Bäcklund's theorem and transformation for surfaces V_{2} in E_{n}

Ü. LUMISTE

1. Introduction and classical background. Bäcklund's classical transformation gives a way to generate new solutions of the Sine-Gordon equation $\partial^{2} \psi / \partial u^{1} \partial u^{2}=$ $=\sin \psi$ from a given solution. Its geometrical setting uses some basic propositions for surfaces V_{2} in E_{3}, which are the following.
A. If there is a diffeomorphism $V_{2} \rightarrow V_{2}^{*}, x \mapsto x^{*}$, between two distinct surfaces in E_{3} such that $\vec{x} \vec{x}^{*} \in T_{x} V_{2} \cap T_{x^{*}} V_{2},\left|\vec{x} \vec{x}^{*}\right|=r=$ const and the angle φ between $T_{x} V_{2}$ and $T_{x^{*}} V_{2}^{*}$ is a constant, then both V_{2} and V_{2}^{*} have constant negative Gaussian curvature equal to $-\left(\sin ^{2} \varphi\right) / r^{2}$ (the classical Bäcklund's theorem [1], [2]).
B. This diffeomorphism, called a pseudospherical line congruence, maps asymptotic curves of V_{2} to asymptotic curves of V_{2}^{*} (i.e. it is a Weingarten congruence or W-congruence).
C. Asymptotic curves of a surface V_{2} with Gaussian curvature $K=$ const <0 (i.e. of an immersion of a piece of the Bolyai-Lobachevsky plane $L_{2}(K)$ into E_{3}) form a Chebyshev net: in suitable net parameters u^{1} and u^{2} the metric of V_{2} can be given by $d s^{2}=\left(d u^{1}\right)^{2}+2 \cos \psi \cdot d u^{1} d u^{2}+\left(d u^{2}\right)^{2}$.
D. The net angle ψ of a Chebyshev net of a Riemannian V_{2} satisfies the equation $\partial^{2} \psi / \partial u^{1} \partial u^{2}=-K \sin \psi$, where K is the Gaussian curvature of V_{2}; in case if V_{2} is a piece of $L_{2}(-1)$ this equation is the Sine-Gordon equation.

Due to C and D , every immersion of a piece of $L_{2}(-1)$ into E_{3} gives a solution ψ of the Sine-Gordon equation and this correspondence is one to one up to rigid motion. Due to A and B, there is a transformation of such a solution to another, the analytical formulation of which gives Bäcklund's classical transformation [2].

The aim of this paper is to give some generalizations of propositions A, B and C to the case of surfaces V_{2} in $E_{n}, n>3$. Note that D needs no generalization because it does not depend on the immersion.

[^0]A generalization of the geometrical Bäcklund theorem and transformation in another direction, for the case of V_{m} in $E_{2 m-1}$, is given in [4], [5]. If $m=2$ this reduces to the classical one.
2. Main results. The next generalization of Bäcklund's theorem gives some additions to the classical case too.

Theorem 1 [3]. For two distinct surfaces V_{2} and V_{2}^{*} in $\dot{E}_{n}, n \geqq 3$, let $\dot{V}_{2} \rightarrow V_{2}^{*}$, $x \mapsto x^{*}$ be a diffeomorphism such that $\vec{x} \vec{x}^{*} \in T_{x} V_{2} \cap T_{x^{*}} V_{2}^{*}$ and $\left|\vec{x} \vec{x}^{*}\right|=r \neq 0$ for every point $x \in V_{2}$. Let φ be the angle between $T_{x} V_{2}$ and $T_{x^{*}} V_{2}^{*}$, and let K and K^{*} be the Gaussian curvatures of V_{2} and V_{2}^{*} in the corresponding points x and x^{*}. Then the following four conditions are equivalent:
(1) $r=$ const and $\varphi=$ const,
(2) $K=K^{*}=-\left(\sin ^{2} \varphi\right) / r^{2}=$ const,
(3) $K=K^{*}=-\left(\sin ^{2} \varphi\right) / r^{2}$ and $r=$ const,
(4) $K=K^{*}=-\left(\sin ^{2} \varphi\right) / r^{2}$ and $\varphi=$ const.

Under the assumptions of this theorem the diffeomorphism $V_{2} \rightarrow V_{2}^{*}$ is called the line pseudocongruence (if $n=3$ "pseudo" is to be dropped); V_{2} and V_{2}^{*} are called its focal surfaces. They cannot be arbitrary surfaces, but necessarily must consist of planar points only. Tangent planes $T_{x} V_{2}$ and $T_{x^{*}} V_{2}^{*}$ in corresponding points x and x^{*} lie in an Euclidean 3-plane $\left(E_{3}\right)_{x}$. Among the second fundamental tensors of V_{2} in normal directions to $T_{x} V_{2}$ we can distinguish the tensor h in the normal direction lying in $\left(E_{3}\right)_{x}$. A pair of null directions of the tensor h is called a pair of h-asymptotic directions in $T_{x} V_{2}$ and corresponding curves on V_{2} are called h-asymptotic curves. The diffeomorphism $V_{2} \rightarrow V_{2}^{*}$ is called h-asymptotic if it maps h-asymptotic curves of V_{2} to h-asymptotic curves of V_{2}^{*}.

Theorem 2. Under the same assumptions as in Theorem 1 the next three conditions are equivalent to each other and also to each of the conditions (1)-(4):
(5) $K=-\left(\sin ^{2} \varphi\right) / r^{2}=$ const and $V_{2} \rightarrow V_{2}^{*}$ is h-asymptotic,
(6) $K=-\left(\sin ^{2} \varphi\right) / r^{2}, r=$ const and $V_{2} \rightarrow V_{2}^{*}$ is h-asymptotic,
(7) $K=-\left(\sin ^{2} \varphi\right) / r^{2}, \varphi=$ const and $V_{2} \rightarrow V_{2}^{*}$ is h-asymptotic.

Here the Gaussian curvature K of V_{2} can be replaced of course by the Gaussian curvature K^{*} of $V_{\mathbf{2}}^{*}$.

Theorem 3. Under the same assumptions as in Theorem 1 let one of the conditions (1)-(7) be satisfied (and hence each of them). Let the field of distinguished normal directions (i.e. belonging in each $x \in V_{8}$ to $\left.\left(E_{3}\right)_{x}\right)$ be parallel along the curves tangent to directions of $\overrightarrow{x x}^{*}$ with respect to normal connection of V_{2}. Then the net of h-asymptotic curves on V_{g} is a Chebyshev net.

Theorem 3, due to proposition D , gives a possibility to find a solution of the Sine-Gordon equation by the special immersion of a piece of the Bolyai-Lobachevsky plane $\dot{L}_{2}(-1)$ into E_{n}. Theorems 1 and 2 show how this solution can be then transformed.

The well-known Hilbert's theorem [6] states, that there is no solution $\psi: R^{2} \rightarrow R$ of the Sine-Gordon equation, which is different from 0 and π in every point (u^{1}, $\left.u^{2}\right) \in R^{2}$. It follows, that the class of surfaces V_{2}, satisfying the assumptions of Theorem 3, does not include the Bolyai-Lobachevsky plane $L_{2}(-1)$, globally immersed into E_{n} with regular h-asymptotic net. That gives a contribution to the theorems about classes of surfaces V_{2} in E_{n}, which does not contain a V_{2} isometric with $L_{2}(-1)$ (see [7]).

Here it is important that a surface V_{2}, satisfying the assumptions of Theorem 3, can be defined by following conditions, without turning to $V_{2}^{*} \subset E_{n}$: 1) V_{2} consists of planar points only, 2) the field of normal curvature directions, corresponding to the lines of conjugated net family of V_{2}, is parallel along the lines of the same family with respect to normal connection, 3) invariants r and φ (which can be expressed in terms of V_{2} only) are constants and $r^{2}=\sin ^{2} \varphi$. In this paper we cannot give the complete explanation of the question about impossibility to realize $L_{2}(-1)$ by such a V_{2}. It needs a new publication.
3. Frame restriction. A local field of orthonormal frames will be choosen so that the origin is $x \in V_{2}$ and $e_{1}, e_{2} \in T_{x} V_{2}$. In formulae $d x=e_{I} \theta^{I}, d e_{I}=e_{K} \theta_{I}^{K}$; $I, K, \ldots=1, \ldots, n ; d \theta^{I}=\theta^{K} \wedge \theta_{K}^{I}, d \theta_{K}^{I}=\theta_{K}^{L} \wedge \theta_{L}^{I}, \theta_{I}^{K}+\theta_{K}^{I}=0$ for the field of orthonormal frames in E_{n} we have then $\theta^{3}=\ldots=\theta^{n}=0$, and hence $\theta^{1} \wedge \theta_{1}^{\alpha}+\theta^{2} \wedge \theta_{2}^{\alpha}=0$; $\alpha, \beta, \ldots=3, \ldots, n$. By Cartan's lemma we may write $\theta_{i}^{\alpha}=b_{i j}^{\alpha} \theta^{j}, b_{i j}^{\alpha}=b_{j i}^{\alpha}, i, j, \ldots=$ $=1,2$. From the assumptions of Theorem 1 it follows that the tangent planes $T_{x} V_{2}$ and $T_{x^{*}} V_{2}^{*}$ lie in an Euclidean 3-plane $\left(E_{3}\right)_{x}$ because $T_{x} V_{2} \cap T_{x^{*}} V_{2}^{*} \ni \overline{x x} * \neq 0$. The frame can be choosen so that $e_{3} \in\left(E_{3}\right)_{x}$ in each point $x \in V_{2}$ and $e_{1}=(1 / r) \overrightarrow{x x}^{*}$. Then the point $x^{*} \in V_{2}^{*}$, corresponding to $x \in V_{2}$, has the radius vector $x^{*}=x+r e_{1}$ and from

$$
\begin{gather*}
d x^{*}=\left(\theta^{1}+d r\right) e_{1}+\left(\theta^{2}+r \theta_{1}^{2}\right) e_{2}+r\left(\theta_{1}^{3} e_{3}+\theta_{1}^{\rho} e_{e}\right), \tag{3.1}\\
\varrho, \sigma, \ldots=4, \ldots, n
\end{gather*}
$$

it follows that by such a choice of the frame we have $\theta_{1}^{e}=0$. Thus $b_{11}^{e}=b_{12}^{e}=0$.
The linear span of normal curvature vectors $b_{i j}^{\alpha} X^{i} X^{j} e_{\alpha}$ with arbitrary unit vector $X^{i} e_{i} \in T_{x} V_{2}$ is called the first normal space $N_{x}^{1} V_{2}$. Now it has dimension two because it is spanned on $b_{11}=b_{11}^{3} e_{3}, b_{12}=b_{12}^{3} e_{3}$ and $b_{22}=b_{22}^{\alpha} e_{\alpha}$, the first two of which are collinear. We can finally restrict our choice of the frame by the condition that $e_{4} \in N_{x}^{1} V_{2}$ in each point $x \in V_{2}$. Then

$$
b_{22}^{5}=\ldots=b_{22}^{n}=0
$$

and so we have

$$
\theta_{i}^{3}=h_{i j} \theta^{j}, \quad h_{21}=h_{12}, \quad \theta_{1}^{4}=0, \quad \theta_{2}^{4}=k_{22} \theta^{2}, \quad \theta_{i}^{5}=\ldots=\theta_{i}^{n}=0,
$$

where the notations $h_{1 j}=b_{i j}^{3}$ and $k_{22}=b_{22}^{4}$ are used.
4. Gaussian curvatures. The above restriction can be done for the surface V_{2}^{*} choosing the frame vectors e_{I}^{*} at the point $x^{*} \in V_{2}^{*}$ in a similar way. Then

$$
\begin{aligned}
& e_{1}^{*}=e_{1}, \\
& e_{2}^{*}=e_{2} \cos \varphi+e_{3} \sin \varphi, \\
& e_{3}^{*}=-e_{2} \sin \varphi+e_{3} \cos \varphi, \\
& e_{4}^{*}=e_{4}, \ldots, e_{n}^{*}=e_{n},
\end{aligned}
$$

and

$$
d x^{*}=e_{1}^{*} \theta^{* 1}+e_{2}^{*} \theta^{* 2}=e_{1} \theta^{* 1}+\left(e_{2} \cos \varphi+e_{3} \sin \varphi\right) \theta^{* 2}
$$

Comparing with (3.1) we have

$$
\theta^{* 1}=\theta^{1}+d r, \quad \theta^{* 2} \cos \varphi=\theta^{2}+r \theta_{1}^{2}, \quad \theta^{* 2} \sin \varphi=r \theta_{1}^{3} .
$$

Here $\sin \varphi$ cannot be 0 because this would lead to $\theta_{1}^{3}=0$ and V_{2} would be a torse with line generators $x x^{*}$ and we had $V_{2}^{*}=V_{2}$ what is excluded by the assumptions of Theorem 1. Therefore

$$
(1 / r) \theta^{2}+\theta_{1}^{2}=\cot \varphi \cdot \theta_{1}^{3} .
$$

From this, by exterior differentiation and using well-known formulae,

$$
\begin{equation*}
d \theta_{1}^{2}=-K \theta^{1} \wedge \theta^{2}, \quad \theta_{1}^{3} \wedge \theta_{2}^{3}=K \theta^{1} \wedge \theta^{2} \tag{4.1}
\end{equation*}
$$

we have (see [3])

$$
\begin{equation*}
K=-\left(\left(\sin ^{2} \varphi\right) / r^{2}\right)\left(1+r_{1}\right)+\left(h_{12} \varphi_{1}-h_{11} \varphi_{2}\right), \tag{4.2}
\end{equation*}
$$

where $d r=r_{1} \theta^{1}+r_{2} \theta^{2}, d \varphi=\varphi_{1} \theta^{1}+\varphi_{2} \theta^{2}$.
For the surface V_{2}^{*},

$$
\theta_{1}^{* 3}=d e_{1}^{*} \cdot e_{3}^{*}=((\sin \varphi) / r) \theta^{2}, \quad \theta_{2}^{* 3}=d e_{2}^{*} \cdot e_{3}^{*}=\theta_{2}^{3}+d \varphi
$$

and now the second formula in (4.1) for V_{2}^{*} gives ([3])

$$
\begin{equation*}
K^{*} \doteq-\frac{\sin ^{2} \varphi}{r^{2}} \frac{h_{12}+\varphi_{1}}{h_{12}\left(1+r_{1}\right)-h_{11} r_{2}} . \tag{4.3}
\end{equation*}
$$

These formulae (4.2) and (4.3) for the Gaussian curvatures K and K^{*} will be used in the proof of Theorems 1 and 2, but they also have their own significance.
5. Proof of Theorem 1. If $r=$ const and $\varphi=$ const, then from (4.2) and (4.3) we obtain (2), (3) and (4) immediately. Conversely, let

$$
K=K^{*}=-\left(\sin ^{2} \varphi\right) / r^{2}
$$

Then the same formulae (4.2) and (4.3) give correspondingly

$$
\begin{gather*}
h_{12} \varphi_{1}-h_{11} \varphi_{2}=\left(\left(\sin ^{2} \varphi\right) / r^{2}\right) r_{1} \tag{5.1}\\
h_{12} r_{1}-h_{11} r_{2}=\varphi_{1}
\end{gather*}
$$

In case of (2) we have $K=$ const and from $K r^{2}+\sin ^{2} \varphi=0$ it follows that $d r=r \cot \varphi \cdot d \varphi$ and the last two equations give $\sin ^{2} \varphi \cdot \varphi_{1}=0$. Therefore $\varphi_{1}=r_{1}=0$ and $h_{12} \varphi_{2}=h_{11} r_{2}=0$. Here $h_{11}=0$ would lead to $\varphi=0$ what is excluded, and we have (1).

In case of (2) or (3), when $r=$ const or $\varphi=$ const, the same equations give (1). Theorem 1 is proved.
6. Proof of Theorem 2. The h-asymptotic curves of V_{2} are the null curves of the second fundamental form in the direction e_{3}. This form is

$$
\Pi^{3}=\theta^{1} \theta_{1}^{3}+\theta^{2} \theta_{2}^{3}=h_{i j} \theta^{i} \theta^{j}
$$

For V_{2}^{*} it is

$$
\mathbf{I I}^{* 3}=\theta^{* 1} \theta_{1}^{* 3}+\theta^{* 2} \theta_{2}^{* 3}=\left(\theta^{1}+d r\right) \frac{\sin \varphi}{r} \theta^{2}+\frac{r}{\sin \varphi} \theta_{1}^{3}\left(\theta_{2}^{3}+d \varphi\right)
$$

Using here that $h_{11} h_{22}-h_{12}^{2}=K$ and (4.2), we have

$$
\mathbf{I I}^{* 3}=\frac{r h_{12}}{\sin \varphi} \mathbf{I I}^{3}+\Phi
$$

where

$$
\Phi=\frac{r \varphi_{1}}{\sin \varphi}\left[h_{11}\left(\theta^{1}\right)^{2}+2 h_{12} \theta^{1} \theta^{2}\right]+\left(\frac{\sin \varphi}{r} r_{2}+\frac{r}{\sin \varphi} h_{12} \varphi_{2}\right)\left(\theta^{2}\right)^{2} .
$$

If $r=$ const and $\varphi=$ const, then $\Phi=0$, and we have (5). Conversely, let $V_{2} \rightarrow V_{2}^{*}$ be h-asymptotic. Then Φ must be proportional to Π^{3}, and therefore

$$
\begin{equation*}
h_{22} \varphi_{1}=\frac{\sin ^{2} \varphi}{r^{2}} r_{2}+h_{12} \varphi_{2} \tag{6.1}
\end{equation*}
$$

In case of (5) we have $r_{i}=r \cot \varphi \cdot \varphi_{i}$. Now (5.1) and (6.1) give

$$
\begin{aligned}
& \left(h_{12}-\frac{\sin 2 \varphi}{2 r}\right) \varphi_{1}-h_{11} \varphi_{2}=0 \\
& h_{22} \varphi_{1}-\left(h_{12}+\frac{\sin 2 \varphi}{2 r}\right) \varphi_{2}=0
\end{aligned}
$$

Here the determinant is :

$$
K+\frac{\sin ^{2} 2 \varphi}{4 r^{2}}=-\frac{\sin ^{4} \varphi}{r^{2}} \neq 0
$$

and hence (1) holds.
In case of (6), from (5.1) and (6.1) it follows that

$$
\begin{aligned}
& h_{12} \varphi_{1}-h_{11} \varphi_{2}=0 \\
& h_{22} \varphi_{1}-h_{12} \varphi_{2}=0
\end{aligned}
$$

where the determinant is $-h_{12}^{2}+h_{11} h_{22}=K \neq 0$. In case of (7) it follows analogously that (1) holds. Theorem 2 is proved.
7. Proof of Theorem 3. If the field of directions e_{3} is parallel along the integral curves of the equation $\theta^{2}=0$ with respect to normal connection, then

$$
\begin{equation*}
\theta_{3}^{4}=\lambda \theta^{2} \tag{7.1}
\end{equation*}
$$

Taking the unit vectors

$$
\hat{e}_{1}=e_{1} \cos \alpha+e_{2} \sin \alpha, \quad \hat{e}_{2}=-e_{1} \sin \alpha+e_{2} \cos \alpha
$$

in h-principal directions, bisecting h-asymptotic directions we have $\boldsymbol{h}_{12}=0$ and besides this

$$
\begin{align*}
\hat{\theta}_{1}^{4}=\theta_{2}^{4} \sin \alpha & =k_{22} \sin \alpha \cdot \theta^{2} \\
\hat{\theta}_{2}^{4}=\theta_{2}^{4} \cos \alpha & =k_{22} \cos \alpha \cdot \theta^{2} \tag{7.2}\\
\hat{\theta}_{i}^{e} & =0
\end{align*}
$$

The local parameters v^{1} and v^{2} on V_{2} can be choosen so that

$$
\hat{\theta}^{1}=a_{1} d v^{1}, \quad \hat{\theta}^{2}=a_{2} d v^{2}, \quad \hat{\theta}_{1}^{3}=b_{1} a_{1} d v^{1}, \quad \hat{\theta}_{2}^{3}=b_{2} a_{2} d v^{2}
$$

where $b_{1}=\hat{h}_{11}, b_{2}=\hat{h}_{22}$. Then from the formulae

$$
d \hat{\theta}_{1}^{3}=\hat{\theta}_{1}^{2} \wedge \hat{\theta}_{2}^{3}, \quad d \hat{\theta}_{2}^{3}=-\hat{\theta}_{1}^{2} \wedge \hat{\theta}_{1}^{3}
$$

which hold due to (7.1) and (7.2), using the well-known expression

$$
\hat{\theta}_{1}^{2}=\frac{1}{a_{1}} \frac{\partial a_{2}}{\partial v^{1}} d v^{2}-\frac{1}{a_{2}} \frac{\partial a_{1}}{\partial v^{2}} d v^{1}
$$

we have

$$
\frac{1}{b_{i}-b_{j}} \frac{\partial b_{i}}{\partial v^{j}}=-\frac{\partial\left(\ln a_{i}\right)}{\partial v^{j}}, \quad i \neq j
$$

The same compatation as in [2] leads us to parameters $\boldsymbol{w}^{\mathbf{1}}, \boldsymbol{w}^{\mathbf{2}}$, in which for $\boldsymbol{V}_{\mathbf{2}}$

$$
\begin{aligned}
d s^{2} & =\cos ^{2} \chi\left(d w^{1}\right)^{2}+\sin ^{2} \chi\left(d w^{2}\right)^{2} \\
\mathbf{I I}^{8} & =\sin \chi \cos \chi\left[\left(d w^{1}\right)^{2}-\left(d w^{2}\right)^{2}\right]
\end{aligned}
$$

and now by $u^{1}=w^{1}+w^{2}, u^{2}=w^{1}-w^{2}$ we get

$$
\begin{gathered}
d s^{2}=\left(d u^{1}\right)^{2}+2 \cos \psi d u^{1} d u^{2}+\left(d u^{2}\right)^{2} \\
\mathbf{I}^{3}=2 \sin \psi d u^{1} d u^{2}
\end{gathered}
$$

The \boldsymbol{h}-asymptotic net is a Chebyshev net. Theorem 3 is proved.

References

[1] A. V. Bäcklund, Om utor med konstant negativ krökning, Lunds Univ. Arsskrift, 19 (1883).
[2] S.-S. Chern, C.-L. Terng, An analogue of Bäcklund's theorem in affine geometry. Rocky Mountain J. Math., 10 (1) (1980), 105-124.
[3] Ü. Lumiste, L. Tuulmets, On Gaussian curvatures of local surfaces V_{2} of a line pseudocongruence in E_{n}, Tartu Ülikooli Toimetised, Acta et Comm. Univ. Tartuensis, 665 (1984),55-62. (Russian)
[4] K. Tenenblat, C.-L. Terng, Bäcklund's theorem for n-dimensional submanifolds of $R^{2 n-1}$; Ann. Math. 111 (1980), 477-490.
[5] C.-L. Terng, A higher dimensional generalization of the Sine-Gordon equations and its soliton theory, Ann. Math., 111 (1980), 491-510.
[6] D. Hilbert, Über Flächen von konstanter Gausschen Krümmung, Trans. Amer. Math. Soc., , (1901), 87-99.
[7] S. B. Kadomcev, Impossibility of some special isometric immersions of the Lobachevsky space, Mat. Sbornik, 107 (1978), 175-198. (Russian)

[^0]: Received January 2, 1984 and in revised form August 17, 1984.

