Bäcklund's theorem and transformation for surfaces V_2 in E_n

Ü. LUMISTE

1. Introduction and classical background. Bäcklund's classical transformation gives a way to generate new solutions of the Sine—Gordon equation $\partial^2 \psi / \partial u^1 \partial u^2 = -\sin \psi$ from a given solution. Its geometrical setting uses some basic propositions for surfaces V_2 in E_3 , which are the following.

A. If there is a diffeomorphism $V_2 \rightarrow V_2^*$, $x \mapsto x^*$, between two distinct surfaces in E_3 such that $\overline{xx}^* \in T_x V_2 \cap T_{x^*} V_2$, $|\overline{xx}^*| = r = \text{const}$ and the angle φ between $T_x V_2$ and $T_{x^*} V_2^*$ is a constant, then both V_2 and V_2^* have constant negative Gaussian curvature equal to $-(\sin^2 \varphi)/r^2$ (the classical Bäcklund's theorem [1], [2]).

B. This diffeomorphism, called a pseudospherical line congruence, maps asymptotic curves of V_2 to asymptotic curves of V_2^* (i.e. it is a Weingarten congruence or W-congruence).

C. Asymptotic curves of a surface V_2 with Gaussian curvature K=const<0(i.e. of an immersion of a piece of the Bolyai—Lobachevsky plane $L_2(K)$ into E_3) form a Chebyshev net: in suitable net parameters u^1 and u^2 the metric of V_2 can be given by $ds^2 = (du^1)^2 + 2\cos\psi \cdot du^1 du^2 + (du^2)^2$.

D. The net angle ψ of a Chebyshev net of a Riemannian V_2 satisfies the equation $\frac{\partial^2 \psi}{\partial u^1} \frac{\partial u^2}{\partial u^2} = -K \sin \psi$, where K is the Gaussian curvature of V_2 ; in case if V_2 is a piece of $L_2(-1)$ this equation is the Sine—Gordon equation.

Due to C and D, every immersion of a piece of $L_2(-1)$ into E_3 gives a solution ψ of the Sine—Gordon equation and this correspondence is one to one up to rigid motion. Due to A and B, there is a transformation of such a solution to another, the analytical formulation of which gives Bäcklund's classical transformation [2].

The aim of this paper is to give some generalizations of propositions A, B and C to the case of surfaces V_2 in E_n , n>3. Note that D needs no generalization because it does not depend on the immersion.

Received January 2, 1984 and in revised form August 17, 1984.

4*

Ü. Lumiste

A generalization of the geometrical Bäcklund theorem and transformation in another direction, for the case of V_m in E_{2m-1} , is given in [4], [5]. If m=2 this reduces to the classical one.

2. Main results. The next generalization of Bäcklund's theorem gives some additions to the classical case too.

Theorem 1 [3]. For two distinct surfaces V_2 and V_2^* in E_n , $n \ge 3$, let $V_2 \rightarrow V_2^*$, $x \mapsto x^*$ be a diffeomorphism such that $\overline{xx^*} \in T_x V_2 \cap T_x V_2^*$ and $|\overline{xx^*}| = r \ne 0$ for every point $x \in V_2$. Let φ be the angle between $T_x V_2$ and $T_{x^*} V_2^*$, and let K and K* be the Gaussian curvatures of V_2 and V_2^* in the corresponding points x and x*. Then the following four conditions are equivalent:

(1) r=const and $\varphi=const$,

· · ·

- (2) $K = K^* = -(\sin^2 \varphi)/r^2 = const$,
- (3) $K = K^* = -(\sin^2 \varphi)/r^2$ and r = const,
- (4) $K = K^* = -(\sin^2 \varphi)/r^2$ and $\varphi = const$.

Under the assumptions of this theorem the diffeomorphism $V_2 - V_2^*$ is called the line pseudocongruence (if n=3 "pseudo" is to be dropped); V_2 and V_2^* are called its focal surfaces. They cannot be arbitrary surfaces, but necessarily must consist of planar points only. Tangent planes T_xV_2 and $T_{x*}V_2^*$ in corresponding points x and x^* lie in an Euclidean 3-plane $(E_3)_x$. Among the second fundamental tensors of V_2 in normal directions to T_xV_2 we can distinguish the tensor h in the normal direction lying in $(E_3)_x$. A pair of null directions of the tensor h is called a pair of h-asymptotic directions in T_xV_2 and corresponding curves on V_2 are called h-asymptotic curves. The diffeomorphism $V_2 - V_2^*$ is called h-asymptotic if it maps h-asymptotic curves of V_2 to h-asymptotic curves of V_2^* .

Theorem 2. Under the same assumptions as in Theorem 1 the next three conditions are equivalent to each other and also to each of the conditions (1)-(4):

- (5) $K = -(\sin^2 \varphi)/r^2 = const$ and $V_2 \rightarrow V_2^*$ is h-asymptotic,
- (6) $K = -(\sin^2 \varphi)/r^2$, r = const and $V_2 \rightarrow V_2^*$ is h-asymptotic,
- (7) $K = -(\sin^2 \varphi)/r^2$, $\varphi = const$ and $V_2 \rightarrow V_2^*$ is h-asymptotic.

Here the Gaussian curvature K of V_2 can be replaced of course by the Gaussian curvature K^* of V_2^* .

Theorem 3. Under the same assumptions as in Theorem 1 let one of the conditions (1)—(7) be satisfied (and hence each of them). Let the field of distinguished normal directions (i.e. belonging in each $x \in V_3$ to $(E_3)_x$) be parallel along the curves tangent to directions of \overline{xx}^* with respect to normal connection of V_2 . Then the net of h-asymptotic curves on V_3 is a Chebyshev net.

۰.

Theorem 3, due to proposition D, gives a possibility to find a solution of the Sine-Gordon equation by the special immersion of a piece of the Bolyai-Lobachevsky plane $L_2(-1)$ into E_n . Theorems 1 and 2 show how this solution can be then transformed.

The well-known Hilbert's theorem [6] states, that there is no solution $\psi: R^2 \rightarrow R$ of the Sine—Gordon equation, which is different from 0 and π in every point $(u^1, u^2) \in R^2$. It follows, that the class of surfaces V_2 , satisfying the assumptions of Theorem 3, does not include the Bolyai—Lobachevsky plane $L_2(-1)$, globally immersed into E_n with regular *h*-asymptotic net. That gives a contribution to the theorems about classes of surfaces V_2 in E_n , which does not contain a V_2 isometric with $L_2(-1)$ (see [7]).

Here it is important that a surface V_2 , satisfying the assumptions of Theorem 3, can be defined by following conditions, without turning to $V_2^* \subset E_n$: 1) V_2 consists of planar points only, 2) the field of normal curvature directions, corresponding to the lines of conjugated net family of V_2 , is parallel along the lines of the same family with respect to normal connection, 3) invariants r and φ (which can be expressed in terms of V_2 only) are constants and $r^2 = \sin^2 \varphi$. In this paper we cannot give the complete explanation of the question about impossibility to realize $L_2(-1)$ by such a V_2 . It needs a new publication.

3. Frame restriction. A local field of orthonormal frames will be choosen so that the origin is $x \in V_2$ and $e_1, e_2 \in T_x V_2$. In formulae $dx = e_I \theta^I$, $de_I = e_K \theta^K_I$; I, K, ... = 1, ..., n; $d\theta^I = \theta^K \wedge \theta^{I_i}_K$, $d\theta^I_K = \theta^L_K \wedge \theta^I_L$, $\theta^K_I + \theta^I_K = 0$ for the field of orthonormal frames in E_n we have then $\theta^3 = ... = \theta^n = 0$, and hence $\theta^1 \wedge \theta^a_1 + \theta^2 \wedge \theta^a_2 = 0$; $\alpha, \beta, ... = 3, ..., n$. By Cartan's lemma we may write $\theta^a_i = b^a_{ij} \theta^j$, $b^a_{ij} = b^a_{ji}$, i, j, ... == 1, 2. From the assumptions of Theorem 1 it follows that the tangent planes $T_x V_2$ and $T_{x*} V_2^*$ lie in an Euclidean 3-plane $(E_3)_x$ because $T_x V_2 \cap T_{x*} V_2^* \ni \overline{xx}^* \neq 0$. The frame can be choosen so that $e_3 \in (E_3)_x$ in each point $x \in V_2$ and $e_1 = (1/r) \overline{xx}^*$. Then the point $x^* \in V_2^*$, corresponding to $x \in V_2$, has the radius vector $x^* = x + re_1$ and from

(3.1)
$$dx^* = (\theta^1 + dr)e_1 + (\theta^2 + r\theta_1^2)e_2 + r(\theta_1^3 e_3 + \theta_1^e e_e),$$
$$\varrho, \sigma, \dots = 4, \dots, n,$$

it follows that by such a choice of the frame we have $\theta_1^2 = 0$. Thus $b_{11}^2 = b_{12}^2 = 0$.

The linear span of normal curvature vectors $b_{ij}^{\alpha} X^i X^j e_{\alpha}$ with arbitrary unit vector $X^i e_i \in T_x V_2$ is called the first normal space $N_x^1 V_2$. Now it has dimension two because it is spanned on $b_{11} = b_{11}^3 e_3$, $b_{12} = b_{12}^3 e_3$ and $b_{22} = b_{22}^{\alpha} e_{\alpha}$, the first two of which are collinear. We can finally restrict our choice of the frame by the condition that $e_4 \in N_x^1 V_2$ in each point $x \in V_2$. Then

$$b_{22}^5 = \ldots = b_{22}^n = 0,$$

and so we have

$$\theta_i^3 = h_{ij}\theta^j, \quad h_{21} = h_{12}, \quad \theta_1^4 = 0, \quad \theta_2^4 = k_{22}\theta^2, \quad \theta_i^5 = \ldots = \theta_i^n = 0,$$

where the notations $h_{ij} = b_{ij}^3$ and $k_{22} = b_{22}^4$ are used.

4. Gaussian curvatures. The above restriction can be done for the surface V_2^* choosing the frame vectors e_I^* at the point $x^* \in V_2^*$ in a similar way. Then

$$e_{1}^{*} = e_{1},$$

$$e_{2}^{*} = e_{2}\cos\varphi + e_{3}\sin\varphi,$$

$$e_{3}^{*} = -e_{2}\sin\varphi + e_{3}\cos\varphi,$$

$$e_{4}^{*} = e_{4}, \dots, e_{n}^{*} = e_{n},$$

and

$$dx^* = e_1^* \theta^{*1} + e_2^* \theta^{*2} = e_1 \theta^{*1} + (e_2 \cos \varphi + e_3 \sin \varphi) \theta^{*2}.$$

Comparing with (3.1) we have

$$\theta^{*1} = \theta^1 + dr, \quad \theta^{*2} \cos \varphi = \theta^2 + r \theta_1^2, \quad \theta^{*2} \sin \varphi = r \theta_1^3,$$

Here $\sin \varphi$ cannot be 0 because this would lead to $\theta_1^3 = 0$ and V_2 would be a torse with line generators xx^* and we had $V_2^* = V_2$ what is excluded by the assumptions of Theorem 1. Therefore

$$(1/r)\theta^2 + \theta_1^2 = \cot \varphi \cdot \theta_1^3.$$

From this, by exterior differentiation and using well-known formulae,

(4.1)
$$d\theta_1^2 = -K\theta^1 \wedge \theta^2, \quad \theta_1^3 \wedge \theta_2^3 = K\theta^1 \wedge \theta^2$$

we have (see [3])

(4.2)
$$K = -((\sin^2 \varphi)/r^2)(1+r_1) + (h_{12}\varphi_1 - h_{11}\varphi_2),$$

where $dr = r_1\theta^1 + r_2\theta^2$, $d\varphi = \varphi_1\theta^1 + \varphi_2\theta^2$.

For the surface V_2^* ,

$$\theta_1^{*3} = de_1^* \cdot e_3^* = ((\sin \varphi)/r)\theta^2, \quad \theta_2^{*3} = de_2^* \cdot e_3^* = \theta_2^3 + d\varphi,$$

and now the second formula in (4.1) for V_2^* gives ([3])

(4.3)
$$K^* = -\frac{\sin^2 \varphi}{r^2} \frac{h_{12} + \varphi_1}{h_{12}(1+r_1) - h_{11}r_2}.$$

These formulae (4.2) and (4.3) for the Gaussian curvatures K and K^* will be used in the proof of Theorems 1 and 2, but they also have their own significance. 5. Proof of Theorem 1. If r = const and $\varphi = \text{const}$, then from (4.2) and (4.3) we obtain (2), (3) and (4) immediately. Conversely, let

$$K = K^* = -(\sin^2 \varphi)/r^2.$$

Then the same formulae (4.2) and (4.3) give correspondingly

(5.1)
$$h_{12}\varphi_1 - h_{11}\varphi_2 = ((\sin^2 \varphi)/r^2)r_1,$$
$$h_{12}r_1 - h_{11}r_2 = \varphi_1.$$

In case of (2) we have K=const and from $Kr^2+\sin^2\varphi=0$ it follows that $dr=r\cot\varphi \cdot d\varphi$ and the last two equations give $\sin^2\varphi \cdot \varphi_1=0$. Therefore $\varphi_1=r_1=0$ and $h_{12}\varphi_2=h_{11}r_2=0$. Here $h_{11}=0$ would lead to $\varphi=0$ what is excluded, and we have (1).

In case of (2) or (3), when r = const or $\varphi = \text{const}$, the same equations give (1). Theorem 1 is proved.

6. Proof of Theorem 2. The *h*-asymptotic curves of V_2 are the null curves of the second fundamental form in the direction e_3 . This form is

$$\mathbf{\Pi}^3 = \theta^1 \theta_1^3 + \theta^2 \theta_2^3 = h_{ij} \theta^i \theta^j$$

For V_2^* it is

$$\Pi^{*3} = \theta^{*1}\theta_1^{*3} + \theta^{*2}\theta_2^{*3} = (\theta^1 + dr) \frac{\sin \varphi}{r} \theta^2 + \frac{r}{\sin \varphi} \theta_1^3(\theta_2^3 + d\varphi).$$

Using here that $h_{11}h_{22}-h_{12}^2=K$ and (4.2), we have

$$\mathbf{H}^{*3} = \frac{rh_{12}}{\sin\varphi}\mathbf{H}^3 + \Phi,$$

where

$$\Phi = \frac{r\varphi_1}{\sin\varphi} \left[h_{11}(\theta^1)^2 + 2h_{12}\theta^1\theta^2 \right] + \left(\frac{\sin\varphi}{r} r_2 + \frac{r}{\sin\varphi} h_{12}\varphi_2 \right) (\theta^2)^2.$$

If r = const and $\varphi = \text{const}$, then $\Phi = 0$, and we have (5). Conversely, let $V_2 \rightarrow V_2^*$ be *h*-asymptotic. Then Φ must be proportional to II³, and therefore

(6.1)
$$h_{22}\varphi_1 = \frac{\sin^2\varphi}{r^2} r_2 + h_{12}\varphi_2.$$

In case of (5) we have $r_i = r \cot \varphi \cdot \varphi_i$. Now (5.1) and (6.1) give

$$\left(h_{12}-\frac{\sin 2\varphi}{2r}\right)\varphi_1-h_{11}\varphi_2=0,$$
$$h_{22}\varphi_1-\left(h_{12}+\frac{\sin 2\varphi}{2r}\right)\varphi_2=0.$$

Ü. Lumiste

Here the determinant is :

$$K + \frac{\sin^2 2\varphi}{4r^2} = -\frac{\sin^4 \varphi}{r^2} \neq 0$$

and hence (1) holds.

In case of (6), from (5.1) and (6.1) it follows that

$$h_{12}\varphi_1 - h_{11}\varphi_2 = 0,$$

$$h_{22}\varphi_1 - h_{12}\varphi_2 = 0,$$

where the determinant is $-h_{12}^2 + h_{11}h_{22} = K \neq 0$. In case of (7) it follows analogously that (1) holds. Theorem 2 is proved.

7. Proof of Theorem 3. If the field of directions e_3 is parallel along the integral curves of the equation $\theta^2 = 0$ with respect to normal connection, then

(7.1)
$$\theta_3^4 = \lambda \theta^2.$$

Taking the unit vectors

$$\hat{e}_1 = e_1 \cos \alpha + e_2 \sin \alpha$$
, $\hat{e}_2 = -e_1 \sin \alpha + e_2 \cos \alpha$

in *h*-principal directions, bisecting *h*-asymptotic directions we have $\hat{h}_{12}=0$ and besides this

(7.2)
$$\theta_1^4 = \theta_2^4 \sin \alpha = k_{22} \sin \alpha \cdot \theta^2,$$
$$\hat{\theta}_2^4 = \theta_2^4 \cos \alpha = k_{22} \cos \alpha \cdot \theta^2,$$
$$\hat{\theta}_i^\varrho = 0.$$

The local parameters v^1 and v^2 on V_2 can be choosen so that

$$\hat{\theta}^1 = a_1 dv^1, \quad \hat{\theta}^2 = a_2 dv^2, \quad \hat{\theta}^3_1 = b_1 a_1 dv^1, \quad \hat{\theta}^3_2 = b_2 a_2 dv^2$$

where $b_1 = \hat{h}_{11}$, $b_2 = \hat{h}_{22}$. Then from the formulae

$$d\hat{ heta}_1^3 = \hat{ heta}_1^2 \wedge \hat{ heta}_2^3, \quad d\hat{ heta}_2^3 = -\hat{ heta}_1^2 \wedge \hat{ heta}_1^3,$$

which hold due to (7.1) and (7.2), using the well-known expression

$$\hat{\theta}_1^2 = \frac{1}{a_1} \frac{\partial a_2}{\partial v^1} dv^2 - \frac{1}{a_2} \frac{\partial a_1}{\partial v^2} dv^1,$$

we have

· · ·

$$\frac{1}{b_i - b_i} \frac{\partial b_i}{\partial v^j} = -\frac{\partial (\ln a_i)}{\partial v^j}, \quad i \neq j.$$

The same computation as in [2] leads us to parameters w^1 , w^2 , in which for V_2

$$ds^{2} = \cos^{2} \chi (dw^{1})^{2} + \sin^{2} \chi (dw^{2})^{2},$$

II³ = sin $\chi \cos \chi [(dw^{1})^{2} - (dw^{2})^{2}]$

56

and now by $u^1 = w^1 + w^2$, $u^2 = w^1 - w^2$ we get

$$ds^{2} = (du^{1})^{2} + 2\cos\psi \, du^{1} \, du^{2} + (du^{2})^{2},$$

II³ = 2 sin $\psi \, du^{1} \, du^{2}.$

The *h*-asymptotic net is a Chebyshev net. Theorem 3 is proved.

References

- [1] A. V. BÄCKLUND, Om utor med konstant negativ krökning, Lunds Univ. Arsskrift, 19 (1883).
- [2] S.-S. CHERN, C.-L. TERNG, An analogue of Bäcklund's theorem in affine geometry. Rocky Mountain J. Math., 10 (1) (1980), 105-124.
- [3] Ü. LUMISTE, L. TUULMETS, On Gaussian curvatures of local surfaces V_2 of a line pseudocongruence in E_n , Tartu Ülikooli Toimetised, Acta et Comm. Univ. Tartuensis, 665 (1984), 55–62. (Russian)
- [4] K. TENENBLAT, C.-L. TERNG, Bäcklund's theorem for n-dimensional submanifolds of R²ⁿ⁻¹, Ann. Math. 111 (1980), 477-490.
- [5] C.-L. TERNG, A higher dimensional generalization of the Sine-Gordon equations and its soliton theory, Ann. Math., 111 (1980), 491-510.
- [6] D. HILBERT, Über Flächen von konstanter Gausschen Krümmung, Trans. Amer. Math. Soc., 2 (1901), 87–99.
- [7] S. B. KADOMCEV, Impossibility of some special isometric immersions of the Lobachevsky space, Mat. Sbornik, 107 (1978), 175–198. (Russian)

FACULTY OF MATHEMATICS TARTU STATE UNIVERSITY 202400 TARTU, USSR

,