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* On tightness of random sequerices’

WINFRIED STUTE

Let '(é ), be a sequence of random elements in a complete separable metric
space (X, d), defined on some probability space (R, &, P) In many situations,
particularly in statistical large sample theory, it is requlred to show that the laws
L (&), n=1, converge weakly to some specified (Borel) measure u. For this a
general device is to guarantee that Z(£,), n=1, has at least one cluster point
and, in.a second step, that there is-at most.one of such points. While uniqueness
may be shown by applymg general methods for 1dent1fy1ng weak limits (cf.- BIL-
LINGSLEY [1]), the existence part usually takes account of Prohorov’s theorem.
Accordingly, it remains to prove that &,, n=1, is uniformly tight:

(l) for given ¢=0 there ex1sts some compact subset K of X such that
P(¢,4K,)=¢ forall n=1. ' - :

Apart from stochastic arguments, to find such a K,, one has to charicterize
the (relatively) compact subsets of X. This might cause some difficulties due to
the fact that such a description needs a far reaching investigation of the topology
induced by d. In many cases, however there ex1sts a (closed) subspace X, of X
such that :

'(2).the &,’s, as n—oo, concentrate more and more on XO, so that a p0551ble
limit distribution is suppoited by Xj. ’ S

(3) the relative topology induced on X, admxts a sxmpler characterization of
compactness.

An important example we have in’ mmd is the space X=D[0, 1] of right-
continuous functions on [0, 1] with left-hand limits, endowed with the Skorohod
topology (cf. BIRLINGSLEY [1]). The class of processes with -paths in D contains
appropriate versions of partial sum, empirical and quantile processes. In each case
the limit process may ‘be chosen so as_to have continuous paths, i.e..we may take
X,=CJ0, 1], the space of continuous functions on [0, 1]. As a matter of fact the
Skorohod topology .on -C - coincides ‘with the topology of uniform convergence.
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Thus a characterization of compactness in X, is obtained from the classical Arzela—
Ascoli Theorem. Identification of the limit of course relies on the convergence of
the finite dimensional distributions.

In this paper a simple method for proving tightness is proposed which is based
on appropriate X,-valued transformations T,(¢,), ¢=0, of &,, n=1.

Proposition 1, Assume that, for each ¢>0, T,: X—~X, is a measurable trans-
formation such that .

@) T,(&,), n=1, is tight in (X,,d) for each ¢=0,

(5) lim lim sup P(d(T.(&,), £)=n)=0 for all n=>0.

Then {,,, n>1, is tight in (X, d), and each cluster pomt u of £(,), n=l,
satisfies u(Xy)=1.

Proof. Fix some n=0. By (4)'we have, given £>0,
P(T.(E) ¢ M) = n forall n=1

for some finite M=M(n, e)cX,, where' M"={xcX: d(x, M)<n} is the open
n-neighborhood of M in X. For small enough £>0 (5) implies

P, M)y =2y forall n = ny(y.

Since 815 ooy &y 1 are tight in (X, d), we may ﬁnd some finite M (n)=M,>M
in. X such that :
P, 4 M) =2q forall n=1.

For K, we may then take the closure of the set N M, To show that each
k=1

cluster point u is supported by X;, assume w.lo.g. that Z(£,)—~u weakly.
Since X, is closed, X{iX, as #40. Hence it remains .to prove u(X7)=1.
As is well known, the set of #’s for which XJ has a u-null boundary forms a dense
set in (0, «). Hence it suffices to consider only such #’s. In this case

(X9 = lim P(Z,€X3).

That the right-hand side equals one now eas11y follows from (5) and the fact that
T(C,,)EXO for all ¢=0.

Let us show the usefulness of our approach by giving a stralghtforward proof
of the followmg important result (cf. BILLINGSLEY [1}, Theorem 15. 5)

. Proposition 2. Let £,, n=1, be a random sequence in DI[0; l] sich that
(6) for each @=0 there exists some finite a=0 such that

P(lt,(0) =a)=¢ forall n=1.
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(7).for all -n, =0 there exists some 0<d<1 such that for all n=ny(n, )

P(sup kO-LOI=n=e

Thené,, n=1, istight in (D[O0, 1), d), and each cluster point u satisfies u(C[0, 1)=1.

Proof. For féD[0,1], put f(t)=f(1) for t>1 and f(t)=f(0) for t=<O.
Let K be a smooth nonnegative kernel function on the real line, integrating to one
and vanishing outside some bounded interval. Put

TF0) =70 = [fOK@—x)dx = [ft—p)K()dy, 0=t=1

Obviously, feC[0,1}. If sup |f()—f(s)] <n, we have for |t—s|=é:
|t—s|=d

IF =Tl = [Ift=»—fs—NK®dy <n [K()dy =n,

ie. ‘§u|p6|f(t)—f(s)|<n whenever "iul[.;a | f(t)—f(s)l<n. Furthermore, if
| f(0)]<a and Iﬁu'pal F(O—f(s)|<n, we obtain

I = sup /G <a+n/6=b <o
and thus |f(0){=|| fll<b. It follows from (6) and (7) and the Arzela—Ascoli Theo-
rem that T'(¢,), n=1, is tight in C[O0, 1].

Now, we may let X depend on ¢ in such a way that the degree of smoothing
decreases as ¢—~0. To be specific, let

K(x) = K,(x) = 67 Ko (x/e),

where K, is a preassigned probability kernel vanishing outside some finite interval,
say [—1, 1]. Define
T.(NHHO=¢? f S Ko((t—x)]e) dx.

‘We already know that T,(£,), n=1, is tight in C[0, 1] for each &=0. Further-
more,
Jo-fo= [ 1f0-»-fOIKG)dy,
supp (K)
whence
sup |~/ = sup  1f(t=)~f O,

y€supp(K)
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For K=K,, weé have supp(K)c[—¢,¢) and thus sup |f()—f(t)|<n® whenever
Sup | f()—f(s)]<n. Observe that d(f,f)='s sup |f'(t)—f(t)| and conclude that

for 655

KE

. P(d(T (én) 6n)2n)— 2, n Z”o('l, Q) .

Thls shows (5) and completes the proof of the proposition.
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