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Error bounds for certain classes of quintic splines 

S. SALLAM 

1. Introduction. Interpolation of functions by quintic splines has been extensively 
studied by many authors (see e.g. [ 5 ] , [ 6 ] and [ 7 ] ) . Recently, SALLAM [ 4 ] has presented 
some new types of quintic splines where an analysis of their corresponding error 
bounds in L2-norm was presented. Our object is to continue this study and obtain 
error bounds for these new types of interpolatory splines in //"-norm. 

In Section 2, we developed some preliminary formulas of interpolatory quintic 
splines under different continuity requirements and different given data together 
with a lacunary interpolation by quintic splines of certain functions without using 
function values. Section 3 is devoted to studying various convergence results of the 
presented interpolatory splines, namely the error bounds in L°°-norm, and it is 
shown that the order of convergence remains the same as if function values are 
considered. 

2. Construction of some quintic splines. Let 

A : 0 = x0 < < . . . < xN+1 = 1 

denote a partition of /=[0, 1]. Denote by /=2, 3, the class of quintic splines 
qs(x) such that: 

(i) qs(x)£C'(I); 
(ii) qs{x) is a quintic in each [x;, x i+1], i=0(\)N. We set /(t)(*7)=.//* and 

qf)(Xj)=qkj stand for E f f ( x j ) and E^qs(Xj), respectively. Further define ht= 
=x j + 1—x t and h=maxhl. 

We now discuss, the possibility of interpolation of some given function by ele-
ments i n ^ ® . It is well known that the following procedures are well defined accord-
ing to Theorems 1 and 2 (cf. [4]). 
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Def in i t i on 1. Given numbers/-,/", i'=0(l)AT+l a n d / 1 , i=0, N+l; there 
exists a unique quintic spline s u c h that 

=fi> 

(2.1) (*<)=/?, ¡=0(1)AT+1, 

provided that for all i. 

Def in i t i on 2. Given numbers f f , f f , /=0(1)AT+1 a n d / - , i=0, N+l, there 
exists a unique quintic spline qt(x)&N% such that 

(2.2) qfKx) = f f , i=0(l)N+\, 

to =/•, i = 0,N+l. 

We now turn to prove the following. 

Theorem 1. Given numbers/, f f , i=0(l)N+l and f f , i=0,N+\, there 
exists a unique quintic spline qs(x)£Sff\ such that 

q*(Xi) =fi, 
(2.3) q^ixd^J?, i=0(l)N+l, 

i = 0, N+l. 

Theorem 2. Given numbers f f , f f , i=0( l ) iV+l and f , i=0,N+l, there 
exists a unique quintic spline such that 

q^(xd = f f , i = 0(1) AT +-1, 

M*d = f i , i = 0 , i V + l . 

To prove the above theorems, we need the following well-known lemma (cf. [2]). 

Lemma 1. If p(x) is a quintic on [0, 1], then 

(2.5) p(x) = p(0)B0(l-x)+p(\)Bo(x)+p^(0)Bl(l -x)+p^(l)Bl(x) -

-p<8>(0)2?2(l-x)+/><3>(l)2*2(x) 
where 

(2.6) B0(x) = x, Bl{x) = (x4 — x5)/10+(3/20) (x4—x), 

B2(x) = (x s -x 4 ) /20+(x-x t ) /30 . 
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Proof of Theorem 1. In order to establish Theorem 1, one can express q,(x) 
in [xf,;ci+1] using (2.5) and x=xi+thi, O ^ / ^ l , in the following form 

(2.7) g s ( x ) = y ; . 5 o ( i - 0 + / i + i 5 o ( 0 + / i ? ^ i ( i - O + » i f i i ( 0 -

Similarly, in [ X F _ ! , JCJ qs(x) may be represented as 

(2.8) Ux)=fi-1B0(l-t)+fiB0(t)+hU9UB1(l-t)+h?_1q?B1(t)-

Straightforward calculation shows that qs(x)€C3(I) is equivalent to 

(2.9) 

(3/10) h{ _ i +(7/10) i+fcj)5j + (3/10) 1 = 2hr}1fi-1-2(hrJ1+hrl)fi+ 

+ 2ftr%1-(l/15)/ I?_ Iy?_1-(l/10)(ft?-ft?_1)y?+(l/15)ft?y?+1, i = 1(1)AT. 

In matrix form (2.9) can be written as Aq=b, where A=(au) with 

(2.10) au = 
v, = (3/7WQii+ht-J, ¿ < j , 
1, i=j, 

Clearly A is a diagonally dominant matrix and hence the quintic spline is deter-
mined uniquely. In the case of uniform distribution, (2.9) becomes 

(3/10)5?_1+(14/10)§?+(3/10)^+1 = 2h-*(fi_1-2fi+fi+1)-(h/l5)(f?„, -/?+1). 

Proof of Theorem 2. Similar to that of the previous theorem, the system 
(2.5) is now replaced by 

(2.11) 

- h r M - 1 + ( h r > i + h r 1 ) 9 i - h r 1 e , + 1 = - (3 /20)h i _ 1 ^_ 1 - (7 /20)( f t i _ 1 +ft j )^-
-(3/20)fc ly?+1-(l/30)*î_1y?_ I+(l/20)(*ï.1-fcDy?+(l/30)^>?+1, i = 1(1 )N. 

Again the matrix of coefficients is diagonally dominant. In the case of a uniform 
partition, (2.10) will take the form 

We now proceed to develop a new lacunary quintic spline, which interpolates 
the lacunary data (function values and third derivatives) midway between the knots 
and first derivatives at the knots. The problem is stated in the following theorem. 

Theorem 3. Given arbitrary numbers ft, i=0('l)JV+l; / ^ ( z , ) , i=0(1) Ni 
/»=0,3, z i=(l/2)(x i+.x i+1) and f , i=0, N+l, then there exists a unique quintic 
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spline Q ( s u c h that 

Qw(x>) = / ? . ¿ = 0(1)^+1, 
(2.12) Q(pKzd=f(p\zi), » = 0(1)N; p = 0,3, 

Q(x,)=/„ i = 0,N+1, 

provided that /»¡>/»¡-1 for all i. 

In order to establish Theorem 3, we need the following lemma (see [3]). 

L e m m a 2. If p(x) is quintic on [0,1], then 

(2.13) p(x) = p(0) A0(x)+p(l/2) A,(x)+p(l)A2(x)+p™(0) A3(x)+ 

+P®A4(x)+p'3>(l/2)As(x) 
where 

A0(x) = 4X5 — 18x4+26x3— 13x2+1, A^x) = 16(x'-2x3+x3), 

A2(x) = A0(l -x), A3(x) = 2 x 5 - 7 x 4 + 9 x 3 - 5 x 2 + x , 

A4(x) = -A3( 1 -x), As(x) = (l/6)(-2x5+5x4-4x3+x2). 

P r o o f of T h e o r e m 3. In [xt, x i + 1] Q(x) can be expressed as 
(2.14) 

Similarly in [XJ-J, x j Q(x) will be 

(2.15) Q(x) = Qi-1A0(t)+f(Zi^)Ai(t)+QiA2(t)+hl.1f^.1As(t)+ 

+ hi-1j?A4(t)+hUfi*)(zi-1)A5(t). 

In order that Q(x)€C2(I), we obtain 

(2.16) 6hr_\Qi-1+26(hrJ1+hr2)Qi-6hr2Qi+1 = 32(/ii~_2
1/(zi_1) — 

- >»f m h r ' + h r - W H m W H z d - h ^ H z ^ ) . 
In matrix form (2.16) can be written as ^4Q=b, where A=(aij) and 

(2.17) atj= I, i = j , 
./!,- = (3/13)/.?/(*?-/.?_,), i > J . 

It is clear that v,—=0 if hi^hi_1 for all i and hence A is nonsingular [1]. Thus 
Q(x) is uniquely determined. 

If the nodes are uniformly distributed on I, then (2.16) reduces to 

Si-1 - f i i + i = ( l e ^ C / c ^ - x ) - / ^ > + ( 1 0 / 3 ) /«y;1 -(fc3/i8)(/<3) fe.o - / « « ( z , » . 

The coefficient matrix is skew-symmetric and hence nonsingular if N is even. 
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3. Error bounds. The purpose of this section is to obtain error estimates for 
hese new types of interpolatory quintic and interpolation by lacunary quintic splines 
which introduced in [4] and in Section 2, in L~-norm. We follow the idea of Prasad 
and Varma [3]. 

Throughout Ktl, K'rl, etc. denote generic constants independent of the func-
tions considered and maximum mesh spacing h. However, these constants in general 
do depend in particular upon the order of various derivatives. 

In the sequel we treat, for the sake of brevity, only estimates for error bounds, 
of the quintic splines qs(x) and Q(x), respectively. Error bounds for other types 
can be handled in a similar manner. We begin with the following theorem. 

Theorem 4. Let A be an arbitrary partition of I. If f£C'(I), 1=3(1)6, then, 
for the unique quintic spline qs(x) associated with f and satisfying (2.3), we have 

(3.1) 
l$ . w (* ) - / ( r ) (* ) | - Krahl-\\f«>\\~+Kihl-'<»(fU)> r = 0(1)3; I = 3(1)5, 

(3.2) S ^ . e h * - ' ! / « « ! . , r = 0(1)3; 1=6, 

where o}(fil\ h) denotes the modulus of continuity o f / ( , ) . 

We shall prove Theorem 4 for 1=6, the proof needs the following lemma. 

Lemma 3. Let /€C6( /) , then 
(3.3) 

Proof . The condition that qs(x)£C3(I) is equivalent to the system (2.9). Using 
Taylor's formula, it can be shown that 

(3.4) 

( 3 / 1 0 ) / ¡ - I + m o m - ! + h d f i + w w Y ? + I = 2K-\fi-i-wrA+V1)/^ 

- ( i m w + h t - j w e d , ^ ¡ - i ^ + i ) , i = Hw. 
From (2.9) and (3.4), we deduce that 

( S / l O ^ - ^ - ^ . O + ^ / l O M + f c i ^ 

= (l/720)(/rf_1+Af)/<«(^i) 

which can be written as Ae=z and the entries of A are given by (2.10), e]=q]^ff> 
i=l(l)N and 

z, = (1/504) ((hi,+/.?)/(/., -i+hd)fw (id-
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Let A=I+B where . RB|L=3/7, we have е*={!+В)~1г: Hence Не8!!^^ 
S(7/4)||z|L i.e., 

le2|U ^ e f c l / ^ I U , 

where 1/288. This completes the proof of Lemma 3. 
It can be easily seen that the following identities are valid (cf. (2.6)): 

(3.5) 4 , ( 0 + 2 ^ ( 1 - 0 + 2 ^ ( 0 = t\ 

5 0 ( 0 + 6 ^ ( 0 - 6 ^ ( 1 - 0 + 6 В Д = Д 

Bo{t)+l2Bl(0+24B,(i) = 

Bo (0+202?! (0+60BS (0 = i5-

P roo f of Theo rem 4. From (2.7), it follows that 

(3.6) h№s)(x) = -h№B?( 1 - 0 + h?q?+1B?(t) + h?f?B?(l -0 + Hf?+lB?(t), 

where Bm(z)=dzBldzi, which can be written as 

(3.7) hU i s )(x) = ¿ , (0+0, (0 
where 

and 

0 = - тв"(\ - 0 + h f f ? + 1 B ? ( t ) + Л ? / , 2 5 Г ( 1 - О+Л!У?+1ВГ(0-
On using Lemma 3, we obtain 

(3.8) W i ) | S < e e f t * l / < « > | . , . ' 

where a = max \B?(z)\. 
0 3 1 3 1 1 1 W l 

Using Taylor's expansion and the identities (3.5) together with 

(3.9) /<3)(*) = ¿ ( ^ Ч х Ж к - Щ О К У - Ч ^ Ы / Ь Ш У , 
k=3 

it is not difficult to show that 

(3.10) 
ft(0 = hf/?+M tft+(Л?/2)**/-5+W/6!) [30/<e> (i/2) В? (0 + 1 2 0 Л в > Ы ^ ( 0 ] . 

Thus, (3.9) and (3.10) yield 

(3.11) . ft(i) = й?/»(*)+(й?/б!)»,(0, 

where 

(3.12) v,(0 = 30/<в>0/а)ЯГ(0+120/^e) (i;3) 2?" (0 — 120f s / w 0/x). 
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Now combining (3.7) with (3.12), gives 

(3.13) fcf(5i3>(*)-/w(*)) = AI(0+(fcf/6!)»l(i). 

It is clear from (3.12) that 

(3.14) |V<(01 ^ {ЩВ?(0!+Ш\в;'(/)|+m\f\)fax | / ( в ч*) | ^ c|]/<6>iu. 

Hence (3.13), (3.14) and (3.8) give 

Шл)(х)-/(3)(х)\ s K3ieh*\\f«>u. 

This proves (3.2) for r=3 . To prove (3.2) for r=2, observe that for 
and using Lemma 3, it follows that 

&(2)(*)-/<2)(*)l - | f № 4 t ) - f S 4 t ) ) d t + q f - f ? \ S 

Since qs(x)—f(x) vanishes at xt and there exists a point x i+1), such 
that Hence 

\qll)(x)-fM(x)\ ё / \q^(t)-f2Kt)\ dt S AT1>eft6|/(e>|„. 
* 

This proves (3.2) for r = 1. Formula (3.2), for r=0 , follows immediately by using 
a similar argument. For /=3(1)5 the proof is analogous to that of Theorem 5. 

We now turn to the derivation of error bounds for the interpolation error, 
Q(x)—f(x), and its derivatives. We begin with the following main result. 

Theorem 5. Let f£Cl(I) and A (>/8/5 h^ for all i or the partition be 
uniform. Then for the unique quintic spline Q(x) associated with f and satisfying 
(2.12), we have 

(3.15) | е< '>(х) - /< '> (х) | ^> ' - 'ш( /< '> ,Л) , r = 0(1)2; / = 3(1)5, 

(3.16) \QV(x)-flr4x)\^Kr,eh*-'\\fW\\„+h*-'o)(f<*\h), r = 0(1)2; 1 = 6. 

To prove Theorem 5, we need the following lemma 

Lemma 4. Let Д С ' ( / ) and Л ; > / 8 / 5 f o r all i, then 

(3.17) |<2(х()-/(хг)| s K ^ h n m - ' - H z b ) ^ , ft), I = 3(1)5, 

(3.18) m x ^ - K x ^ s K . h f h l d h t + h l M f ^ L , 1 = 6. 
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Proof . We will prove the lemma for /=3. The condition that Q(x)£C*(I) 
is equivalent to the system (2.16). Using Taylor's expansion, it is easy to show that 

(3.19) 6A i - 8
1 ( e i - i - / i - i )+26 ( / I r_ \ - f t r 2 ) ( a -y ; ) -6 / . r 2 ( e i + 1 - / ; + 1 ) = 

= (2/3) hi ( / ( 3 ) (tjh,) —/(3) j))+(2/3) _! ( / ( 3 ) (»/a, ¡) —/(3) (f?4, i))+ 

+(ft i/3)(/ (3 )(n1<i)-/ (3 )(z i))+(ft i-1/3)(/ (3>(»i2 , i)-/ (3 )(2 i-i)), 

where x t ^ r i l t i ^ x i + 1 , x . - o / ^ Z ; , z ^ ^ i / « , ^ * , . 

In matrix form (3.19) can be written as Ae=z with ei=Q(Xj)—f(Xj), i=l(l)N. 
Multiplying Ae=z by the diagonal matrix D=(du), dti=(I¡26)h^h^Jih2 -
the matrix ZM will be 7 + 5 with | | 5 | L < 1 if ¿ ¡> /8 /5 for all/. Since 

lei ^ I K Z + ^ - ^ I L p z L == (1/C1 — Ĥ» B—» 

It follows that 

\Q(xd-f(xd\ =§ KzWhUih - h ^ a i f M , h) 

with Ka=5/13. This proves (3.17) for 1=3. The proof is similar in the other cases. 
For equally spaced knots and N is even Lemma 4 will be modified as follows. 

Lemma 5. Let /€C'(7), then 

(3.20) \Q(xi)-f(xd\ ^ Kth'(o(fV, h), I = 3(1)5. 

Proof . We prove the lemma for 1=3. The condition that Q(x)£C2(I) and 
the partition be uniform is equivalent to (cf. (3.19)) 

< 0 . - i - / i - i ) - ( f i i + i - / i + i ) ' = (ft8/9) (Z00 Oh, i) ~ / ( 3 ) 0/3, ¡))+ 

+(h*/9) (/(3) 0/8, d ~ /(3) (n*..))+(ft3/18) (/(3) (m,i) -/(3) (^i))+ 

+ (&•/») (/(3) Oh. i) -/(3) izt _ x)). 

Or, in the matrix form Me=z, where M=(mi}) with 

-1, 
0, i = J 

1, i > j. 

Since HMxILsl for ||x|L = l, it follows that H A f - ^ L s l . Hence 

. ||e|U ^ ||M N . ^ Kzh*o>V«\ h). 

This completes the proof of Lemma 5. 
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It is well known that the following identities are valid (see [3]). 

4 > ( 0 + A ( 0 + A ( 0 = 1, 
^ ( 0 + 2 ^ , ( 0 + 2^ , (0 + 2 ^ . ( 0 = 2t, 

( 1 / 4 ) ^ ( 0 + ^ , ( 0 + 2 ^ ( 0 = t*> 

(1 /8 )^ (0 + ^ ( 0 + 3 ^ ( 0 + 6 ^ 6 ( 0 = i3. 

(1 /16)^(0 + ^ ( 0 + 4 ^ ( 0 + 12^,(0 = t\ 
Proof of Theorem 5. The proof will be carried out only for 1=3. From 

(2.14), it follows that 

(3.21) hfQ^(x) = QiAZ(t)+f(zi)A"1(t)+Qi+1AUt)+hifi
1A;(t)+ 

+hifi
1
+1Ai(t)+hVw(zi)<(t) 

which can be written as 

(3.22) hfQ™(x) = m+fi(t), 

where 
A,(0 = {Q(x^-f(x^)Al(t)+(Q{x i + 1)~f{x l +S)Al(t) , 

and 

(0 = f(xdAZ(t) +f(xi+JA'i (t)+f(zi)A'{(t)+h^KxUW)+ 

Using Lemma 4, for 1=3, we obtain 
(3.23) H(0 | ^ + h) 

where a=max {/0, /2}> I, -- max Mr (01 • 
Also it can be easily seen that 

(3.24) m(t) = /i?/ (2 )(*)+№/31)^(0, 

where 

v ;(0 = (l/8)(/(3)(f/2, ¡) - / ( 3 ) (zj)) ̂ i ' ( 0 + ( / ( s ) (th, d - Z ® fas, i ) )A i (0+ 

+ 3 (/(3* (fa, i) —/<3) (^e, i)) A'i ( t)+6 (zj) — ( f j 6 > ¡)) A£(t). 

Consequently 

(3.25) h i O l s i a * ^ / * 3 ^ ) , 
where a*=max {/l512, l5}. 

Combining (3.22) and (3.24), we have 

№2,(*)-/(2)(*))=m+ihv^it). 
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Thus 

(3.26) \Q^(x)-f^(x)\ , {k3u + + f 1 / , } c i / - , A) . 

K^hco(f3\ h). 

This proves (3.15) for r=2. The proof for r= 1 and / = 0 follows immediately 
using the fact that Qw (x)-^ {x) vanishes at and xl+1 and that Q(x)-f(x) 
vanishes at x=zi-1 and zt. 

Remark . It is worth noting that even in the absence of the function values 
at the mesh points, it is possible to construct quintic and lacunary quintic splines, 
which, for some cases, requires certain partition restrictions. Also the order of 
convergence achieved is almost the same when using function values as given data. 
We believe that this observed phenomenon may have some applications in physics 
and engineering problems as well. 
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