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A generalization of a theorem of Dieudonné for Ar-triangular 
set functions 

ENDRE PAP 

1. Introduction 

Although non-additive set functions occur frequently in mathematics (semi-
variations of measures with values in abstract spaces, outer measures, capacities, 
etc.), just recently are they studied in detail. In recent years several authors considered 
non-additive set functions. 

As it is well-known, the Nikodym boundedness theorem for measures in 
general fails for algebras of sets (see Example 5 . , DIESTEL, UHL [ 2 ] , p. 1 8 ) . But 
there are uniform boundedness theorems in which the initial boundedness condi-
tions are on some subfamilies of a given c-algebra; those subfamilies may not be 
ff-algebras. A famous theorem of DIEUDONNÉ [3] states that for compact metric 
spaces the pointwise boundedness of a family of Borel regular measures on open 
sets implies its uniform boundedness on all Borel sets. We shall generalize Dieu-
donné's theorem on a wider class of set functions. The class of finitely additive 
regular Borel set functions gives nothing new, because each finitely additive regular 
Borel set functions (also in the case of vector measures) is necessarily countably 
additive (KUPKA [7]). 

We take in this paper a wider class of real valued set functions, the so-called 
¿-triangular set functions ([5], [6]). We prove a generalized Dieudonné type theorem 
for this class of set functions. Using some modifications we obtain also a general-
ization of Dieudonné's theorem for semigroup valued set functions. 
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2. ^-triangular set functions 

Let T be a locally compact space and Sf a class of subsets of T such that 
First some definitions. 

De f in i t i on 1 (DINCULEANU [4], p. 303). A set function y.: i f -~R is said 
to be regular if for every A^Sf and every e > 0 there exist a compact set KczA 
and an open set Gz>A such that for every set A'^Sf, KcA'cG, we have 

Def in i t i on 2. A set function p: £"—2?+ is said to be k-triangular with 
k£(0, +=») if for every A,B^Sf, such that AC\B=® and AUBeSf, we have 

n(A)—kfi(B) == fi(ADB) p(A)+kp(B) 

a n d fi(0)=O. 
The following theorem is important for further characterization of set func-

tions which are both regular and triangular. 

Theorem 1. Let y be a ring of subsets of T. If a set function ¡x: Sf-+R is 
regular and superadditive, i.e. 

H(AUB)S p(A)+p(B) for every A, B^S?, AC\B = 0, 

then it satisfies the following condition 
(R) For every A^Sf and every number £>0 there exist a compact set KczA 

and an open set G^)A such that for every set B££P with BczG\K we have 
\n(B) |<£. 

Proof . It is enough to adapt the proof of Proposition 1 on the page 304 in [4]. 

Coro l l a ry 1. If a set function p.: y -+R (£f is a ring), fi(9)=0, has regular 
variation, where the variation |/i| is defined in the usual way, i.e. 

\fi\(E):= sup 2 №<?) 
IT A£n 

and the supremum is taken over all partitions n of E into a finite number of pairwise 
disjoint members of S f , then p satisfies condition (R). 

Proof . Since |/¿| is superadditive ([4], p. 34), we can apply Theorem 1 for 
|/i|. Then the inequality n=\n\ implies our statement. 

D e f i n i t i o n 3. A set function p: Sf-+R is said to be exhaustive whenever 
given a sequence (E„) of pairwise disjoint members of S f , lim p(E„)=0. 

R-»00 

It is obvious that a fc-triangular set function p with regular variation is itself 
regular. 
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3. Uniform boundedness theorem 

We take from now on for the class if the collection 38 of all Borel sets of a 
Hausdorff locally compact topological space T. Now we formulate the main theorem. 

Theo rem 2. Let M be a family of k-triangular set functions defined on 36 with 
regular variations. If the set {fi(0); ¡x£Jt} is bounded for every open set O, then 

{p(B)-, »aM, 
is a bounded set. 

R e m a r k 1. We shall assume in the following proofs that T is a compact 
Hausdorff space. Namely, we can replace T with an Alexandrov one point a> com-
pactification TU{co}, taking /x(co)=0 (p^Jt) . 

We easily obtain the following 

Coro l l a ry 2. Let Jt be a family of regular scalar measures defined on !S. 
If the set ; is bounded for every open set O, then 

{\n(B)\; ¡xiJt, B£&} 
is a bounded set. 

Proof . Let v(B):= |/i(JS)| (B£38, n£J t ) . It is obvious that the family & of 
all such set functions v satisfies the conditions of Theorem 2 (by Proposition 24 
from [4], p. 319, [v| = \fi\ is also regular). So we apply Theorem 2. 

In the proof of Theorem 2 we need two lemmas. 

Lemma 1. Let p. be a k-triangular set function defined on 1% with regular varia-
tion. Then fi is k-a-subadditive on each sequence of disjoint open sets (0„), i.e. 

I J - I 

Proof of Lemma 1. First we shall prove that p is order continuous on 
open sets, i.e. for each sequence (U„) of open sets such that E/,u UJ+1 (j£N) and 

f | Uj=Q, we have 
lim n(Uj) = 0. 

y —oo 

For each s > 0 there exists a sequence of compact sets (K^) such that KJCUj and 

ie/21 for 0 < k s 1 (1) f o r ^ o w 
Tl 

Then there exists n0£N such that C\ for all n^n0. Let «£«„. Then 
; = I 

n 
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we have 

. n m = »{un\ n = , ( u (u„\Kj)) s H ( U . : • • • J=i J=i 

Hence/since |/i| is ^-subadditive (i.e. \ f . i \ ( A U B ) ^ \ n \ ( A ) + k \ i i \ ( B ) for every pair A, 

# of mot necessarily disjoint sets from see [4], pp. 35—36 and p. 16) and non-
decreasing, we (.obtain by. (1) for A s 1 (for 0<A:< 1 we take k= 1) 

n(Un) s k Z \nKUJ\Kj) < 8 
j = i 

for, all Now, let (0„) be a sequence of disjoint open sets. Then we have 

t i { U O j ) ^ k z » ( O j ) + n ( (J O j ) . 
; = I j = i j=n+1 

Taking n —» we obtain 

y=l j—1 

The following lemma is given by C . S W A R T Z [ 1 2 ] as an extract from the ele-
mentary proof of the Antosik—Miskusinski diagonal theorem [1]. 

Lemma 2. Let X be a Banach space. If x^X (i,j£N) such that 

, lim Xfj = 0 (<€ TV), lim xu = 0 (j£N) 
j—-oo /-»• oo 

and ¡|jCjj|| ^<5 > 0 (i£N), then there exist a sequence (/„) of natural numbers and a 
sequence (e„) of positive real numbers such that 

"|| * W t | | = (1/2-£„)| |*WJ|, »*,•„,•„ J <= 2-%\\xiniJ\ 
k—1 

(in [12] 5 is instead of | |x,vJ). 

P r o o f of T h e o r e m 2. Firstly, let us suppose that fc = l. It suffices to prove 
that every point in T belongs to an open set O on which holds 

(2) sup {p(A): AdO (A(i@), p£J() < 

Suppose that this is not true. Then there exists a point x^T such that (2) does 
npt hold for every open set O such that xCO. We shall prove that there exists a 
sequence of pairwise disjoint open sets (E„) and a sequence (pn) from J( such that 
/1,-(£,•)>i (/'€N). For any open set O such that x£0 there exists a Borel set BczO 
and fadJt such that 

(3) , : ^ ( 5 ) > 4 + 2 sup/«({x}). 
HtJt 
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It is easy to prove that the preceding supremum is finite. Since has regular varia-
tion, by Corollary 1 there exists a compact set KczB and an open set O'czO, 
BaO' such that //i (£')-= 1 for each B'aO^K. We have by the subadditivity 
of Aii . . . 

Using the preceding inequality, the inequality ¡i1(B\K)~zl and (3), we obtain 

Hi(K) > 3 + 2 sup /¿({x}). 
- • HtM • 

|jet A'j^A'U {x}. Then the last inequality implies (directly for x£K) by the tri-
angularity of ^ (for x$K) that 

>3+sup/z({x}). 
HÍM 

By the regularity of there exists an open set U such that OzíUzí^ and f i ^ B " ) - ^ 1 
for every B"<rU\K1. The preceding inequality together with the inequality 

implies 

(4) Hi(.U) > 2 + sup ^({x}). 
; HiM 

Agáin by the regularity of ^ there exists an open set W such that {xJcWcr t / and 

(5) ftCn < 1 

for every i r c J F X f x } . 
Let H be an open set such that xZHcHcW (where H is the closure of the 

set H). Then we have 

SUp M / O + M M ) == SUp /ii(fi) + /ii({x}). 
A<zK\M BcfF\{*> 

Hence by (5) we obtain 

(6) 1 + s u p ({*})• 
VLtJi 

Let E1=U\H. Then we have E1<zO and ¿ i f ) / 7 = 0 . By the inequality 

(4) and (6) we obtain /i1(£'1)>l. Using the preceding procedure, taking in the 
inequality (3) the constant 5 instead of 4 and taking into account the facts that 
xdH and the family M is not bounded on H, we obtain open sets Et, H1 (H1<zH) 
and such that E2C\H^, x^/A and [i2(E2)>2. We have £ ,

iri£ '2=0. 
Continuing this procedure we obtain a sequence (jit) from JÍ and a sequence (E,) 

it« 
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of pairwise disjoint open sets such that 

(7) > (¡6*) . 

We shall prove that ^ (/€ N) are exhaustive on the sequence (£„) of disjoint 
open sets, i.e. 

(8) lim fii(Ej) = 0 (itN). 
eo 

Since | J Ej is an open set and |/i,| are regular, for e > 0 by Corollary 1 there 
J = I oo 

exists a compact set K'cz (J Ej such that //¡(C)<e for each i£N and each 
j=i 

oo 
C c U E\K'. Since (£,) is an open cover of K', there exists n s u c h that 

j=i 
r c | j Ej. Then we have for m ^ „ + l 

J = I 

Ht{EJ S sup nXC') s sup /i ;(C) < e (i<E N) 
С' с 

where C ' c £ m U ( U and C c Q So we obtain (8). 
i=1 >=i 

Let Xij=fii(Ej)li. We have by (8) jim x i ; = 0 (i£N). We obtain by the bound-
edness assumption of the theorem that limxf = 0 (j^N). Applying Lemma 2 for 

¿-»oo •» 

the infinite matrix (i,j£N) we obtain a sequence (/„) from /V and a sequence 
(e„) of positive real numbers such that 

(9) 2 *.vk = ( l / 2 - e „ K , „ , *=i 

(10) 2 " 4 * u . . (пбЛГ). 

Using the triangularity of ц^ (n£N) and Lemma 1 we obtain 

a.(U Eik) - „,„(£,„)- S 1 ^ ^ ) - 1 nin(Eik) (ndN). 
*=1 k=1 k=n+l 

Hence by (9) and (10) 

'n"V,„(U ё x i n i n - 1 x,„ifc S xWn/2 (ndN), k=1 t=l k=n+l 
i.e., 

f j u Eik)^^(Eln)l2 (niN). к-Л 
Then by (7) we obtain 

Hin(U Eik) iJ2 for each n€N. k=1 
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Since (J E: is an open set we obtain a contradiction with the boundedness of Qi, ) 
*=i * " 

on open sets. 
Finally, we reduce the general case k£(0, +00) to the preceding one. Namely, 

for r£(0,1] this follows from the fact that each /--triangular set function is 1-tri-
angular. Let us suppose now that ¡1/ (n£N) are ^-triangular for some k such 
that k> 1. Since for any number k such that k>\ and any /-£(0,1] there exists 
/ « £ N such that ksmr, it follows that the set functions v„, v„ = m-n„ ( « € N ) , are 
/•-triangular. Now an application of the first part to the set functions {vn} com-
pletes the proof. 

4. Semigroup valued ^-triangular set functions 

Let X be a commutative semigroup with a neutral element O. Let d: A"—[0, + 
be a pseudometric such that satisfies the following condition 

(d+) d(x+x1,y+y1) == d(x,y)+d(x1,y1) 

for all x, xx, y, X. 

Example . WEBER [ 1 3 ] has proved that for every commutative complete uniform 
semigroup there exists a family of pseudometrics which satisfy (d+) and which 
generate its uniformity. 

Let X be endowed with a pseudometric d which satisfies (d+). Now we can 
extend the definition of the regularity of a set function v: if -+X taking only in 
the Definition 1 v and "d(v(A),v(A'j)<E" instead of n and "\v(A)-v(A')\<e", 
respectively. 

The pseudometric d induces a triangular functional [8], [10] in the following way: 

f(x):=d(x, 0) (*€*). 

The functional / satisfies 
(Fx) f(x+y)sf(x)+f(y), and 

(F2) f(x+y)^\f(x)-f(y)\ for all x,y£X. 

Now we define the variation |v| of a set function v: Sf—X with v(0) = O in 
the following way: 

|v | (£) :=sup 2f(HA)) (EiS?) it A(n 
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where the sup,remum is taken over all partitions n of E into a finite number of pain-
wise disjoint members of У . It is easy to see that |v| is superadditive. 

A set function v: У said to be a semigroup valued ¿-triangular set furtc1 

tion if satisfies v(0) = O, and 

f(v(A))-kf(v(B))sf(v(AÖB))mf(v(A))+kf(v(B)) ••; .. 

for А,В£У with Л П £ = 0 . 
Now we have the following generalization of Theorem 2. 

Theo rem 3. Let ^ be a family of semigroup valued k-triangular set functions 
with regular variations defined on 38. If the set {/(v(O)); is bounded for every 
open set О, then 

{/(v(fi)); у ф , В Щ 
is a bounded set. 

Proof . We take n(B):=f(v(B)) v ^ ) and we apply Theorem 2. 

Remark 2. Diagonal theorems ([1], [8], [9], [12]) are very useful in thfe 
elementary proofs of many important theorems in functional analysis and measure 
theory. 
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