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Backlund's theorem and transformation for surfaces V„ in En 

0 . L U M I S T E 

1. Introduction and classical background. Backlund's classical transformation 
gives a way to generate new solutions of the Sine—Gordon equation d2ipldul du2= 
= sin 11> from a given solution. Its geometrical setting uses some basic propositions 
for surfaces V2 in E3, which are the following. 

A. If there is a diffeomorphism V2—V2, x<-+x*, between two distinct surfaces 
in E3 such that xx*€TxV2OTx*V2, |x**|=r=const and the angle (p between TXV2 

and TX*V% is a constant, then both V2 and V2 have constant negative Gaussian 
curvature equal to —(sin2 q>)/r2 (the classical Backlund's theorem [1], [2]). 

B. This diffeomorphism, called a pseudospherical line congruence, maps 
asymptotic curves of V2 to asymptotic curves of V2 (i.e. it is a Weingarten con-
gruence or (^-congruence). 

C. Asymptotic curves of a surface V2 with Gaussian curvature A"=const<0 
(i.e. of an immersion of a piece of the Bolyai—Lobachevsky plane L2(K) into E^ 
form a Chebyshev net: in suitable net parameters u1 and u2 the metric of V2 can be 
given by ds2 = (duv)2+2 cos if/ • du1 du2 4- (du2)2. 

D. The net angle \]/ of a Chebyshev net of a Riemannian V2 satisfies the equa-
tion d2\p/du1du2= —K sin \j/, where K is the Gaussian curvature of V2; in case if 
V2 is a piece of L2(—1) this equation is the Sine—Gordon equation. 

Due to C and D, every immersion of a piece of L2(— 1) into E3 gives a solu-
tion i¡> of the Sine—Gordon equation and this correspondence is one to one up 
to rigid motion. Due to A and B, there is a transformation of such a solution to 
another, the analytical formulation of which gives Backlund's classical transforma-
tion [2]. 

The aim of this paper is to give some generalizations of propositions A, B 
and C to the case of surfaces V2 in En, «>3. Note that D needs no generalization 
because it does not depend on the immersion. 
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A generalization of the geometrical Backlund theorem and transformation in 
another direction, for the case of Vm in E2m_1, is given in [4], [5]. If m=2 this 
reduces to the classical one. 

2. Main results. The next generalization of Backlund's theorem gives some 
additions to the classical case too. 

. . . . J 

Theorem 1 [3]. For two distinct surfaces V2 and V2 in En, let V2 — V*, 
x<-»x* be a diffeomorphism such that xx*^.TxV2C\Tx*V2 and |xx*|=/"t£0 for every 
point x(i V.y. Let <p be the angle between TXV2 and TX*V2, and let K and K* be the 
Gaussian curvatures ofV2 and V2 in the corresponding points x and x*. Then the fol-
lowing four conditions are equivalent: 

(1) r—const and <p == const, 
(2) K=K*=-(sin2 <p)/r2 = const, 
(3) K=K*=-(sin2 (p)/r2 and r=const, 
(4) K=K*= -(sin2 cp)/r2 and cp=const. 

Under the assumptions of this theorem the diffeomorphism V2—V2 is called 
the line pseudocongruence (if n=3 "pseudo" is to be dropped); V2 and V2 are 
called its focal surfaces. They cannot be arbitrary surfaces, but necessarily must 
consist of planar points only. Tangent planes TXV2 and Tx* V2 in corresponding 
points x and x* lie in an Euclidean 3-plane (E3)x. Among the second fundamental 
tensors of V2 in normal directions to TXV2 we can distinguish the tensor h in the 
normal direction lying in (£3)^. A pair of null directions of the tensor h is called a 
pair of fc-asymptotic directions in TXV2 and corresponding curves on V2 are called 
/«-asymptotic curves. The diffeomorphism V2-~V£ is called/i-asymptotic if it maps 
/i-asymptotic curves of V2 to /i-asymptotic curves of V*. 

Theorem 2. Under the same assumptions as in Theorem 1 the next three con-
ditions are equivalent to each other and also to each of the conditions (1)—(4): 

(5) K= — (sin2 <p)/r2=const and V2—V* is h-asymptotic, 
(6) K— —(sin2 <p)/r2, r=const and V2—V2 is h-asymptotic, 
(7) K= —(sin2 (p)/r2, <p=const and K2—V* is h-asymptotic. 

Here the Gaussian curvature K of V2 can be replaced of course by the Gaussian 
curvature K* of V*. 

Theorem 3. Under the same assumptions as in Theorem 1 let one of the con-
ditions (1)—(7) be satisfied (and hence each of them). Lei the field of distinguished 
normal directions (i.e. belonging in each x£ V2 to (E3)x) be parallel along the curves 
tangent to directions of xx* with respect to normal connection ofV2. Then the net of 
h-asymptotic curves on Vs is a Chebyshev net. 
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Theorem 3, due to proposition D, gives a possibility to find a solution of the 
Sine—Gordon equation by the special immersion of a piece of the Bolyai—Loba-
chevsky plane ¿¡¡(—1) into E„. Theorems 1 and 2 show how this solution can be 
then transformed. 

The well-known Hilbert's theorem [6] states, that there is no solution i¡/ : R2-*R 
of the Sine—Gordon equation, Which is different from 0 and % in every point (M1, 
u2)dR2:lt follows, that the class of surfaces V2, satisfying the assumptions of Theo-
rem 3, does not include the Bolyai—Lobachevsky plane £a(— 1), globally immersed 
into E„ with regular ^-asymptotic net. That gives a contribution to the theorems 
about classes of surfaces V2 in E„, which does not contain a V2 isometric with L2{— 1) 
(see [7]). 

Here it is important that a surface V2, satisfying the assumptions of Theorem 3, 
can be defined by following conditions, without turning to V2aEn: 1) V2 con-
sists of planar points only, 2) the field of normal curvature directions, corresponding 
to the lines of conjugated net family of V2, is parallel along the lines of the same 
family with respect to normal connection, 3) invariants r and <p (which can be 
expressed in terms of V2 only) are constants and r2=sin2 <p. In this paper we can-
not give the complete explanation of the question about impossibility to realize 
L2(— 1) by such a V2. It needs a new publication. 

3. Frame restriction. A local field of orthonormal frames will be choosen so 
that the origin is xdV2 and e,, e2£TxV2. In formulae dx—e¡01, de,=eK6f ; 
I,K, ... = 1, . . . ,«; dO'=eKAO^, dO'^e^Adl, 0?+6'K=0 for the field of ortho-
normal frames in En we have then 03= = and hence 0xA0i+02A0£=O; 
a, p, ... =3, ..., n. By Cartan's lemma we may write 6"=b"j8j, b*J=ba

ji, i,j, ...= 
= 1,2. From the assumptions of Theorem 1 it follows that the tangent planes 
TXV2 and TX*V.* lie in an Euclidean 3-plane (E3)x because TXV2 D Tx* V*Bxx* ^ 0. 
The frame can be choosen so that e3£(E3)x in each point x£V2 and e1=(]/r)xx*. 
Then the point x*^V2, corresponding to x£V2, has the radius vector x*=x+re1 

and from 

(3.1) dx* = (01 + dr) e, + (02 + r62) e2 + r (dfe^ + 0fee), 

Q,<T,... = 4, . . . ,«, 

it follows that by such a choice of the frame we have 0f—0. Thus bf1=bf2=0. 
The linear span of normal curvature vectors ba

ijX'Xiea with arbitrary unit 
vector X'EI^TXV2 is called the first normal space NX V2. Now it has dimension 
two because it is spanned on bii—3, bi2— b\2e3 and b22=bl2ex, the first two 
of which are collinear. We can finally restrict our choice of the frame by the con-
dition that e ^ N x V 2 in each point x£V2. Then 

&aa=—= % = 0, 
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and so we have 

0f = fc,70'', h21 = h12, 0i = O, 9t = k220\ 0 ? = . . . = 0? = O, 

where the notations htj=b?j and k22=b\2 are used. 

4. Gaussian curvatures. The above restriction can be done for the surface V2 

choosing the frame vectors at the point x*£V2 in a similar way. Then 

et = «i, 

e2 = e2 cos q> + e3 sin q>, 

et = — e2 sin (p + e3 cos <p, 

C4, . . . , en cn , 
and 

dx* = etO^+etd*2 = e10*l+(e2 cos <p+e3 sin <p) 0*2. 

Comparing with (3.1) we have 

e ^ e i + d r , e*2cosq> = e2+rdi, 0*2sin<? = re?. 

Here sin <¡9 cannot be 0 because this would lead to 0J=O and V2 would be a torse 
with line generators JCC* and we had V* - V2 what is excluded by the assumptions 
of Theorem 1. Therefore 

(l/r)02+0? = cot<p-0f. 

From this, by exterior differentiation and using well-known formulae, 

(4.1) dd2 = -K91A8\ 0?A0i = KO^O2 

we have (see [3]) 

(4.2) K = -((sm2cp)/r2)(l + r1)+(hi2(p1-h11cp2), 

where dr=r161+r202, d(p=(piei + <p2d2. 
For the surface V2, 

0 f = det-et = ((sin <p)/r)e\ 0? = det • = dcp, 

and now the second formula in (4.1) for V* gives ([3]) 

/a K * _ sin2<p . /i^+fflx 
( } • r* h^l + r j - h ^ ' 

These formulae (4.2) and (4.3) for the Gaussian curvatures K and K* will be used 
in the proof of Theorems 1 and 2, but they also have their own significance. 
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5. Proof of Theorem 1. If r=const and <p=const, then from (4.2) and (4.3) 
we obtain (2), (3) and (4) immediately. Conversely, let 

K = K * = -(sm2<p)/r2. 

Then the same formulae (4.2) and (4.3) give correspondingly 

(5.1) fc12 - hu <p2 = ((sin2 cp)/r2) r x , 

hisr1-hnri = q>1. 

In case of (2) we have iT=const and from & a + s i n a ç » = 0 it follows that 
dr=r cot q> • d<p and the last two equations give sin2 cp •<p1=0. Therefore <p1=r1=0 
and hl2(p2=hnr2—0. Here / t u = 0 would lead to <p=0 what is excluded, and 
we have (1). 

In case of (2) or (3), when r=const or (p=const, the same equations give (1). 
Theorem 1 is proved. 

6. Proof of Theorem 2. The /i-asymptotic curves of V2 are the null curves of 
the second fundamental form in the direction e3. This form is 

IP = 0i Of+02 03 = hi.eigj\ 
For V2 it is 

II*3 = 0* !0 f+ 0*20|3 = (01+dr) 0 2 + - A - 0Ï (Gl+dcp). r sin (p 

Using here that h^h22—h\2=K and (4.2), we have 

N * 3 = 

sin (p 
where 

4> = 4 ^ - [ h 1 1 ( 0 1 ) 2 + 2/ii20102] + i i E ^ - ' - 2 + - ^ — fc12<p2)(02)2. smq> \ r sm<p ) 

If r=const and cp =const, then <P=0, and we have (5). Conversely, let 
F2—F2* be /z-asymptotic. Then <P must be proportional to IIs, and therefore 

- , sin2<p 
(6.1) fc22<Pi=—r2+h12(p2. 

In case of (5) we have r~r cot cp • (pt. Now (5.1) and (6.1) give 
( h l 2 — S 1 ° = 0 ' 

sin 2(p\ 
h22(pi~\h12+—27") = 0. 
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Here the determinant is : 

= * O 4 r j ri 

and hence (1) holds. 
In case of (6), from (5.1) and (6.1) it follows that 

h i 2 ( p i - h n ( p 2 = 0, 

h22<Pi~h12(p2 = 0, 

where the determinant is —t%2+h11h22=K^0. In case of (7) it follows analogously 
that (1) holds. Theorem 2 is proved. 

7. Proof of Theorem 3. If the field of directions e3 is parallel along the integral 
curves of the equation 0 2 =0 with respect to normal connection, then 

(7.1) 0* = A02. 

Taking the unit vectors 

ex = e1 cos a + e2 sin a, e2 = — et sin a + e2 cos a 

in /i-principal directions, bisecting /i-asymptotic directions we have fi1 2=0 and 
besides this 

8f = 0| sin a = k22 sin a • 02, 

(7.2) = 0| cos a = k22 cos a • 02, 

Bf = 0. 
The local parameters v1 and v2 on V2 can be choosen so that 

B1 = a1dvl, 62 = a2dv2, B\=b1a1dv1, 0 | = b2a2dv2, 

where b2=h22. Then from the formulae 

ddl = 6lASl, ddl = -dfABl, 

which hold due to (7.1) and (7.2), using the well-known expression 

fia 1 da2 1 dax 
0? = k-t dv2 j-v dv1, di dv1 a2 dv2 

we have 
1 dbt ddnaj . . 

bi-bj dv>~ dv* ' l9"h 

The same computation as in [2] leads us to parameters w1, w2, in which for V2 

dsa = cos2 x (dw1)2+sin2 x (dw2)\ 

II8 = sin x cos x [(¿w1)2 - (dw2)2] 
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and now by M1=W1-|-»V2, M2=W1—w2 we get 

ds2 = (du1)2+2 cos iA du1 du2+(du2)2, 

II3 = 2 sin iA du1 du2. 

The A-asymptotic net is a Chebyshev net. Theorem 3 is proved. 
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