On norms of projections

A. P. BOSZNAY and B. M. GARAY

Let $(X,\|\cdot\|)$ be a normed space. A continuous linear mapping $P: X \rightarrow X$ is said to be a projection if $P^{2}=P$. As usual, the range and the null space of P is denoted by $\mathscr{R}(P)$ and $\mathscr{N}(P)$, respectively. Further, the norm of P is defined as $\|P\|=\sup \{\|P x\|\| \| x \| \leqq 1\}$. Clearly $\|P\| \geqq 1$ excepting $P=0$ and $\|I\|=1$. (Here 0 and I denotes the zero and the identity operator on X, respectively.) •

Let Y be a one-dimensional subspace of X. It follows immediately from HahnBanach theorem [3] that there exists a projection $P: X \rightarrow X$ for which $\mathscr{R}(P)=Y$ and $\|P\|=1$.

The aim of this paper is to investigate the question of the existence of normed spaces for which $P \neq I$ and $\operatorname{dim} \mathscr{R}(P)>1$ imply $\|P\|>1$.

By a density theorem, we solve the problem in finite dimensions. The infinite dimensional case seems to be entirely open.

From now on, let X be an n-dimensional real vector space. Assume that $n \geqq 3$. Let $\langle\cdot, \cdot\rangle: X \times X \rightarrow \mathbf{R}$ be a fixed scalar product. Let e_{1}, \ldots, e_{n} be a fixed orthonormal system with respect to the scalar product $\langle\cdot, \cdot\rangle$. Every $x \in X$ has a unique representation of the form $x=\sum_{i=1}^{n} \alpha_{i} e_{i} ; \alpha_{i} \in \mathbf{R}$. Thus the basis e_{1}, \ldots, e_{n} determines a one to one correspondence between vectors of X and n-tuples (column vectors) in \mathbf{R}^{n}. Given $x_{1}, \ldots, x_{n} \in X$, now it is possible to define the determinant function $\operatorname{det}\left(x_{1}, \ldots, x_{n}\right)$, as a function of column vectors in \mathbf{R}^{n}.

The set of norms defined on X will be denoted by $N(X) . N(X)$ can be made into a metric space in a very natural way. The distance between two norms $\|\cdot\|_{1},\|\cdot\|_{2}: X \rightarrow \mathbf{R}^{+}$can be defined as $d\left(\|\cdot\|_{1},\|\cdot\|_{2}\right)=\sup \left\{\|x\|_{1}-\|x\|_{2} \|\langle x, x\rangle=1\right\}$. As any two scalar products (moreover, any two norms) induce the same topology on X, the topology on $N(X)$ induced by d does not depend on the particular choice of the scalar product $\langle\cdot, \cdot\rangle$. Therefore, we are justified in speaking about openness and density of subsets of X as well as of $N(X)$ without referring to any particular scalar product.

Now we are in a position to formulate our main result.
Theorem. Let X be an n-dimensional real vector space. Assume that $n \geqq 3$. Define

$$
N_{1}(X)=
$$

$=\{\|\cdot\| \in N(X) \mid$ for any projection $P: X \rightarrow X ; P \neq I$ and $\operatorname{dim} \mathscr{R}(P)>1$ imply $\|P\|>1\}$.
Then $N_{1}(X)$ is open and dense in $N(X)$.
Proof of the openness of $N_{1}(X)$. Pick a norm $\|\cdot\|_{1}$ in $N_{1}(X)$. There exists a constant $K>0$ such that $(\langle x, x\rangle)^{1 / 2} \leqq K\|x\|_{1}$. If $d\left(\|\cdot\|_{1},\|\cdot\|_{2}\right) \leqq \eta$, then $\left\|\|x\|_{1}-\right\| x \|_{2} \mid \leqq \eta(\langle x, x\rangle)^{1 / 2}$, and consequently, $(1-\eta K)\|x\|_{1} \leqq\|x\|_{2} \leqq(1+\eta K)\|x\|_{1}$.

It follows easily from a compactness argument that inf $\left\{\|P\|_{1} \mid P: X \rightarrow X\right.$ is a projection, $P \neq I, \operatorname{dim} \mathscr{R}(P)>1\}>1$, i.e. for any projection $P: X \rightarrow X$ there holds $\|P\|_{1} \geqq 1+\alpha$ for some fixed $\alpha>0$ provided that $P \neq I, \operatorname{dim} \mathscr{R}(P)>1$. Therefore, $\|P x\|_{2} \geqq(1-\eta K)\|P x\|_{1} \geqq(1-\eta K)(1+\alpha)\|x\|_{1} \geqq(1-\eta K)(1+\alpha)(1+\eta K)^{-1}\|x\|_{2}$. Consequently, η being sufficiently small implies $\|P\|_{2}>1,\|\cdot\|_{2} \in N_{1}(X)$.

The proof of the density of $N_{1}(X)$ requires more difficult considerations. If $S \subset X$, the set of all linear combinations of elements of S, i.e. the subspace spanned by S is denoted by Span (S). The orthogonal complement of $\operatorname{Span}(S)$ is denoted by $\operatorname{Span}^{\perp}(S)$. Let us recall that $\operatorname{dim} \operatorname{Span}(S)+\operatorname{dim} \operatorname{Span}^{\perp}(S)=n$.

Definition. Let N be a fixed positive integer. For sake of brevity, we call a set $\left\{x_{1}, \ldots, x_{N}\right\} \subset X$ to be independent if for any $Y \subset\left\{x_{1}, \ldots, x_{N}\right\}$ and for any partition $\quad Y_{1}=\left\{{ }^{1} x_{1}, \ldots,{ }^{1} x_{n_{1}}\right\}, \ldots, Y_{k}=\left\{{ }^{k} x_{1}, \ldots,{ }^{k} x_{n_{k}}\right\} \quad$ of $\quad Y\left(k \geqq 1, Y_{i} \cap Y_{j}=\emptyset\right.$ if $i \neq j ; i, j=1, \ldots, k ; n_{j} \geqq 0 ; \bigcup_{j=1}^{k} Y_{j}=Y$) satisfying $n_{j} \leqq n, j=1 ; \ldots, k$ there holds

$$
\begin{equation*}
\operatorname{dim}\left(\bigcap_{j=1}^{k} \operatorname{Span}\left(Y_{j}\right)\right)=\max \left\{0, n-\sum_{j=1}^{k}\left(n-n_{j}\right)\right\} \tag{1}
\end{equation*}
$$

Further; we say that a vector $\bar{x}=\left(x_{1}, \ldots, x_{N}\right) \in X^{N}$ is of type \mathscr{I} if the set of its coordinate vectors $\left\{x_{1}, \ldots, x_{N}\right\}$ is independent.

Remark 1. In case of $N=n, k=1$. one arrives at the usual definition of linear independence.

Remark 2. On the account of

$$
\left(\bigcap_{j=1}^{k} \operatorname{Span}\left(Y_{j}\right)\right)^{\perp}=\operatorname{Span}\left(\left\{\operatorname{Span} \perp\left(Y_{1}\right), \ldots, \operatorname{Span}^{\perp}\left(Y_{k}\right)\right\}\right)
$$

(1) can be reformulated as

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{Span}\left(\left\{\operatorname{Span}^{\perp}\left(Y_{1}\right), \ldots, \operatorname{Span}^{\perp}\left(Y_{k}\right)\right\}\right)\right)=\min \left\{n, \sum_{j=1}^{k}\left(n-n_{j}\right)\right\} \tag{1}
\end{equation*}
$$

Lemma 1. The set of vectors of type I is dense in X^{N}.
Proof. Pick a vector $\bar{x}=\left(x_{1}, \ldots, x_{N}\right) \in X^{N}$. Consider a partition $Y_{1}=$ $=\left\{{ }^{1} x_{1}, \ldots,{ }^{1} x_{n_{1}}\right\}, \ldots, Y_{k}=\left\{{ }^{k} x_{1}, \ldots,{ }^{k} x_{n_{k}}\right\}$ of a subset $Y \subset\left\{x_{1}, \ldots, x_{N}\right\}$ satisfying $n_{j} \leqq n, j=1, \ldots, k$.

For $j=1, \ldots, k ; l=1, \ldots, n-n_{j}$ define
${ }^{j} w_{l}=\operatorname{det}\left({ }^{j} x_{1}, \ldots,{ }^{j} x_{n_{j}}, e_{1}, \ldots, e_{l-1}, e_{l+1}, \ldots, e_{n-n_{j}}, \operatorname{col}\left(e_{1}, \ldots, e_{n}\right)\right)$.
The vectors ${ }^{j} w_{1}, \ldots,{ }^{j} w_{n-n_{j}}$ form a basis for $\operatorname{Span}^{\perp}\left(Y_{j}\right)$ provided that

$$
\begin{equation*}
\operatorname{det}\left({ }^{j} x_{1}, \ldots,{ }^{j} x_{n_{j}},{ }^{j} w_{1}, \ldots,{ }^{j} w_{n-n_{j}}\right) \neq 0 \tag{2}
\end{equation*}
$$

Suppose that any $p \leqq n$ vectors in $\bigcup_{j=1}^{k}\left\{{ }^{j} w_{1}, \ldots,{ }^{j} w_{n-n_{j}}\right\}$, say $z_{1}, \ldots ; z_{p}$ satisfy

$$
\begin{equation*}
\operatorname{det}\left(z_{1}, \ldots, z_{p}, e_{1}, \ldots, e_{n-p}\right) \neq 0 \tag{3}
\end{equation*}
$$

It is obvious that (2) and (3) imply (1^{\prime}). Thus the set of vectors of type \mathscr{I} contains the complement of a real algebraic variety, consequently [4]; it is dense in \boldsymbol{X}^{N}.

Suppose now $x_{1}, \ldots ; x_{n}$ is a basis of X. The ($n-1$)-simplex $\sigma\left[x_{1}, \ldots ; x_{n}\right]$ with vertices x_{1}, \ldots, x_{n} and its interior int $\left(\sigma\left[x_{1}, \ldots, x_{n}\right]\right)$ is defined as the set of all $x \in X$ of the form

$$
x=\sum_{i=1}^{n} \alpha_{i} x_{i} \quad \text { where } \quad \alpha_{i} \geqq 0 ; \quad i=1, \ldots, n ; \quad \sum_{i=1}^{n} \alpha_{i}=1
$$

and

$$
x=\sum_{i=1}^{n} \alpha_{i} x_{i} \quad \text { where } \alpha_{i}>0 ; \quad i=1, \ldots, n ; \quad \sum_{i=1}^{n} \alpha_{i}=1
$$

respectively. The vector $v\left(\sigma\left[x_{1}, \ldots, x_{n}\right]\right)$ defined by

$$
\operatorname{det}\left(x_{2}-x_{1} ; \ldots, \dot{x}_{n}-x_{1}, \operatorname{col}\left(e_{1}, \ldots, e_{n}\right)\right)
$$

is a nonzero element in $\operatorname{Span}^{\perp}\left(\left\{x_{2}-x_{1}, \ldots, x_{n}-x_{1}\right\}\right)$, i.e. it is a normal vector to $\sigma\left[x_{1}, \ldots, x_{n}\right]$.

Lemma 2. Let $\bar{x}=\left(x_{1}, \ldots, x_{N}\right) \in X^{N}$ be a vector of type \mathscr{I}. Given $\varepsilon>0$, then there exists an N-tuple of real numbers $\left(\varepsilon_{1}, \ldots, \varepsilon_{N}\right) \in \mathbf{R}^{N}$ satisfying $0<\varepsilon_{l}<\varepsilon ; l=1, \ldots, N$ such that for any $Z \subset\left\{x_{1}, \ldots, x_{N},-x_{1}, \ldots,-x_{N}\right\}$ and for any partition $Z_{1}=$ $=\left\{{ }^{1} x_{1}, \ldots,{ }^{1} x_{n}\right\}, \ldots, Z_{n}=\left\{{ }^{n} x_{1}, \ldots,{ }^{n} x_{n}\right\}$ of $Z \quad\left(Z_{i} \cap Z_{j}=\right.$ if $i \neq j ; i, j=1, \ldots, n ;$ $\bigcup_{j=1}^{n} Z_{j}=Z$) satisfying

$$
{ }^{i} x_{j} \neq \pm{ }^{p} x_{r} \text { for } \quad|i-p|+|j-r| \neq 0
$$

there holds

$$
\begin{align*}
& \operatorname{Span}\left(\left\{v\left(\sigma\left[\left(1+{ }^{1} \varepsilon_{1}\right)^{1} x_{1}, \ldots,\left(1+{ }^{1} \varepsilon_{n}\right)^{1} x_{n}\right]\right) ; \ldots\right.\right. \tag{4}\\
& \left.\left.\ldots, v\left(\sigma\left[\left(1+{ }^{n} \varepsilon_{1}\right)^{n} x_{1}, \ldots,\left(1+{ }^{n} \varepsilon_{n}\right)^{n} x_{n}\right]\right)\right\}\right)=X
\end{align*}
$$

Proof. (4) is equivalent to

$$
\begin{gather*}
\operatorname{det}\left(v\left(\sigma\left[\left(1+{ }^{1} \varepsilon_{1}\right)^{1} x_{1}, \ldots,\left(1+{ }^{1} \varepsilon_{n}\right)^{1} x_{n}\right]\right), \ldots\right. \\
\left.\ldots, v\left(\sigma\left[\left(1+{ }^{n} \varepsilon_{1}\right)^{n} x_{1}, \ldots,\left(1+{ }^{n} \varepsilon_{n}\right)^{n} x_{n}\right]\right)\right) \neq 0 .
\end{gather*}
$$

As in the proof of Lemma 1, the desired result follows from [4].
A bounded set $K \subset X$ is said to be a centrally symmetric convex polyhedron if : there exist nonzero linear functionals $f_{s}: X \rightarrow \mathbf{R}, s=1, \ldots, t$ such that $K=\bigcap_{s=1}^{t}\left\{x \in X| | f_{s}(x) \mid \leqq 1\right\}$. The bounding hyperplanes of K are defined as $\left\{x \in X \mid f_{s}(x)=1\right\},\left\{x \in X \mid f_{s}(x)=-1\right\}, s=1, \ldots, t$. Assume that
(5) for any bounding hyperplane H, the intersection $H \cap K$ is an ($n-1$)-simplex. (Such simplices are called the facets of K.)
For sake of brevity, we say that the facets $\sigma\left[\tilde{x}_{1}, \ldots, \tilde{x}_{n}\right]$ and $\sigma\left[\tilde{\tilde{x}}_{1}, \ldots, \tilde{x}_{n}^{\prime}\right]$ are non-neighbouring if there holds

$$
\left\{\tilde{x}_{1}, \ldots, \tilde{x}_{n} ;-\tilde{x}_{1}, \ldots,-\tilde{x}_{n}\right\} \cap\left\{\tilde{\tilde{x}}_{1}, \ldots, \tilde{\tilde{x}}_{n} ;-\tilde{\tilde{x}}_{1}, \ldots,-\tilde{\tilde{x}}_{n}\right\}=\emptyset .
$$

If $M \subset X$ is a symmetric (i.e. symmetric with respect to the origin) convex set with the origin in its interior, then its Minkowsky functional $\Phi_{M}: X \rightarrow \mathbf{R}^{+}$ defined by $\Phi_{M}(x)=\inf \{\alpha>0 \mid x \in \alpha M\}$ is a norm. Conversely, if we are given a norm in X, then the unit ball it defines is a symmetric convex set with the origin in its interior, and it is the corresponding Minkowsky functional.

Proof of the density of $N_{1}(X)$.
Step 1. Pick a norm $\|\cdot\|$ in $N(X)$. Given $\varepsilon>0$, then there exists a norm $\|\cdot\|_{\mathbb{K}}$ in $N(X)$ with the following properties:
(6) $d\left(\|\cdot\|,\|\cdot\|_{\mathbb{R}}\right)<\varepsilon$;
(7) $\|\cdot\|_{K}=\Phi_{K}$, the Minkowsky functional of a centrally symmetric convex polyhedron K satisfying (5);
(8) denoting the vertices of K by $x_{1}, \ldots, x_{N},-x_{1}, \ldots,-x_{N}$, the vector $\bar{x}=\left(x_{1}, \ldots, x_{N}\right) \in X^{N}$ is of type $\mathscr{I} ;$
(9) if $\sigma_{1}, \ldots, \sigma_{n}$ are non-neighbouring facets of K, there holds

$$
\operatorname{Span}\left(\left\{v\left(\sigma_{1}\right), \ldots, v\left(\sigma_{n}\right)\right\}\right)=X ;
$$

and
(10) for any two-dimensional (linear) subspace $W \subset X$, the number of pairwise non-neighbouring facets of K intersecting W at a segment, is at least $n(n-1)$.

The existence of $\|\cdot\|_{K}$ satisfying (6)-(9) follows from the lemmas. (10) is automatically satisfied if

$$
\max \{\|\tilde{x}-\tilde{\tilde{x}}\| \mid \text { there exists a facet } \sigma \text { of } K \text { such that } \tilde{x}, \tilde{\tilde{x}} \in \sigma\}
$$

is sufficiently small.
Step 2. We show that $\|\cdot\|_{K} \in N_{1}(X)$. Let us observe first that (8) implies the following property of K :
(11) if the facets $\sigma_{1}, \ldots, \sigma_{n-1}$ are pairwise non-neighbouring and a two-dimensional (linear) subspace $W \subset X$ intersects each of them at a segment, then, for some $k^{*} \in\{1, \ldots, n-1\}, W$ intersects int $\left(\sigma_{k^{*}}\right)$.
To the contrary, let us suppose that there exists an $l(k) \in\{1, \ldots, n\}$ such that

$$
W \subset Y_{k}=\operatorname{Span}\left(\left\{{ }^{k} x_{1}, \ldots, \stackrel{k}{x}_{l(k)-1},{ }^{k} x_{l(k)+1}, \ldots,{ }^{k} x_{n}\right\}\right)
$$

for each $k=1, \ldots, n-1$. Since $\operatorname{dim}\left(\operatorname{Span}\left(Y_{k}\right)\right)=n-1$, (1) yields

$$
2=\operatorname{dim} W \leqq \operatorname{dim}\left(\bigcap_{k=1}^{n-1} \operatorname{Span}\left(Y_{k}\right)\right)=\max \left\{0, n-\sum_{k=1}^{n-1} 1\right\}=1
$$

a contradiction.
Step 3. Let us suppose now that $P: X \rightarrow X$ is a projection for which $\|P\|_{K}=1$, $\operatorname{dim} \mathscr{R}(P)>1$. We have to show that $P=I$.

Consider a two-dimensional (linear) subspace $W \subset \mathscr{R}(P)$. Assume that for a facet σ of K there holds $W \cap \operatorname{int}(\sigma) \neq \emptyset$. We claim that $v(\sigma) \in \mathcal{N}^{\perp}(P)$. Pick a $z \in W \cap \operatorname{int}(\sigma)$. It is sufficient to show that $x \in \mathscr{N}(P)$ implies $x \in \operatorname{Span}^{\perp}(v(\sigma))$. In fact, we have $\|z\|_{K}=\|P(z+\lambda x)\|_{K} \leqq\|z+\lambda x\|_{K}$ for arbitrary $\lambda \in \mathbf{R}$. On the other hand, $z \in \operatorname{int}(\sigma)$ implies $(z+\lambda x) \in \sigma$ for $|\lambda|$ sufficiently small. Consequently, $x=((z+\lambda x)-z) / \lambda \in \operatorname{Span}^{\perp}(v(\sigma))$.

By the same reasoning, (10) and (11) imply the existence of pairwise non-neighbouring facets $\sigma_{1}, \ldots, \sigma_{n}$ of K such that $v\left(\sigma_{1}\right), \ldots, v\left(\sigma_{n}\right) \in \mathcal{N}^{\perp}(P)$. Applying (9) we obtain $X \subset \mathscr{N}^{\perp}(P)$, which, in turn, implies that $P=I$.

For applications of the Theorem, see [1], [2].
Remark 3. The Theorem remains valid if X is allowed to be a complex finite dimensional vector space.

The following problems arise naturally:
Problem 1. What is the minimum number of vertices of centrally symmetric convex polyhedra satisfying $\|\cdot\|_{K} \in N_{1}(X)$? (In the three-dimensional real case it is not hard to construct a centrally symmetric convex polyhedron K with twelve vertices for which $\|\cdot\|_{K} \in N_{1}(X)$. On the other hand, it seems plausible that there are no such polyhedra with ten vertices. Nevertheless, we are not able to prove it.)

> Problem 2. Give upper and lower bounds for $$
\begin{array}{c}\sup \{\inf \{\|P\| P: X \rightarrow X \text { is a projection satisfying } \\ \left.\operatorname{dim} \mathscr{R}(P)>1, P \neq I\}\|\cdot\| \in N_{1}(X)\right\} .\end{array}
$$

Problem 3. The infinite dimensional case.

References

[1] A. P. Bosznay and B. M. Garay, A geometric problem concerning discs, Acta Sci. Math., to appear.
[2] B. M. Garay and V. Kertísz, Lozinsky's functional and the transformation of variables, Z. Anal. Anw., 2 (1984), 87-95.
[3] W. Rudin, Functional Analysis, McGraw-Hill (New York, 1973).
[4] H. Whriney, Elementary structure of real algebraic varieties, Ann. Math., 66 (1957), 545-556.

DEPARTMENT OF MATHEMATICS
BUDAPEST UNIVERSITY OF TECHNOLOGY
MÜTEGYETEM RKP. 3-9
1521 BUDAPEST, HUNGARY

