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Error bounds for certain classes of quintic splines

S. SALLAM

1. Introduction. Interpolation of functions by quintic splines has been extensively
studied by many authors (see e.g. [5],[6] and [7]). Recently, SALLAM [4] has presented
some new types of quintic splines where an analysis of their corresponding error
bounds in L*-norm was presented. Our object is to continue this study and obtain
error bounds for these new types of interpolatory splines in L*-norm.

In Section 2, we developed some preliminary formulas of interpolatory quintic
splines under different continuity requirements and different given data together
with a lacunary interpolation by quintic splines of certain functions without using
function values. Section 3 is devoted to studying various convergence results of the
presented interpolatory splines, namely the error bounds in L*-norm, and it is
shown that the order of convergence remains the same as if function values are
considered.

2. Construction of some quintic splines. Let
4: 0= Xo<<X) <..<XNy1— 1

denote a partition of 1=[0, 1]. Denote by %7, I=2, 3, the class of quintic splines
¢,(x) such that:

(@) g.(x)eC'(d);

(ii) g,(x) is-a quintic in each [x;, x;41], i=0(})N. We set f¥(x;)=fF and
g¥(x))=¢% stand for D*f(x;) and D*q,(x;), respectively. Further define h;=
=Xj41—X; and h=max h;. '

We now discuss.the possibility of interpolation of some given function by ele-
ments in %%. It is well known that the following procedures are well defined accord-
ing to Theorems 1 and 2 (cf. [4]).
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Definition 1. Given numbers f;, f7, i=0(1)N+1 and f!, i=0, N+1; there
exists a unique quintic spline §,(x)€%") such that

4s(x;) =1,
2.1 g ) =17 i=0(1)N+1,
g ) =1 i=0,N+l,
provided that'h:>l1.,._1, for all /. '

Definition 2. Given numbers f;, f7, 1—0(1)N+l and f;, i=0, N+1, there
exists a unique quintic spline g} (x)€%"; such that

90 =
@) IO =/ =0+,
‘ &) =f,, i=0,N+L
We now. tum to prove the following.
Theorem 1. Given numbers f;, f?, i=0(1)N+1 and f?, i=0, N+1, there
exists a unique quintic spline g (x)eSy such that
.. s -qs(x) =/
23 toT g x) =12, i=0)N+],
gP(x) =f2 i=0,N+L
Theorem 2. Given numbers f7, 7, i=0(1)N+1 and f;, i=0, N+1, there
exists a unique quintic spline §,(x)e£Sy such that
: g (x) = 17,
g@x)=f> i=0()N+1,
d(x) =f;, i=0,N+1.
To prove the above theorems, we need the followmg well-known lemma (cf. [2])

Lemma 1. If p(x) tsaquznttc on [0,1],
(2.5) -'p(x) p(0)By(1— x)+P(1)Bo(x)+p"’(0)Bl(1—x)+P‘z’(l)Bx(x)—z -

- p®(0) By(1— %)+ p (1) By(x)
where

(2.6) By(x) =x, By(x)=(x"—-x%/10+(3/20)(x* —Xx),
By(x) = (x* —x*){20+ (x —x*)/30. -
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Proof of Theorem 1. In order to establish Theorem 1, one can express g, (x)
in [x;, x;;,] using (2.5) and x=x;+1h;; 0=t=1, in the following form

2.7 35(%) = f; Bo(l = +fi+1Bo () + h}q By (1 — ) + hi @}, By (1) —
—h} fEBy(1 —8)+ b} 1 Ba(2).
Similarly, in [x;_;, x;] §,(x) may be represented as
(2.8 35(x%) = fi-1Bo(1 =) +£; B() + hi_135_1 B, (1 — )+ hi. 1‘1.31(1)—
—h}_, f?—l_B2(1 —0+h_y f2B:(1). _
Straightforward calculation shows that g (x)€C 3(1) is equivalent to
29
(3/10) ;171 +(7/10) (hi—1 + h)GE +(3/10) .}, = 2h. y fiea—2(hA+ RN fit
+ 2k fr i —(15) By f20 — (110) (W} — BE_y) SR+ (15) B} £y, i = 1(DN.
In matrix form (2.9) can be written as 4q=b, where A=(a;) with
v = (3/T) hif(hi+h; -0, i<j,
(2.10) a; =11, i=j,
= @/Dhi—of(hi+h;—), i>].

Clearly A is a diagonally dominant matrix and hence the quintic spline is deter—
mined uniquely. In the case of uniform distribution, (2.9) becomes

(3/10)g2_; +(14/10)33 +(3/10)32, , = 2h~2(fiy— 2 +fie D — (RIS, —fED)-

Proof of Theorem 2. Similar to that of the previous theorem, the system
(2.5) is now replaced by

(2.11) '
—hih i+ (W + B Y —hi M iy = —(3/20) by f21 —(T/20)(h; -y +h) £ —
—(3/200h; £ 1 —(1/30) R}y L1+ (1)20) (s — b)) 2+ (130) B} fa, i = L(DNV.
Again the matrix of coefficients is diagonally dominant. In the case of a uniform
partition, (2.10) will take the form
1= 2Gi+Giea = 320 (2, +(14/3) R+ 15 )+ (B30) (21 —f50).

We now proceed to develop a new lacunary quintic spline, ‘which mterpolates
the lacunary data (function values and third derivatives) midway between the knots
and first derivatives at the knots. The problem is stated in the following theorem.

Theorem 3. Given arbitrary numbers f}, i=0(1)N+1; f“”(z,),’ i=0(1)N,
p=0,3, z=(1/2)(x;+x;,1) and f;, i=0, N+1, then there exists a unique quintic
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spline Q(x)ESD,, such that
V) =1 i=0)N+],
212 QP (z) =fP(z), i=0()N; p=03,
o(x) =1, i=0,N+1,
provided that hy=h;_, for all i.
In order to establish Theorem 3, we need the following lemma (see [3]).
Lemma 2. If p(x) is quintic on [0,1], then

(2.13) p(x) = p(0) Ao (x) +p(1/2) 4, (x) + p(1) A2(x)+p*? (0) 45 (x) +

+p{ 4,()+p®(1/2) 45(x)
where ' .
Ag(x) = 4x° —18x2+26x3—13x2+1, A,(x) = 16(x*—2x3+x9),

Ax(x) = Ag(1—-x), As(x) = 2x°—Tx*+-9x*—5x2+ x,
A,0) =~ Ay(1=%),  Ax(x) = (1/6)(~ 225+ 5x — 4x+ D).
Proof of Theorem 3. In [x;, x;,,] OQ(x) can be expressed as
(2.14)
Q%) = Qi Ay() +(2) A1 (D + Qi 11 42 (O) + by 1A () + by [ 1 Aa (D) + BE £O(2,) A5 (0).
Similarly in [x,_,, x] Q@) will be
(2.15) o0(x) = Qi—le(t)-"f(Zi—‘l)Al(t)+QiA2(t)+hi—l Sl ds(D+
+hi 1 R AL+ B_ O (2,2 ) A5 (0).
In order that Q(x)eC*(I), we obtain
(2.16) 6h; 3 Q;-1+26(hZ A+ h D Q;—6hi 20y = 32(hi f(zi-)—
— b2 f(2))+ 10(h + b)) 2 +(1/3) (B fP(2) — Bio 1 SO (z,-).
“In matrix form (2.16) can be written as AQ=b, where A=(a;) and
' v; =—Q@[13)h}_,/(hi -k D, i<},
.17 a; =11, i=j,
o #; = (3/13)hi[(h§ — hi_,), i>j.

It is clear that v;<O if h;>h;_, forall i and hence A4 is nonsingular [1]. Thus
‘Q(x) is uniquely determined.
' If the nodes are hniformly distributed on {, then (2.16) reduces to

 Qua Qi = (6)(fi ) ~F () + (0B P~ (B18)(F (z1-) @ (2).
The coefficient matrix is skew-.symmét,ric and hence ponsingular if N is even.
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3. Error bounds. The purpose of this section is to obtain error estimates for
hese new types of interpolatory quintic and interpolation by lacunary quintic splines.
which introduced in [4] and in Section 2, in L™-norm. We follow the idea of Prasad
and Varma [3].

Throughout K, ;, K, ,; etc. denote generic constants independent of the func-
tions considered and maximum mesh spacing h. However, these constants in general
do depend in particular upon the order of various derivatives.

In the sequel we treat, for the sake of brevity, only estimates for error bounds
of the quintic splines g,(x) and Q(x), respectively. Error bounds for other types.
can be handled in a similar manner. We begin with the following theorem.

Theorem 4. Let A be an arbitrary partition of 1. If feC'(I), I=3(1)6, then,
Jor the unique quintic spline q,(x) associated with f and satisfying (2.3), we have

(3.1)
130 @) —fO @) = K, B[O+ K B0 (SO, h), r=01)3; 1=3(1)5,
(3.2 GO @)@ =K, b O, r=01)3; L=6,

where «(f®, h) denotes the modulus of continuity of fV.
We shall prove Theorem 4 for /=6, the proof needs the following lemma.

Lemma 3. Let f€C®(l), then
(3-3) 3P () =P (x)] = Ky 60| f @)

Proof. The condition that g,(x)€C3(I) is equivalent to the system (2.9). Using
Taylor’s formula, it can be shown that

G4)
(B/10)h; -y f21+(T10) (B + h) 24 B/10VR; £y = 22BN fioa —2(hih + BN fi+

+28;7 fi01— (1) BE_ 1 22— (110) (B — BE_y) f2+(/15) B fr41 —
—(720) (B + B )P (&), Ei€(ximns X540 i = 1()N.
From (2.9) and (3.4), we deduce that
(3/10)B; 1 (@F_1 —f2 D+ (T/10) (b + b - )@~ + B/10) by (31— f4D) =
= (1/720)(h}_1 + B) O ()

which can be written as 4de=z and the entries of A4 are given by (2.10), e=g:—f%,
i=1(1)N and

z; = (1/504) (B, + BD)/(hi-y + ) £ (£
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Let A=I+B where .[[B|.=3/7, we have e*=(I+B)~'z. Hence [e¥_=
=(7/4)]2].. ie., ‘
le?].. = Ko oh*( f©].,

where K, (=1/288. This completes the proof of Lemma 3.
It can be easily seen that the following identities are valid (cf. (2.6)):
, Bo(1—0)+By(1) =1,
(3.5) By(£)+2B,(1—1)+2B,(f) = £,
By(t)+6B,(1)—6B.(1 —t)+6B2(t) =P,
By()+12B,(H+24B,(1) =
- By (£)+20B, (1) +60B,(1) =
Proof of Theorem 4. From (2.7), it follows that
(3.6) hg® (x) = —higEBy (1 - +higi, B () +h} fPBY(1 - ) +hiff BT (1),
where B”(z)=d®B/dz®, which can be written as
X)) hq® () = 4 (0)+ (1)
where
‘ A() =—h @ —fHB (1 -D+h (@G —fEZ) BT ()
and
mi(t) = —hi By (l-t)+h’f"‘+1B{” (t)+h3f. B’”(l-t)+h’f‘+13 (t)
On using Lemma 3, we obtam '
6y o O] = Ky oah®] SO,
where a= max |By(2)].
Using Taylor’s expansion and the identities (3.5) together with

(3.9) @ = é; (r® (x,.)/(k—3)'!) (Eh =2+ (f® (n)/5!)(th,)3,
it is not difficult to show that |
(3.10)

1i(0) = B 2+ + (DL L3 +(B6D[301® () BY () + 1201 (1) BY ()]
Thus, (3.9) and (3.10) yield : .
@iy . (0 = R+ BE6Yvi(r),
where

(3.12) vi(t) = 307 () BT () + 1201 () By (1) — 12083 ().
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Now combining (3.7) with (3.12), gives
61y RE® ()~ = 1O +HIEY %)
It is clear from (3.12) that
(.14) ()] = {30|B7 ()] +120|By ()] +120|*} max | f© (x)] =c 1fOl...
Hence (3.13), (3.14) and (3.8) give

38 (0) P3| = Ky 6B*| f O]l

This proves (3.2) for r=3. To prove (3.2) for f=2, observe that for 'xi§x<"x,+,
and using Lemma 3, it follows that

32 )P = | [ (4@ (O~ 0)dt+ g3 —f2| = Ko oh*| ..

Since g,(x)—f(x) vanishes at x; and x;,, there exists a point &;; &€(x;, Xi41), such
that gP(&)=r"(&). Hence

@ —FP@ = [ 139 O-,O0)dt = Ky bS] f O]
&

This proves (3.2) for r=1. Formula (3.2), for r=0, follows immediately by using
a similar argument. For /=3(1)5 the proof is analogous to that of Theorem 5.

We now turn to the derivation of error bounds for the interpolation error,
Q(x)—f(x), and its derivatives. We begin with the following main result.

Theorem 5. Let feC'(I) and h;=>V8/5h;_, for all i or the partition be
uniform. Then for the unique quintic spline Q(x) associated with f and satisfying
(2.12), we have ’

(3.15) QO —fO®)| = K, b ~"o(fO,h), r=001)2; 1=31)5,

G.16)  1QOW) O] = K, k| [P+ (SO, B), r=0(1)2; I=6.
To prove Theorem 5, we need the following lemma
Lemma 4. Let fcC'(I) and h;>V8/S h;_, for all i, then

G171 Q) —f0x)| = Ky( RiZY/(R 2 = HZD) o (fO, ), 1= 3(1)5,

(3.18) IQ(Ge) —f(x)| = Kehihi_y(hi+hi_)| f@]., 1=6.
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Proof. We will prove the lemma for /=3. The condition that Q(x)¢C3(I)
is equivalent to the system (2.16). Using Taylor’s expansion, it is easy to show that

(319 6hA(Qi-1—fi-)+26(BA—hi)(Qi—f) —6h*(Qiv1—fi+D) =
= Q@3 h(fO0n, ) =S (1,0)+ @I i1 (/D (1,) = (10,0) +
+(D(FP (11, =@ @)+ i3S (10,) =D (z:-0))s
where x;_y<mp i <X;, Xi<Wy;i<Xiy1, Xi<M3,;<<Z;, Zi—1<Mg,i<X;.

In matrix form (3.19) can be written as de=z with e;=Q(x)—f(x;), i=1(1)N.
Multiplying Ade=z by the diagonal matrix D=(d,), d;=(1/26)*h;_ /(K3 —FK:_)),
the matrix DA will be I+ B with ||B|_<1 if k=V8/5 h;_, for all i. Since

le] = 1(J+B) || Dzl (1/(1—HB|I°o))HDZII@
It follows that
10(x) —f(x)| = Ky(hihi_o/(hi~ b)) (f P, )

with K,=5/13. This proves (3.17) for /=3. The proof is similar in the other cases.
For equally spaced knots and N is even Lemma 4 will be modified as follows.

Lemma 5. Let fcC'(I), then
(3.20) 10(x)—/(x)| = KR o(fO, 1), 1=3(1)5.

Proof. We prove the lemma for /=3. The condition that Q(x)ECz(I) and
the partition be uniform is equivalent to (cf. (3.19))

(@ior~fioD—(@isr—FirD) = (B9 (FD (11, )~ (15, ) +
+(B9)(F® (12, — F© (0, 0) + H/18) (F® (10,)—F (2)) +
+(HO(f D (12, )—F @ (z:-))-
Or, in the matrix form Me=z, where M=(m;;) with

-1, i<j
m;; = 0, i=j
I, i>j.

Since | Mx|_ =1 for jjx|.=1, it follows that M~ _=1. Hence
lele = |M Yoz = Kh*0(f©, h).

This completes the proof of Lemma 5.
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It is well known that the following identities are valid (see [3]).
A+ A4 ()+4:(0) = 1,
A (D +2A45()+245(0) +244(2) = 2,
(1/4) A, (t) + A5 () +24,(1) = 17,
(1/8) 4, () + As () + 34,(0) + 645 (1) = £,
(1/16) Ay () + As() + 84, (£) + 1245(¢) = 2.

Proof of Theorem 5. The proof will be carried out only for /=3. From
(2.14), it follows that

(32D B QO® (x) = Qi A5 () +f (2) A () + Qi1 A5 () +h [ AT () +
, + b [l 1 AT+ RO (2) 45 ()

which can be written as '

(3.22) hi 0@ (x) = 4;())+ (D),

where

A = (Q () —f(x)) 45 () +H(Q (X1 ) —f (x1+1)) 45 (1),

() = f(x) AG () (i1 D Az (O +1(2) AL () + by fO () A5 (D +
+h O (x4 ) A2 () + B O (2) 45 (0.
Using Lemma 4, for /=3, we obtain

and

2 2
i hiss

+ }a) N h
ey et RS AR
where a=max{ly, L}, I,= Jnax |47 ().

“Also it can be easily seen that

(3.29) wi(?) = KO () + (B3 vi(®),
where

(3.23) 4@ = Kaah?{

vi(®) = ()(f® (2, )~ (2)) 47 () +(f® (11,0 —® (6,2)) 47 () +
+3(S®(13,) = (16,)) 4i ) +6 (S (2) = (16, 0) 45 ().
Consequently
(3.25) @)l = a* (9, b),
where a*=max {I;, 1,1, l5}.
Combining (3.22) and (3.24), we have
B (QP (0) —f® (x)) = L)+ (B}/3Y) vi(®).
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Thus : . . ‘
hi_, +1
(.26 1090 = {Ka (22— + )+ S hf o, by =

= Kz.ahw(f(a)s h)'

This proves (3.15) for r=2. The proof for r=1 and r=0 follows immediately
using the fact that 0@ (x)—f®(x) vanishes at x; and x;,, and that Q(x)—f(x)
vanishes at x=z;_, and z;.

Remark. It is worth noting that even in the absence of the function values
at the mesh points, it is possible to construct quintic and lacunary quintic splines,
which, for some cases, requires certain partition restrictions. Also the order of
convergence achieved is almost the same when using function values as given data.
We believe that this observed phenomenon may have some applications in physics
and engineering problems as well.

References

[1] A. BLEYER and S. SaLLAM, Interpolation by cubic splines, Periodica Poly., 22 (1978), 91—105.

[2] A. MER and A. SHARMA, Lacunary interpolation by splines, SIAM J. Numer.: Anal., 10 (1973),
423—442. »

[3] J. Prasap and A. K. VARMA, Lacunary interpolation by quintic splines, SIAM J. Numer.
Anal., 16 (1978), 1075—1079.

[4] S. SaLLAM, On interpolation by quintic splines, Bull. Fac. Sci., Assiut University, 11 (1982),
97—106.

[5} A. SHARMA, Some poised and nonpoised problems of interpolation, SIAM Rev., 14 (1972),
129—151.

[6] B. K. SwARTZ and R. VARGA, A note on lacunary interpolation by splines, SIAM J. Numer;
Anal., 10 (1973), 443—447.

[7] B. K. Swartz and R. VARGA, Error bounds for spline and L-spline interpolation, J. dpprox.
Theory, 6 (1972), 6—49.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF KUWAIT

P. 0. BOX 5969

KUWAIT :



