»t(Q; v), will be called 
á coherent valuation of F for Q if: 

(1) t(g\ V)=Q • F(v) for every extremity v of T; 
(2) if v is not an extremity then t(g;v) is a relation on E; 
(3) if F(v) is U or D, v' is an extremity, and F(v')=X(v') then 

e.F(v)=F(v).(e.F(v')); 
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(4) in any other case when F(v) is U or D, all the Q • F(v'), v'd S(v), have the 
same argument set and Q • F(v)— U (Q • F(v')) or Q-F(V)= f ) (Q • F(V')\ 

O'€S(R) »-ESI») 

respectively; 
(5) if F(v) is "1, p r | , ext*., (cp: X—Y) or [\j/: Y—X] then S(v) is a singleton 

{u} and Q • F(u) is an ¿"-relation such that, in case F(v)=(cp), Q • F(u) is compatible 
with cp, and, in all cases, Q • F(v)=F(v) • (Q • F(u)). 

Given Q, an easy induction on v(v), T, shows that there is at most one such 
coherent valuation t(e). 

It is possible to define the fundamental operations for formulas. Let U be a 
set of formulas (or ^-formulas), and let rF denote the root of the formula F£ U. 
We construct a new formula F ° = U U or F°= D U, resp., via taking a new root r°, 
adding a new edge (r°,rF) to every F€ U, and putting F°(r°)= U or i r 0 ( r ° ) = n , 
respectively. Note that S(r°)={rF; F£U} and each F becomes F^. If J7 is a for-
mula or ^-formula and co is one of the operations "1, p r f , ext*., (<p: X—Y), and 
[\Jf: Y—X] then the formula (or ^-formula) a> • F is constructed so that we join 
a new root r° with the root r of F by a new edge (then r becomes the only son of r°) 
and we put (co • F)r=F and (co • F)(r°)=co. It is easy to verify that if Q

F
 is the 

value of $(F), FZ U, and Q is the value of <P(U £/) or 0(0 U), respectively, 
such that we have (el^(F))=e J ? for every F£U, then (UC/)(e) resp. (DC/)(e) 
is defined iff all the F(Qf), F £ U , are defined and U resp. D is applicable to 
{F(Q

F
)I F ^ U } . If this is so then we have (Ui / ) (e )= U  F

( 6 F ) and ( f l i / ) ( e )= 
FIU 

= H F(6F)- If co is one of the operations ~l, p r i , extx-, (<p), and and Q is a value 
F€l7 

of 0(F) then (co • F)(Q) is defined iff F(Q) is defined and co is applicable to it. In 
this case we have (co • F)(Q)=CO • F(Q). 

The formalism can be defined modulo canonical identification, too. Then ext 
disappears and the results of the rest of fundamental operations are always defined 
for arbitrary relations and, for U and D, for arbitrary sets of relations. Indeed, we 
only have to consider relations and operations modulo canonical identification and 
then to replace (cp) • r, where cp: X—Y is a surjection, by (<p)(prx ext*r • rf)IT(^(E)) 
where X, is the argument set of r and X' includes XrUX. 

3. Fundamental operations and mappings 

Let eo(...) be one of the considered fundamental operations. We denote by 
£ an arbitrary value of its argument, which may be a set of relations (for la, lb) or 
a relation (for 13, Ila, lib, Ilia, Illb) or nothing (for IVa, IVb). Let d: E-E' be 
a mapping from the base set E into another set E'. We say that co commutes with 
d if for any £ (with base set E) to is defined for d-£ provided it is defined for <?, 
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and d• (ü(£)=(ü(d• £). We say that co sefrd-commutes with d if m(d- £) is defined 
jvhen tű((J) is,; and d• co(^)^(o(d• £). 

P ropos i t i on 1. (1) Every fundamental operation commutes with any bijection. 
(2) Every direct fundamental operation semi-commutes with any mapping. 
(3) More precisely, the infinitary union, projections, contractionsdilatations, and 

the addition of 0 and Ia(E) commute with all mappings, the infinitary intersection 
commutes only with injections, and extensions commute only with surjections. 

• Proof . As every mapping d of the base set preserves the argument sets of 
relations, it is clear that if any of the operations la, lb, Ic, Ila, lib, Mb, IVa, and 
IVb is defined for some value £ of its argument then it is also defined for d • If 
cp: X^~Y is a surjection and P: X—E is compatible with q> then d • P is also 
compatible with <p, where d: E-+E' is an arbitrary mapping from E. Indeed, for 
x£X, (d- P) • x=d • (P • x) depends only on P • x, which depends only on cp • x. 
Therefore, if an ^-relation r is compatible with (p then so is d • r, i.e., (cp) • r being 
defined implies that ((p)-(d-r) is also defined. So the preliminary condition on 
commutation and semi-commutation is always fulfilled. , 

Let us compute: 

d-(UR) = d-{P-,{3r£R)(Per)} = {d-P; (3r £*)(>€/•)}= 

= {Q; (3sed-R)(Q£s)} = 0 (d-R). 

For XQX and an ¿"-relation r we have 
; d-(r\X) = d-{(P\X); Per}= { d - № ) ; P€r} = {(d-P\Xy, P£r} = 

= {(Q\Xy,Qed.r} = (d-r\X), i.e., d-prx r = pix(d • r). 

If P: X-+E is an Appoint compatible with the surjection q>: X-*-Y then (q>)-P 
is the mapping Y^E, y-»P-x where (p-x—y. So, d• ((<p) • P) is the mapping 
y-~d-((((p)-P)-y)=d-(P-x)=(d-P)-x, where (p-x=y. Thus d-((<p) P ) = 
<=(<p)-(d- P), and, if r is an ¿"-relation compatible with cp, we have 

d • ((<?) • r) = d • {(<p) • P ; P£r} = {(<p) • (d • P); P€r} = 

= № Q; Q£d r} = (cp).(d-r). 

When \Jt: Y—X is a surjection and r is an ¿'-relation, 

d • № - r ) = d . W - P - , P£r) = {do(PoiP); Pgr} = {(doP)óiJ/; Pgr} = 
={Q°<l>-,Q€d.r} = [<l,].(d.r]. 

It is clear that 0 and /(0, E) depend on no argument, d • 0=0, and d • /(0, E)= 
=7(0, E). 
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If jR is a set of AT-relations, we have 

d-(r\R) = d-{P-, (VreÄ)(Per)} = { d . P ; (Vr€Ä)(P6r)}. 

Since Pgr implies d-P£d-r, Q£d-(C\R) implies Q£d-r, for each r£R, i.e., 
-(d-R). The converse implication d-P£d-r^>P£r holds for all rQEx 

iff d is injective. Therefore the equality d • (C\R)= - (d • R) holds for any set R 
of Z-relations only if d is injective. 

Let r be an ^-relation and let I ' d I , i.e., Then d-extx.r= 
=d-(rXEx'^x)=(d-r)X(d-E)x^xQ(d-r)X(E')x,^x=extx. (d-r) and we have the 
equality d-extx. r=extx. (d-r) (even for only one arbitrary r ^ 0 ) iff d is surjec-
tive. This proves (3). Now (1) and (2), except the case of are consequences of (3). 
But if s: E—E' is a bijection then it commutes with all the Boolean operations, 
so, in particular, with the negation : r—Ex\r. The proof of Proposition 1 is 
complete. -

Applying Proposition 1 to the particular case E=E' we obtain 

C o r o l l a r y 1. (1) Every fundamental operation commutes.with any permutation 
of the base set. 

(2) Every direct fundamental operation semi-commutes with any self-mapping of E. 
(3) The infinitary union, projections, contractions, dilatations, and the addition 

of 0 and Ie(E) commute with all self-mappings of E, the infinitary intersection com-
mutes only with its self-injections, while the extensions commute only with its self-
surjections. 

P r o p o s i t i o n 2. Let a be a permutation of E, let R be a set of relations on E, 
and assume that a fundamental operation co is applied to a subset or element I; of R. 
(It is a subset when co= U or co= D, and it is an element otherwise.) If a is pre-
serving on R then a preserves co(£). 

P r o o f . As <T and co commutes with a, we have a• co(^)=co(a • £)= 
=a>(£), indeed. 

P r o p o s i t i o n 3. If 5 is a self-mapping of E stabilizing on a set R of relations 
and if 03 is an increasing fundamental operation semi-commuting with 8 which is appli-
cable to a subset or element £ of R then 8 stabilizes co (<!;). -

P r o o f . Indeed, we have 8 • a>(£,)Qco(8 • £). Further, if £ is a set of relations, 
<p: r—S-r (r£%) is a surjection of £ onto <5 • £ such that cp • r=8-r^r for all 
rg£. Hence When £ is a single relation, S-£QTherefore, as co is 
increasing, we have co(8 • £)Qa (£) and 8 • co(£)Qco(S • £), whence <5 • co(£)Qco(£). 
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C o r o l l a r y 2. Let m be a fundamental operation which is applicable to a subset 
or element £ of a set R of relations on E. If a self-mapping 5 of E is stabilizing on R 
then it stabilizes co(0-

It follows from the preceding results that for any set AQD(E) of self-mappings 
of E, s-Inv A is closed with respect to all direct fundamental operations. I.e., if a 
direct fundamental operation a> is applied to an element or a subset £ of s-Inv A 
then a>(£) belongs to s-Inv A. Similarly, s-Inv(XO) A is closed with respect to these 
operations below X°. In particular, the same closedness is true for R and Rm, 
where J? is a set of relations on E. If AQ S(E) is a set of permutations of E then 
p-Inv A is closed with respect to all fundamental operations, and so is the preserva-
tion closure R of a set R of relations on E. Similarly, p-Inv(*0) A and are 
closed with respect to all fundamental operations below X°. 

4. Equivalence and existence theorems of abstract Galois theory and endotheory 

Let X° be a set and let J? be a set of relations under X°. I.e., the argument sets 
of relations in R are subsets of X°. The set R is said to be logically resp. directly 
closed below X° if it is closed with respect to all fundamental resp. all direct funda-
mental operations below X°. If F is a logically or directly closed family of sets of 
relations on E then the intersection p| R of this family is also logically or directly 

closed, respectively. If R is a non-empty set of relations on E then the family of all 
relation sets that include R, are under X° and are logically resp. directly closed is 
not empty as it contains Rm, the set of all relations on E under X°. The intersec-
tion Rf0) resp. R f f i of this family is called the logical resp. direct logical closure 
of R below X°. Rf0) and RfP are the smallest relation sets (on E) under X° that 
are logically and directly closed, respectively. Let S=(E, R) and S'=(E, R') be 
two structures on E so that both R and R' be under X°. (In this case S and S" are 
said to be structures under X°.) We say that S and S" are equivalent resp. directly 
equivalent below X° if Rf0)=R'fm resp. Rffi=R'Jf\ Generally, these equiv-
alences depend on X°. Yet, as it will be shown, they do not depend on X° when 
card Z°^card E is assumed. Indeed, our main purpose in this paragraph is to 
prove the following four theorems, in which card Z°Scard E is always supposed. 

Equ iva lence theorem of abs t r ac t Ga lo i s endo theo ry . Let S and S' 
be structures under X° and assume that card X° s ca rd E, where E is the common 
base set of these structures. Then S and S' are directly equivalent i f f DE/S=DE/S.. 

Equiva lence theorem of abs t r ac t Ga lo i s theory . Lets and S' be two 
structures unde:r X0 on E where card Jf0Scard E. Then S and S' are equivalent i f f 
Gejs—GEJS'-
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E x i s t e n c e t h e o r e m of a b s t r a c t G a l o i s e n d o t h e o r y . For any semigroup 
D of self-mappings of E, if D contains the identical mapping \B and X° is a set with 
card Af'Scard E then there exists a structure S under X° on E such that D=Dm. 

E x i s t e n c e t h e o r y of a b s t r a c t G a l o i s t h e o r y . Let G be an arbitrary 
permutation group on E and let X° be a set with card Af°^card E. Then there exists 
a structure S under X° on E such that =GS/B. 

P r o o f of equivalence and existence theorems of abstract Galois endotheory. 
(a) Consider R

M

=s-Inv(*0) D
E/S

. This set is directly closed below X°, so it con-
tains Hence D

E / Q
¡ 2 D

E / S
 where Q stands for RFFI. As Q ^ R , we also have 

D e i s = D e / r ^ D e / q , i.e. D
E / Q

= D
E / S

. Therefore if S and S' are directly equivalent 
below X°, i.e. R?P=R'}p, then D

E / S
= D

E / S
. . 

(b) Let D be a submonoid of D(E). For an X-point P on E the set D P= 
= {8-P; 5£D) is called the D-orbit of P. Every Z>-orbit is stabilized by all 8eD, 
as S-(D-P)=SD-PQD-P. It is also clear that any d£D stabilizes every union 
of £>-orbits. Conversely, assume that each ő£D stabilizes a relation r. Then, for 
any P£r , we have 

{P} = {l£.P}i£>.P={<5.P; <5€i>}= (J {á-PjE U S-rQ U r = r, 
SÍD SÍD SÍD 

i.e., {P}^D-PQr. By forming unions we infer that 
r= U W i U í - í i U r = r, 

Pír Pír Pír 

i.e., r= (J D-P. Hence every relation stabilized by D is a union of certain Z)-orbits. 
Pír 

The set of all relations under X0 that are stabilized by D will be denoted by 
•RjJ0*. It is clear that the endomorphism monoid of E/Rfg0* includes D. 

If P : X-*E is a surjective point then the mapping D ( E ) — D ( E ) , <5—(5 • P 
is injective. If card X°^card E then there exist surjective Appoints P with 
If 8 stabilizes the D-orbit of such a point P then 8 must belong to D. Indeed, 
8 - ( D ' P ) = 8 D - P , 8-P=S-(1

E
-P)£S-(D-P), SO S$D would imply D-P§D-P, 

i.e., 5 would not stabilize D - P . This means that, denoting R ^ by Q , Ő $ D
E / Q

, 

i.e. D
E
/ Q = D , which proves the existence theorem of abstract Galois endotheory. 

(c) As card X° ̂ ca rd E, there is a bijective point P: %—E under X°, i.e. 
Let us fix such a point P arbitrarily. Let P : X—E be another arbitrary 

point under X°, and put EP=PX and ÍP=P~1-EP. Then P^P: X-+1 is 
a mapping, which induces a surjection ePt p: X-~%P. Since P is bijective, the type 
T(sPip) of this mapping is equal to that of P. Hence P is compatible with eP P . 
For any x£X and x=sPiP-x£%P we have 

((eP,].)-P).jc = P . * = (PP~v)Px = P(P~lPx) = P{ePtP-x) = Px. 
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Note that (sP,p)-P denotes the image of P by the contraction (sP P) induced by 
the surjection sPtp: X—£P, not the composite eP PoP, which even does not 
exist in general. So, we have (ePP) • P=(P\2P) and, conversely, P=[ePjp] • (P\%P). 
As every self-mapping 5 of E commutes with projections, contractions and dilata-
tions, we also have 5-(P\XP)=(ePiP)-(S-P) and 5-P=[EPiP]-(S-P\2p). Further, 
if P is compatible with some surjection q>: X— Y then, clearly, so is 5 • P. Finally, 
if D is a semigroup of self-mappings of E, we have D -(P\%P)=(ePtp) (D-P) 
and D • P=[eP P] (D • P\%P). If, in particular, D is a monoid containing 1E , then 
the £>-orbit D-P of an arbitrary point P : X-+E can be obtained from the D-orbit 
of the fixed bijective point P by a combination of direct fundamental operations. 
If P is under X° then these operations are below X°. Therefore R(jpQ {D - P f j p : 
Indeed, every r d R ^ , which is a-union of D-orbits by (b), is obtainable from 
D-P by means of direct fundamental operations (more precisely, by infinitary 
union, projections, and dilatations) below X". Suppose D=DE/S. Then, if S=(E, R), 
we have RQR^p, whence R f f > g ( R ^ p = O n the other hand, {D • Pyjp Q 
QR^ is trivial and {D • P f f p ^ R ^ has already been proved, whence 
{D • Py*p=R(g°\ Therefore if we prove D-pQRfp then we also have R(P= 
= { D - P f j p Q R V p and R ^ J p ^ R ^ , from which the equivalence theorem fol-
lows. Indeed, if S=(E, R) and S'=(E, R') are two structures under X° with the 
same stability monoid D=DE/S=DE/S. then RiJp=R^0)=R'dfa) would mean the 
equivalence of S and S' below X°. 

(d) Now we prove D-PzR^jp via obtaining this orbit explicitly from R by 
direct fundamental operations. Firstly, we replace every r^R by the set Rr of semi-
regular relations having the same argument sets as r, which has been 
defined in Lemma 2, Section 2. Then R is replaced by the set of relations 
k= (J Rr, which is under X° provided so is R, and which has the following pro-

perties implied by the quoted lemma: 

(1) every can be derived from some r£R by direct fundamental oper-
ations; 

(2) for any P £ f £ k there exists an r ' ^ k such that r ' Q r and Pgi(r ' ) ; and 
(3) every r£R is the union U • k' of some subset k' of k. 

These three properties show that kQRfp and RQk$p, whence R<ff>= 
=k?p and it is sufficient to prove D • P£k(Jp. Therefore it suffices to prove 
D-p£R$p only for sets R of semi-regular relations under X° that have pro-
perty (2). v 

Let R be such a set of semi-regular relations and consider the relation 

r* = n f l ext*(eP,p)-r. 
r £ 8 f { l ( r ) 
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Clearly, r* is obtained from R by direct fundamental operations, whence it belongs 
to Rjp- We shall, prove that r* is precisely D • P where D=DE/S. 

First, as P£/(r) , (eP t P)-r is defined and (P\JtP)=(ePtP) -P£(ep,p) -r. Thus 
p£extg-((ePiP)-r)=extx(ePip)-r and P(Lr*. But, as r* is obtained from R by a 
combination of direct fundamental operations and all 8£D are stabilizing on R, 
every 8£D stabilizes r* and D-PQr*. 

For an arbitrary i'-point Q we have Q = Q O \
X
= Q O ( P - 1 O P ) = { Q O P ~ 1 ) O P , 

for P is injective. Hence Q=8 -P where 8 — QOP~
1

 is a self-mapping of E. There-
fore every J?-point of E is the transform of P by some self-mapping <5 of E. 

Now assume that 5$D, and let*us prove that <5• P$r*. Since 8$D=DE/R, 
there exists some r£R not stabilized by 8, i.e. 5-r%r. Therefore there is a point 
P£r such that 8-P$r. Since (2) holds for R, there exists an r'^R such that P£t(r') 
and r'Qr. Then <5 -P^r'. As the contraction (sPP), which is defined also for 6 • P, 
is injective (for points), we have 

(,§ •P\XP) = 5- {P\XP) = 8 • ((ep.p) • P) = (sP,p) • (8 • PMsP,P) • r ' 

and that {<5-.P|J?p}X.E'iNA' is disjoint from ( ( e P , P ) - r ' ) x E * \ S
P = e x t s (eP_P)-r'. 

Thus 5 • P£(8 • P \ X P ) X E * \ x p does not belong to ext* ( e P t P ) - r ' ^ r* and 8-P$r*. 
Therefore, 5 • Pdr* iff 8£D. Thus the equivalence theorem of of abstract Galois 
endotheory is proved. 

P r o o f of the equivalence and existence theorems of abstract Galois theory. 
Since Rix0) is closed with respect to all fundamental operations below X°, an argu-
ment analogous to (a) shows that if S=(E,R) and S'=(E,R') are equivalent 
below X° then GE/S=GE/S,. We have already seen (cf. Remark 1 in Section 1) that 
if a is a permutation and both a and a~x stabilize a relation r then a preserves r. 
Consequently, if a monoid G consisting of some self-mappings of E happens to be 
a group, i.e., a permutation group on E, then every er£G even preserves and not only 
stabilizes all reR^°\ Therefore R(

a
x0)=j-Inv^ G=p-lnvm G and, if card 

A^Scard E, G is the stability monoid and also the preservation monoid of E/R 
Hence for any permutation group G on E there exists a structure S—(E, R) such that 
G=GB/S, which proves the existence theorem of abstract Galois theory. 

Considering the particular case D=G and keeping the notations of (c) of the 
preceding proof we have G • (P\%p)=(ep p) • (G • P) and G • P=[ep p]-(G • P\%

P
). 

If G=GB/S then RQR^0* and, as Rix0) is closed with respect to all fundamental 
operations, R f ^ ^ R ^ . Since G • P and R^ are equivalent (and even directly 
equivalent), to prove R(x<f)=R^°) it is sufficient to show G • PZ R(x°\ 

Let S=(E, R) be a structure under X° with card A b o a r d E and let G=GE/S. 
Consider S*=(E,RD~[R)=(E,R*) where r€.R}. Then S and S*. are 
equivalent below X° (really, RQR* and R*<^Rf)) and GE/S* = GE/S. Thus it suffices 
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to prove G - P £ K F
X 0 )

, i.e., to prove G-P€RF°> under the hypothesis R = ~ \ R . In 
this case, by Remark 2 of Section 1, we have G

E / S
— D

E / S
C ] S ( E ) . AS P is bijective, 

S-8-P is injective, implying G - P = D P F ) S ( E ) - P , where D = D
B / S

. If 8 is an 
injective, surjective or bijective self-mapping of Ethen 8-Pis injective, surjective or 
bijective as well, respectively. I. e., S (E)>P is the set of all bijective ̂ -points while 
G'P is the set of all bijective points of D - P . On the other hand, R * = D - P ^ R

L

J P Q 

QR1*0* has already been proved. Hence it is sufficient to show that the set of all 
bijective points of r*=D- P can be obtained from this relation via a combination of 
fundamental operations. 

First, an v?-point Q is not injective iff there exist x, x^y, such that 
Q,'X=Q-y, i.e., iff ggextjf • jD^J,. Therefore the set of injective points of r is 

r** = r*n(-|. u Dx„) = r+n( n (l-Ac.,))-
x.yit x.yiX x^y x*y 

As we do not want to use the axiom of choice, two cases have to be handled even 
if E is infinite. 

(1) There exists no bijection from E(and also of T) onto any of its proper subsets. 
Then every injective ^-point of E is surjective and r** is the set of all bijective points 
of r*. Now r ** is obtained from r* and from simple diagonals via infinitary boolean 
operations, whence (cf. Remark 10 of Section 2 and the discussion of operations 
IV. 1-2 in the same section) r** can be obtained from r* via a combination of funda-
mental operations; which was to be proved.1* 

(2) There exist bijections from E onto some of its proper subsets. Then a set 
$ Z°) and a mapping P can be chosen so that Jt^X0. Let y be an element of 
X°\% and put X^-i 'LIf}'}. Let Q: %—E be an injective point and consider an 
arbitrary {Q} XEM. Now, if Q is bijective (i.e., surjective) then Q' -y belongs to 
E=Q- Z=(Q'\X)- X. Hence there exists an x^X such that Q'-x=Q'-y. I.e., Q' 
cannot be injective. Conversely, if Q is not surjective then there are an e£E and a Q' 
such that e$Q- Q' -y—e and Q' is injective. So when Q' ranges over the set of all 
injective points of extx, • r** then (Q' ]%) ranges over the set of all non-bijective points 
of r **. The set of injective points of extx. • r** is, visibly, 

est*- • r**fl(~l • (J extx. Dx,y). 

*) Originally I proved the equivalence theorem of abstract Galois theory without using the 
axiom of choice under the assumption card X0 Scard E+1. It was B. Poizat who found the present 
proof with card E instead of card E+1 for the case (1). P. June proved that card E can be replaced 
even by card E—L when E is finite. 



M. Krasner: Abstract Galois theory and endotheory. I 

Therefore the set of bijective points of r** is 

G. P = r*** = r**n(~| • p r , • (extjf- • r*+n(~l • U ex t X -D x , y ) ) \ 
xtX 

which is obtained from r** and also from r*=D • P via a combination of fundamen-
tal operations. This completes the proof. 

R e m a r k 1. If card Z°Scard E then we have Rm=Rp and Km=R?f\ 

Indeed, we have seen that DEl^x!>)=DE/R and GEiR(x")=GE/R. Thus the 
equivalence theorems together with the fact that R(x0) resp. RixV) is closed with 
respect to direct resp. to all fundamental operations yield 

= ( i F ^ f = jp°> and R ( p = ( R « y p = R « \ 

This means that a relation under X° belongs to R f f i iff it is stabilized by all self-
mappings of is that stabilize every r£R, and, analogously, it is in Rp iff it is preser-
ved by all permutations of E that preserve every rdR. 

R e m a r k 2. Let S and S' be structures under X°, where card X°^card E. It 
follows from the equivalence theorems that it does not depend on the particular choice 
of X° whether S and S" are (directly) equivalent below X° or not. Therefore the notion 
of equivalence and that of direct equivalence can be defined without any reference 
to a particular X° in the following way: Two structures, S and S', are said to be 
equivalent resp. directly equivalent (in notation S~S' resp. S~S') if there exists 
a set A-0 such that card Z°Scard E, S and S' are under X°, and S and S' are 
equivalent resp. directly equivalent below X°. 

In particular, if R and R' are under X° and X0' 5 X° then we have 

R<,pnR<E
x0)=Xtf0), R^HR?0) = R<X°\ 

R T } = and Rjxo-> = (R}x°>)tf°->. 
Thus a set of relations under X0', which is closed with respect to direct resp. all funda-
mental operations and its part below X°, which is also closed with respect the same 
operations below X°, mutually determine each other. More generally, if card X° s 
== card E and card X0' =?card Eand R is under x ° n x 0 ' then R(xp and R f p mutu-
ally determine each other (because any of them is characterized by and 
so do R<p and R f ' \ 

R e m a r k 3. We are going to define two preorders, the thin (alias direct) Galois 
preorder ^ and the thick Galois preorder 3 . For structures S=(E, R) and S"= <J 
=(E, R') we write S^S' resp. S^S' if there is a set X° such that c a r d Z ° S 
is card E, S and S' are under XQ and RpQR'Jf^ resp. RpQR'}x\ Note that 
f and ~ are the equivalence hulls of and S , respectively. For a structure S under 
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X° let CSf^S) and C<x0)(S) denote the ~-class and ~-class of 5, respectively. 
Then, by the equivalence theorems, the mappings C<£0)(S)—DE/s and C ^ i S ) — 
- *G e / s are injective, are decreasing with respect to thé orders ^ and and do not 
depend on the choice of X°. (Here the orders are induced by the similarly denoted 
preorders.) These mappings map and R^which do not depend on X°, 
onto the set of semigroups of self-mappings of E that contain 1B and onto the set of 
permutation groups on E, respectively. (This is an easy consequence of the existence 
theorems.) 

R e m a r k 4. Let S—(E, R) be a structure under X°, where card A^&card E, 
put D=Dm, let J? be a subset of X° with card card E, and let P: X—E be a 
bijective point. We have seen that any relation in R!ff)=R<g°)= R^ can be obtai-
ned from D • P via a combination of direct fundamental operations. (More preci-
sely, first projections, then dilatations and finally an infinitary union have to be 
applied.) 

Case of finite base set. In case E has only a finite number of elements, say m 
elements, it suffices to take a finite set X°={x1, ..., xn} with « ë m in the equiva-
lence and existence theorems. If S=(E, R) is a structure under this X" then R is a 
finite set of relations. Further, the infinitary boolean operations are, in fact, the ordi-
nary ones. So every structure can be considered as a model (with base set E) of some 
finite system Pi(Xj), . . . , PS(XS) of predicates (with no axioms). (Here each P^Xi) 
depends on a set XtQX° of object variables.) By a model (with base set E) of the 
previous system of predicates we mean a mapping r: Pi(X^)—r(Pi) ( /=1 , ..., j ) 
where r(P¡) is an ^-relation on E. This mapping will be extended, in the following 
way, to a mapping F-*r(F) from the set of all formulas F=F(P1, ..., Ps) obtained 
from Plt..., P, via the operations of the predicate calculus with equality, used below 
X°, in to the set of relations under X°. Firstly, these operations are generated by the 
following ones via superposition: 

(1) disjunction, i.e., (P,Q)-P\jQ\ 

(2) conjunction, i.e., (P, Q)-*PbQ\ 

(3) negation, i.e., P—~\P; 

(4) existential quantification, i.e., ? ( I ) - ( 3 x ) / > ( I ) where xeXQX0; 

(5) adjunction of a set of fictitious variables, i.e., P(X)—Px\X') where X<^ 
QX'QX0 and X^X is the set of fictitious variables; 

(6) floatages, i.e., P(X)—Pl(X-X) where A is a bijection of 
X—{x,(l), xl(S), ...,xi(l)} ( l s / ( l ) < / ( 2 ) < . . . < / ( r ) ^ n ) onto a subset X-X of X° 
and 
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(7) adjunction of equality predicates x=y (JC, y£X°), which may be proper 
equality predicates if x and y are distinct or the x-identity predicates x=x. 

It is not hard to see that any fundamental operation is a superposition of some 
of these seven kinds of operations. Really, U and D are iterations of disjunctions and 
conjunctions, pry is a suitable iteration of (4), contractions can be composed from 
projections and (6), and any dilatation [t/r] is a superposition of a floatage, of an exten-
sion, and of an intersection with some simple diagonals (see the discussion on the 
axiom of choice after the definition of direct fundamental operations). The above con-
siderations allow us to extend r to all formulas F(PX,..., Ps) below X° in the fol-
lowing obvious way, via induction: put 

(1) r ( P V 0 = r ( P ) U r ( 0 , 

(2) r(P&Q) = r(P)C\r(Q), 

(3) r (IP) =lr(P), 

(4) r((3Z)P(Z)) = p r x X w r ( P ( X ) ) , 

(5) r(Px') = extx, r(P), 

(6) r(Px) = (X)-r(P), 

(7) r(x = j>) = DXty if x and y are distinct while r(x — x) = 7({JC}; E) = 

Now it is clear that the set of all r(F(P1(X1), ..., PS(XS))), where F= 
= F(Tl(X1), ..., T,(XS)) ranges over all formulas of the predicate calculus with 
equality sign that depend on.the predicate variables Tx(A^), . . . , TS(X^, coincides 
with the logical closure R(p of R={r(Pj),..., r(Ps)} below X°. On the other hand, 
it is easy to see that the realizations (i.e., r-images) of the operations TV T', Tb T', 
(3x)r(A-) for x£X, T(X)-*Tx'(X') for XQX', the adjunction of x=y 
and also of "1 (x=x) are direct fundamental operations. Conversely, every direct 
fundamental operation is the realization of an appropriate superposition of these 
operations. Let us call the part of predicate calculus (below X°) generated by these 
operations strictly positive predicate calculus (below X°). Then BSjfp is the set of 
r(F(Pl, P 2 , ..., PJ) where F(Tlt ...,T,) ranges over the formulas of strictly positive 
predicate calculus (below X°) that depend on the predicate variables T^T^XD 
(i— 1,2, ..., j). So we have 

• Equiva lence t h e o r e m s fo r a f in i t e base set E. Let M=(E\ Pt(X{)-* 
— riQExi (i=l, ..., J)) be a model of a system of predicates {P£X,); i = l , 2, ..., j}. 
Then a relation r on E is of the form r(F(P1, ..., P,)) for some formula 
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F(7'1(A'1), ..., Ta(Xs)) of the predicative resp. strictly predicative calculus below X° if 
«and only if r is preserved resp. stabilized by all erg S(E) resp. d£D(E) that preserve 
resp. stabilize all rt (/=1, ...,s). (The set X° is supposed to contain all Xt and to 
have at least as many elements as E.) 

Examples of some classical structures 

1. The structure of the classical Galois theory. Let E/k be a commutative field 
•extension which is normal algebraic or algebraically closed. Consider two {x, y, z}-
relations on E, +(x,y,z) and X(x,y, z) such that P£ +(x,y, z) iff P-x+P-y= 
=P-z and P£X(x,y,z) iff (P-x)(P-y)=P-z. For e£E let (x; e) denote the 
{x}-relation on E with the property Pg(x;e) i f f P x=e. Put RX)={+(x,y, z), 
X(x, y, z)}U{(x; a); a£k}, and let A be a subset of E. We can consider the struc-
t u r e S=S0(A)=(E, a); a£A}). Then GE/S coincides with the ordinary 
•Galois group of the field extension E/k(A) while DE/S is the monoid of all isomor-
phisms of E/k (A) into E. Note that GE/S and DE/S are the same when E/k (A) is 
.algebraic. 

For f ( x l t ...,xn)€k[xlt ...,*„] let ( / = 0 ) denote the {x j , . . . , ^ - r e l a t i on 
on Esuch that an {xi, . xj-point P belongs to ( / = 0) iff f(P-xx, ...,P-xn)=0. 
Then 

+(x,y,z) = (x+y-z = 0), X(x, y, z) = (xy-z = 0) and (x;e) = (x-e = 0). 

Let 
R¿ = {( / = 0); / ( № , x2,...] = k[{xn; n€N*}]} 

•(here N* stands for the set of positive natural numbers). 
We claim that R0 and R'0 are deducible from one another by means of direct funda-

mental operations. Really, a standard argument shows that the same self-mappings of 
E stabilize RQ as R'0, whence the equivalence theorem of abstract Galois endotheory 
yields this assertion. 

The aim of the classical Galois theory, as we have seen it in the introduction, is to 
•determine the set A of all a£E that are preserved by each a£G E / k W . (Note that A 
coincides with the set A of all elements in E that are preserved by each 5gD£/ t ( i4 ).) 
It is clear that <7-5=5 is equivalent to <r-(x; 5) = (JC; 5). The abstract Galois theory 
answers this problem by describing A as follows: 

a€A iff (*;a)€(^,U{(*;a); a € ¿ } ) / = W { ( x ; a ) ; a<LA})f. 

On the other hand, the classical Galois theory says that A is the closure of k U A 
with respect to addition x+j>, multiplication xy (both defined on EXE), inversion 
jc - 1 (defined on £*=JET\{0}) and, when the characteristic p of k is not 0, forming of 
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p 
pth roots f x (defined on Ep={xp; The second result can be deduced from 
the first by means of "abstract Galois set theory", to be exposed in Section 6, and of 
the theory of "eliminative structures", to be exposed elsewhere. Although this deduc-
tion is quite complicated, it reveals deep reasons why the operations x+y, xy, JC-1 

p 
and \ x , and only these operations, occur in the above-mentioned result of the clas-
sical Galois theory. Moreover, it can be shown that {GE/k(A); AQE) is the set of all 
subgroups of G m that are closed with respect to the finite topology ("Krull topology") 
on D(E), provided Ejk is algebraic. 

2. A slightly different structure is obtained if we replace (x; e)=(x—e=0) by 
(x,y; e)=(y—ex=0). I.e., R0 is replaced by 

-RJ = {+ (*» * z)> X(*. y>z))u {(*> y;a);aek} 
and R0(A) by 

R*(A) = {(x,y;a); adA)\JB$. 

Let S*(A) stand for (£,1%(A)). Then we have i.e., S*(A)~ 
~S0(A). Indeed, 

(y-ex = 0) = pr{Xir} •((y-zx = 0)f)(z-e = 0)) 
and 

(x-e = 0) = pr{x} • ((x-ey = 0)flpr{;CiJ,j ext{x,„,Zft} • 

•((yz-t = 0)D l(y+z-t = 0)DD { y , z , t }(E))) . 
Similarly, DEisZ(A)=DEjSo(A) U {0}, where 0 denotes 2?—{0}, the zero homomor-
phism of E. 

3. Linear Galois theory. Let fc be a not necessarily commutative field, and let E/k 
be a field extension. We consider 

K L ) = {+(*,;>, z)}U {(*,;>; a); a€fc} 
and 

SlL>(A) = (E, U {(x, y, a); a£A}). 

The stability monoid DBIS^-\A) of E/S(
0

L)(A) is the semigroup AE/k(A) of all linear 
transformations k: E—E of the left vector space E over the field k(A) (the field gene-
rated by kUA), while the Galois group GE/S^HA) of E/S^L)(A) is the group of bijec-
tive linear transformations of the same vector space, i.e., it is the general linear group 
GLk(A)(E) of E over k(A). The two main questions of this theory in classical algebra 
are the following: how to determine the set A of all a£E such that every S^DE/S^^A) 
stabilizes (x,y;a); and which submonoids of DEIS^=AB/k are of the form 
DEISU-\A) for some AQE. It can be shown, in an elementary, way, that 2,—k(A). 
As regards the second question, Jacobson's density theorem yields the following 

3 
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answer. For a given e£E let (e) denote the linear transformation x—xe of the left 
vector space E/k, and put (E)={(e); e£E). Then (E) is a field with respect to the 
addition and multiplication in Am, and (E) is anti-isomorphic to E. Now, a sub-
monoid A of AB/k is of the form DE/S^ for some AQE if and only if A is a subring 
of AB/k containing (E) and closed with respect to the finite topology on D(E), the set 
of self-mappings of E. 

4. Homogeneous Galois theory. Let E/k be the same as in the first example; we 
put 

Kh) = {+(*, y, z), n(x, y, z, t) = (xy-zt = 0)}U{(x; a); ccÇk} 
and 

R&h)(A) — jR£h)U{(x;a); a£A}. 

It is easy to show that Gew»\a) and DmRw(A) are the group generated by the ordi-
nary Galois group G

E / K
(

A )
 together with the group 

(£*) = {(e): * - xe; e(LE* = £ \ { 0 } } 

of multiplications by the non-zero elements of E, and the semigroup generated by the 
ordinary stability monoid DElkiA) together with (E*). In order to describe the set A 
of all elements 5Ç.E that are preserved by every oÇ.GEiRu>\a), which is the same as 
the set of elements preserved by all let k(B) denote the perfect closure 
(in E) of the field k{B) generated by B (where BQE). Then A=ak(a~1A)= 

A}) for some (moreover, for any) non-zero element a in A, and {0} = 
= {0}. Finally, note that R^ can be replaced, up to direct equivalence, by the set 

{ ( / = 0 ) ; f€k[x!,x2,...] and / is homogeneous}. 
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