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A generallzatlon of a theorem of Dieudonné for k-triangular
set functions

ENDRE PAP

1. Introduction

Although non-additive set functions occur frequently in mathematics (semi-
variations of ‘measures with values in abstract spaces, outer measures, capacities,
etc.), just recently are they studied in detail. In recent years several authors considered
non-additive set functions. :

As it is well-known, the Nikodym boundedness theorem for measures ‘in
general fails for algebras of sets (see Example 5., DiesteL, UHL [2], p. 18). But
there are uniform boundedness theorems in which the initial boundedness condi-
tions are on some subfamilies of a given s-algebra; those subfamilies may not be
c-algebras. A famous theorem of DIEUDONNE {3] states that for compact metric
spaces the pointwise boundedness of a family of Borel regular measures on open
sets implies its uniform boundedness on all Borel sets. We shall generalize Dieu-
donné’s theorem on a wider class of set functions. The class of finitely additive
regular Borel set functions gives nothing new, because each finitely additive regular
Borel set functions (also in the case of vector measures) is necessarily countably
additive (Kupka [7]).

We take in this paper a wider class of real valued set functions, the so-called
k-triangular set functions ([5], [6]). We prove a generalized Dieudonné type theorem
for this class of set functions. Using some modifications- we obtain also a general-
ization of Dieudonné’s theorem for semigroup valued set functions.
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2. k-triangular set functions

Let T be a locally compact space and & a class of subsets of T such that ¢ .
First some definitions.

Definition 1 (DINCULEANU [4], p. 303). A set function u:% —R is said
to be regular if for every A¢¥ and every ¢>0 there exist a compact set Kc4
and an open set G5 A such that for every set 4'¢¥, KcA'CG, we have

() —pu(d)| <e.
Definition 2. A set function u:$¥—R, is said to be k-triangular with
ke(0, +0) if for every A4,BcS, such that ANB=P and AUBEY, we have
p(4)—kpu(B) = p(4UB) = pu(4)+ku(B)

and p(@)=0.
The following theorem is important for further characterization of set func-
tions which are both regular and triangular.

Theorem 1. Let & be a ring of subsets of T. If a set function ‘u: & —~R is
regular and superadditive, i.e.

w(AUB) = u(A)+u(B)_ for every A,Bc¥, ANB=20,

then it satisfies the following condition
(R) For every AcY and every number ¢=>0 there exist a compact set KC A
and an open set GO A such that for every set BES with BCG\K. we have

lu(B)| <.
Proof. It is enough to adapt the proof of Proposition 1 on the page 304 in [4].

Corollary 1. If a set function- n: & -R (& is aring), u(0)=0, has regular
variation, where the variation |p| is defined in the usual way, i.e.

[u|(E) :== SI;pA%; u() (Ee&)

and the supremum is taken over all partitions © of E into a finite number of pairwise
disjoint members of &, then p satisfies condition (R).

Proof. Since |u| is superadditive ([4], p. 34), we can apply Theorem 1 for
[#|. Then the inequality p=|u| implies our statement.

Definition 3. A set function u: ¥R is said to be exhaustive whenever
given a sequence (E,) of pairwise disjoint members of &, '}im u(E,)=0.
It is obvious that a k-triangular set function gy with regular variation is itself

regular.
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‘3. Uniform boundedness theorem

We take from now on for the class & the collection # of all Borel sets of a
Hausdorff locally compact topological space T. Now we formulate the main theorem.

Theorem 2. Let .4 be a family of k-triangular set functions defined on & with
regular variations. If the set {u(0); uc A} is bounded for every open set O, then

{u(B); pc.#, BEA}
is a bounded set.

Remark 1. We shall assume in the following proofs that T is a compact
Hausdorff space. Namely, we can replace T with an Alexandrov one point @ com-
pactification T'U{w}, taking pu(w)=0 (uc.#).

We easily obtain the following

Corollary 2. Let # be a family of regular scalar measures defined on #.
If she set {|u(O)|; u€ #} is bounded for every open set O, then

4 {|lu(B)|; uc.#, BcB)
is a bounded set.

Proof. Let v(B):=|u(B)| (BEAB, uc.#). 1t is obvious that the family # of
all such set functions v satisfies the conditions of Theorem 2 (by Proposition 24
from [4], p. 319, [v|=|yu| is also regular). So we apply Theorem 2.

In the proof of Theorem 2 we need two lemmas.

Lemma 1. Let u be a k-triangular set function defined on # with regular varia-
tion. Then u is k-o-subadditive on each sequence of disjoint open sets (0,), i.e.

u(j@l 0) = kjgu(oj).

Proof of Lemma 1. First we shall prove that u is order continuous on
open sets, i.e. for each sequence (U,) of open sets such that U;DU;,, (jEN) and

ﬁ U;=9, we have
1

j=

For each ¢=>0 there exists a sequence of compact sets (K,) such that K;cU; and

| UK {5/21 for 0<k=1 e N
Then there exists ny¢ N such that r"\ K;=0 for all n=n,. Let nzn,. Then
j=1

11
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we have

: e = Jj= Jj=
Fience, since |u| is k-subadditive (i.¢. |u|(4UB)=|u|(A)+k |u|(B) for every pair 4,
B of:not necessarily disjoint sets from 4, see [4], pp. 35—36 and p. 16) and non-
decreasing, we.obtain by. (1) for k=1 (for 0<k<1 we take k=1)

wU)'= kS IUNK) <2

for.all -n=n;. Now, let (0,) be a sequence. of disjoint open sets. Then we have

(U 0) =k ZpOp+p( U 0)
j=1 j=1 j=n+1
Taking n—c we obtain ‘
r(U 05) =k 3 u(0).
j=1 Jj=1
The following lemma is given by C. SwARTZ [12] as an extract from the ele-
mentary proof of the Antosik—Miskusinski diagonal theorem [1].
' Lém'rf)a 2. Let: X bé'q Banach space. If x;;€X (i, JEN) such that
e . i+oo

and | x| =26>0 (icN), then there exist a sequence (i,) of natural numbers and a
Sequence (g,), of positive real numbers. such that

1wl = Q2= el i, = 27 % 0 |
(in [12] & is instead of Ix; ).

Proof of Theorem 2. Firstly, let us suppose that k=1. It suffices to prove
that every pomt in T belongs to an open set O on which holds

Q) sup {£(A): ACO (AECRB), pc M} < .

Suppose that this is not true. Then there exists a point x€T such that (2) does
not hold for every open set O such that x€0. We shall prove that there exists a
sequence of pairwise disjoint open sets (E,) and a sequence () from .# such that
w;(E)>i (i€ N). For any open set 0 such that x€0 there exists a Borel set BCO
and p,€. 4 such that ’

Q. s . m(B)=4+2sup p({x}).
Y
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It is easy to prove that the preceding supremum is finite. Since p, has regular varia-
tion, by Corollary 1 there exists a compact set KCB and an open set O'cCO,
Bc O’ such that ;zl(B’)<1 for each B’cO\K. We have by the subadditivity

of py .
l‘l(K)'H‘l(B\K) i (B).

Using the preceding inequality, the inequality u,(B\K)<1 and (3), we obtain
m(K) > 3+2 sup > 1({x)-

Let K;=KU{x}., Then the last inequality implies (dlrectly for x€K) by the tri-
angulanty of pl (for x¢K) that

) 2(Ky) =3+ sup p({x})).
neEM

By the regularity of i there exists an open set U such that 0D US K, and 4, (B”)<1
for every B”c UN\K,. The preceding inequality together with the inequality

w(U) = iy (K)— 1, (UNKY)
implies

@ - - m@) > 24 sup p(x)).
. . . P peEM .
Again by the regularity of u, there exists an open set W such that {x}cWcU and

©) mB”) <1

for every B” W\ {x}.
Let H be an open set such that xc HCcHcW (where H is the closure of the
set H). Then we have :

mH) = W @D+m{xP = sup pB)+mEx)).:
BcW\{x}
Hence by (5) we obtain
O] p(H) < 1+ sup p({x}).
REM
Let E,=U\H. Then we have E;CO and E,NH=0. By the inequality
m(E)+m(H) = py (U), ,

(4) and (6) we obtain g, (E;)>1. Using the preceding procedure, taking in the
inequality (3) the constant 5 instead of 4 and taking into account the facts that
x€H and the family .# is not bounded on H, we obtain open sets E,, H, (H,cH)
and p,€4 such that E,NH,=0, x€H, and p,(E;)>2. We have E,NE,=9.
Continuing this procedure we obtain a sequence (y;) from .# and a sequence (E;)

i1*
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of pairwise disjoint open sets such that
m m(E) =i (i€N).

We shall prove that g; (i€ N) are exhaustive on the sequence (E,) of disjoint
open sets, i.e.

®) lim p(E) =0 (i€N).
Since O E; is an open set and |y;| are regular, for ¢=0 by Corollary 1 there
j=1

exists a compact set K’CGEj such that p;(C)<e for each i€ N and each
j=1 .

Cc O ENK’. Since (E;) is an open cover of K’, there exists n¢ N such that
Jj=1
K c O E;. Then we have for m=n,+1
j=1 _
HAEp) = sup m(C) = sup m(C) <& (i€EN)

where C’CE, U(U ENK’) and Cc U 'NK’. So we obtain (8).
Let x;;= p,(E )/1 We have by (8) hm x;;=0 (i€ N). We obtain by the bound-
edness assumption of the theorem that '1_1.12 x;;=0 (jEN). Applying Lemma 2 for

the infinite matrix [x;;] (i, j€N) we obtain a sequence (i,) from N and a sequence
(&,) of positive real numbers such that

n—1
(9) k;; xinik = (1/2— n)xi,‘i,,’
(10) Xiineq = 2708, %55, (nEN)

Using the triangularity of p; (n€N) and Lemma 1 we obtain

4, (kgl E,) = w (E)— :é_;l mi, (Ey)— k=§ ) w, (E,) - (rEN).

Hence by (9) and (10)

<o n-—-1 oo
(U E) = xip— 2 Xig— 2 Xig = X%i3,/2 (nEN),
k=1 k=1 k +1

ie., K
(U B = (B2 (meN).
Then by (7) we obtain '

m,( D E,) =i,/2 for each neN.
k=1



Generalization of a theorem of Dieudonné 165

Since ) E; isan open set we obtain a contradiction with the boundedness of (y; )
k=1 "
on open sets.

Finally, we reduce the general case k€(0, +<) to the preceding one. Namely,
for r¢(0,1] this follows from the fact that each r-triangular set function is 1-tri-
-angular. Let us suppose now that pu,” (n€N) are k-triangular for some k such
that k> 1. Since for any number k such that k=1 and any r€(0,1] there exists
meN such that k=mr, it follows that the set functions v,,v,=m-u, (n€N), are
r-triangular. Now an application of the first part to the set functions {v,} com-
pletes the proof.

4. Semigroup valued k-triangular set functions

Let X be a commutative semigroup with a neutral element O. Let d: X—~[0, + <)
be-a pseudometric such that satisfies the following condition

.) d@x+xy, y+y) = dx, y)+d (%, y)
for all x, x,, y, ;€ X.

Example. WeBEr [13] has proved that for every commutative complete uniform
semigroup there exists a family of pseudometrics which satisfy (d,) and which
-generate its uniformity.

Let X be endowed with a pseudometric d which satisfies (d,). Now we can
extend the definition of the regularity of a set function v: ¥ —X taking only in
the Definition 1 v and “d(v(4), v(4'))<e” instead of p and “|v(A)—v(4)|<e”,
respectively.

The pseudometric d induces a triangular functional [8], [10] in the following way :

F(x):=d(x,0) (x€X).
The functional f satisfies '
(F) f(x+y) =f()+/(), and
(F) S(x+») = 1fW—f()] for all x,yX.

Now we define the variation [v| of a set function v: & —~X with v(#)=0 in
the following way:

VI(E) = sup 3 f(+(4)) (E€#)
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where the supremum is taken over all partitions = of E into a finite number of pair-
wise disjoint members of &. It is easy to see that |v| is superadditive. '

A set function v: ¥~ X is said to be a semloroup valued k—tnangular set funic-
tion if satlsﬁes v(®)= -0, and

F(v()— kf(v(B)) f(v(AUB)) Sf(v(A))+kf(v(B))

for A, BES’ with ANB=Y.
Now-we have the following generalization of Theorem 2. .

Theorem 3. Let & be a family of semigroup valued k-triangular set functions
with regular variations defined on %. 1f the set { f(v(0)); v€ # } is bounded for every
open set O, then ’

{f(v(B)); ve¢F, Bec A}

is a bounded set.
Proof. We take u(B):=f(v(B)) (BE#, véF) and we apply Theorem 2. .

Remark 2. Diagonal theorems ([1], [8], [9), [{2]) are very useful in the
elementary proofs of many important theorems in functional analysis and measure
theory.
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