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On approximation by arbitrary systems in L*-spaces
NGUYEN XUAN KY )

Dedicated to Professor Ldaszlo Leindler on his 50th birthday

1. Introduction. Let —co<a<b<w, p=b—a. Let L2=L2[p] be the space
of all square integrable functions defined on (— o, =) which are p-periodic. The
norm in L%[p] is defined by -

1= { f |f(x)|2dx}"2, fEL¥ p}.

Let ¢={(pk.};:o':b¢ a complete orthonormal system in L%*[p]. For f,,fs, ...
< J.€L*[p] let us denote by [fi,fz,....f,] the linear span of f,, £, ....f,. For
any feL*[p] let

= A = 1 — =
(l) En - En (.f) . qE[tPo,lgfn-,%.] llf q”2s n 091:2"--

be the n-th best approximation of f with respect to the system &. We know that
E2(f) can be given by the generalized Fourier coefficients of f with respect to the
system @, more precisely,

EN=[2 &N} n=012 .

where

a(N= [ f@eodx, k=012, ...

In this paper we give an answer to the following question due to Prof. L.
Leindler: Characterize those orthonormal systems & for which

CEX(D) = co(f 1m, VfELp), n=1,2 ..
where w(f,d) denotes the L2-modulus of continuity of f, i.e.

w(f,0) = ni}ls% £ Ge+R)—f(0)]2.
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2. Lemmas. We need the following lemmas.

Lemma 1. Let ¢,>0 (n=1,2,...). Suppose that the system ®={p)i~, con-
tains a constant function, say: @,=C. The following statements are equivalent:

a) There exists an absolute constant C, such that

€) EP(f) = Co(fe), VfeL’[p).
b) There exists an absolute constant C, such that
O) E2(F) = Cy0,]f s, VfELalp]

where F(x)= f f@&)dr.

Proof. 1. a) b): Let h=0. By the formula

F(x+h)—F(x) f f(x+t) dt

we have

PG —F@le = || [ fex+0d|

.= [ LA ol = J Uf1ede = hlf1s

hence @(F,d)=d] fll.. So, from a) we obtain

En(F) = Clm(Fa Qn) = ClQn“f“ﬁ

This proves (4). -
2. b)—+a): We apply the transform of .Steklov: Let

£ = o f Jeeo)dr, xela, bl

Then f,(x) is absolute continuous, therefore f,(x) is an integral function of VA
L) = f £ O di+£,(@) = J,(0+/,(a).

Since the system ¢ contains the constant fl.lﬂCthﬂ we have E,( f,,) E (f). On
the other hand, we have

LTl = o f "o A—f(X)]Adt“g = w(f—. o).

172l = o7t Hf(x + ) —fOs = o7t (f, 0,):
Hence we obtain by (4): : ‘ .
E,(N) = E,(l)+f-Tle = Ceal Fills +o(f, 0 = (1 +CHo(f, 20
This proves (3).
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Now, we introduce the following class of functions:
L, =[90, P1s - @b Li = {ELY(P): (2, 9) =0, WgeLy), n=0,1,2, ..

b
where (g, q)= f g(x)g(x) dx. If the system @ is complete, then this definition is

equivalent to the following:

&) Ll = {g = Py 2 CE <oo}, n=0,1,2, ...
) k=n+1 'k=n+1 :

We notice that L, and L;- are (linear and closed) subspaces of L?[p].

Lemma 2. (4) is equivalent to the. following:
(6) “G”z = C2ang"2’ VgeLl_rL9 h= 0’ ]9 2, .
where G(x)= f g()dr.

Proof. Let feL®[p] and let S( f) be the generalized 'Fourier series of f with.-
respect to the system &, that is

S(f) = kél::ck(f)(ok

where

. b .
a(N = [f@ex)dx, k=0,1,2, ...

We have by the minimum property of an orthonormal system: .

EZ(f) =‘|L=§H Ck(f)‘l’k”za
or, equivalently, ‘ | '
) o Ef) = 'sua'.ftf(x)g(x)dx, n=01,:...
. geLT a - - .

" lafly=1

Now, we apply this formula for the proof of Lemma 2.
a) (6)~(4): Let feL,, geLL, lgl.=1, and let

Gx) = f e dt, F(x) = [ r@a
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We have by integration by parts and (6):

b b
[ FRgxdx = Foli— [ fx)G @) dx =

b . .
= [ f()G® dx = |f]:IGl: = Ceealfle |
(we notice that since geL} and @,=C, we have G(a)= G(b) 0). From the last

inequality we obtain (4) by an apphcatlon of (7).
b) (4)—~(6): Let feL? gLy, ligl.=1. Since

fb F(x)g(x)dx = f G(x)f(x) dx,
from (4) and (7) we have _
® f JE)Gx)dx = Cronlfla-
Now, let 0sgeLy be fixed. Let g*=g/ligll,; then g*€L} and [g*ls=L Let

G*(x) = [g*(at.
From (8) we obtain:

f J&)G () dx = CoaallfTe - WL P

Hence, [|G*[3=C,0, from which it follows that |]G||2§CSQ,, I gll2 Thls proves (6)
Now let us denote by / the integral operator, that is;" :

1= [ @) dt, fe L2(p), x€la, b),

and let If(x) be a p-periodic function. We know that the operator lisa boundéé
linear operator of the space L? to L% Let .I,: 'L;,L —~L3[p] be the restriction of I to
the space L, and let |||Z,]]| denote the norm of I, th_at is,

® WALl = sup |7gl: = sup Igls-
: yEL . 0€L :
llall, =1 lgllg=1
Then we have ’ '
(10 Hglz = [l ]l {gle. ggLn*,

so that (6) is always true for C,,=|||L]|I-
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Therefore we have:

Lemma 3. Let A,=|||L|l| (n=0,1,2,...).
a) We have S
an E (F) Aol flles VfEL*P),
where F(x)=1If(x).
b) The order A, is best possible, this means that if for A,>0:

En(F) = )'n"f“29 erLzlp],
then ), =4, (n=0,1,2,..).

Proof. a) is proved above. Claim b) follows from the fact that if E,(F)=
=40 fllz, VfEL2[p], then by Lemma 2 we have |Gl,=1,llglls, Vg€LF, hence
‘we obtain by the definition of the norm |||Z,}|| that A, ={||L|||=2,

In the following we consider only a complete orthonormal system &={@o, P1, -}
which satisfies the following conditions:

12) ¢o(t) = C (constant),
13) for n=0,1,2,..., Ip,,€LL.

We remark that the condition (13) is equivalent to the following: for n=0, 1, 2, ...,
if gcL+ then IgeL}.

Lemma 4. Let ®={p,, ¢,, ...} be the complete orthonormal system satisfying
(12) and (13). Let Y,=1¢,, k=0,1,2, ..., where I denotes the integral operator.
Then for n=0, 1,2, ... the system {y}s—, ., is complete, linearly independent in the
subspace Ly .

Proof. a) {Yu}i=,., is linearly independent. Suppose that o, (k = n+1,
n+2, ..., n+m) are real numbers satisfying

n4-m

2 akwk = 0.
k=n+1
Then by differentiation we have '
n+m
2 4@, =0
k=n+1

hence #,=0 (k=n+1,...,n+m), since {p}i., is independent.
b) {Yi)imnsq is complete in LY. Suppose that g€ Ll satisfies

[ @ dx =0 (k= nt)

s
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Let Ig=G(x). Integrating by parts we obtain (by (12) we have Y (a)=y,(b)=0
for k=n+1=0):

b b
(14) 0= [ @ dx = [ 6Rox)dx (k=n+ .

Since g€L}, by (13) we have GeLt, that is
fowmmm_ow<m

and so (14) is valid for every k=0, 1, 2, ... from which it follows by the completeness
of the system &= {p )i, that G(x)= 0 therefore g(x)=C (constant). But ge Ly,
50 by (12) we have’ g(x) =C=0.

Let now n=0 and fixed, Let ¢ -[l//,,+1, Vas2s ...} Since @, is linearly inde-
pendent (Lemma 4), by the process of Gram—Schmidt we obtain the orthonormal
system H=(hy, h,, ..)c L} as follows. For m=1,2, ... let :

(‘l’n+19 ‘lln+1)(‘l/n+19 ll’n+2) e (‘l’n+ls ll’n+m)
(15) A (¢n) — la )Il A (ll’n+27:l//n+l)(|pn+29' l//lx<)-2) e (¢n+2s' l/’n+m)

(lpn-Fm; ll/n-%l)(lp'ﬁ-m; ¢n+2) o (l//n+m; l;’n‘!—m)‘

be the m-th Gram—Schmidt’s determinant of the system &,. Let D}, ,=D, (®,)
be the cofactor of an element al) (I=1,2, ..., m). We define the following infinite
matrix:

1 De@)  _ Du@®,)
Va,(9,) VA (9)4,(D) VA (9,)4:(S,)
(16) A@)=@DMer=| o Dy (9,) Dys(®,)

Va,(9)4:(®.). VA (9)45(8,)

From the matrix 4($,) we define the matrix A4,,(9,):
) ofp .. af)
0 a;a? .o
(17) Am((pn) = . . :m = (al(l:l))l'?I(:l-
0 0 ..of
Let B,(P,)=A, 1,(‘15_..)- be’ the in\}érSe‘matrix of A,(d,): .
B B2 ... BiR
ag) B,(®,) = (ﬂ )c k1= | P B ... Bim |-

BEY BEY.. B
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From the the matrix B,,(®,) (n=1, 2, ...) we define the infinite matrix:

(19) B((pn) = (ﬁl(kl',));?k=l .
The process of Gram—Schmidt gives the following formula:
(20) $,A(P,)=H, HB(P,) =

where @,4(9®,) and HB(®,) denote the usual products of matrices (infinite matrices).
Now we return to the determination of the exact value of |||Z,]||. Let geL;.
Then we have

g= Z CiPxs Hg”2=( > Ckz)m'
) k=n+1 k=n+1

Since the operator / is linear and continuous (in the metric of L?), we have

Ig= 2 Glo,= 2 Ck‘/’k = Xdh
k=n+1 k=n+1 =1
where

@n : d = CB(®,)
with.-C=(C,41,Cps2, ...), d=(d,, d,, ...). By Parseval’s formula we have

22) gl = (3 diy.

Let /2 denote the Hilbert space va all sequences c¢=(¢,, ¢,, .b..) for which [fic];.=
=( 3 )2 = Now, from (21), (22) we obtain
k=1

(23) , LI = sup gl = sup 1CB@,)i-
g€Ly
llglly=1 I|CII,=51

Finally, from (23), by a known theorem of functional analysis (see e.g. JI. B. Kan-
toposri—T". TI. Axnnos [1], p. 193) we have

@ Al = s max VATBAG) Ba(@a]

where B}, (®,) denotes the adjoint matrix of B, (®,) and A;[B};($,)B,.($,)] denotes
an eigenvalue of the matrix B} (®,)B,,(9,).

3. So, the formula (24), and Lemmas 1, 3 prove the following theorem.

' Théorem. Let &={p, )., be a complete orthonormal system in L*[p}], which
satisfies the conditions (12) and (13). Let B,,(®,) be the matrix defined by (15), (16),
(17), (18), and let /1"" ™ be the eigenvalues of the sel f-adjomt matrix By(®,)B,(®,). Let
(25 L= 0(P)= sup max V)(" moop= 0 L2,

mz11
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Then we have -
a) EX(f) = Go(f, @), VfEL?[p]l, n=1,2, ...
where C, is an absolute constant (we can select C;=2; see the proof of Lemma 2);
b) o, is best possible, that is if E,(f)=C,o(f, ), VfEL? n=1,2, ..., then
2=0(gy)-
Remark 1. Let Q(p) be the set of all functions f, which are absolute con-
tinuous in [a, b] and for which /"¢ L%[p], || fl.=1. Let

E®(Q) = sup E®(f) and d,(@) = inf E®(®), n=0,1,2, ...,
req ey .

where & denotes the class of orthonormal systems in L*[p]; d,(2) is called the
n-th width of the set Q. If for some ®*¢& we have d,(Q)=E®*(2),n=0,1,2, ...,
then we say that @* is an extremal system for the set Q.

Let now T be the trigonometric system

T— { 1 cosx sinx cosnx sinnx }
22 T TR TR
We know that for a.set Q=Q((2n)cL?*[2r], the system T is an éxtremal system in
L?[2n], and
d,[Q@n)) = ET[QQ2m} = 1/(n+1), n=0,1,2,....

(See e.g. G. G. LoreNTZ [2] p. 140.) So the system

T,,={_1_ 2Vx (——-t+a) 2V—cos[—t+a) }

V2—P P 2n 2n
is orthonormal in L%[p]; it is an extremal system for the set Q=Q(p)c L*[p] and
(26) 4,[2(P)] = E-[Q(p)] = (1/(n+ D) @n/p), n=0,1,2,....
We return to the definition of g,(®). We have _
@D (@ = |liLlll-= sup -|Igf, = Sup E"’(lf) EX@), n=0,1,2, ..

|7§|f§1
"From (26) and (27) we obtain that-
(28) 0.(?) = 2n/p)(1/(n+1)), n=0,1,2, ....

Remark 2. From the above theorem and (28) it follows that for some ortho-
:normal system @ satisfying (12) and (13), the followmg statements are equivalent:

a) - E2(f) = Go(f, Un), feLMp), n=12,.
b @u/p)(1/(n+1) = 0u(®) = Cs(Ufn), n= L2
where g,(®) is defined by (25); C; and C; denote absolute constants.
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Remark 3. For the trigonometric system T, the following inequalities are valid
(for ¢,(T)=1/(n+1)):

ES(f) = Gea(D| SN, VfEL?(2r], f € L*2x],
lal = G " (D) |l,  V1.€T,

where T, denotes the set of all trigonometric polynomials of order at most n, and
C,=Cz=1. The two inequalities in (29) play an important role in the proofs of the
direct and converse approximation theorems. '

We can ask: is (29) true for an arbitrary system? The answer is that in general
{29) is not true. Indeed, let us consider the following system. Let n,=1 be a fixed
integer. Let

‘We consider the following system:

(29

*
T = {l/v 27[, Cl’ Sl’ Cg, Sg, ceey Cno—l’ Sno—l’ C"0+1’ S”0+1’
C,,o+2, Sﬂo+2’ vevs Cng—1, Sn2-1, C"o’ Sno’ Cn2+1, Snt+1,
Cn2+2, Sni+2, ..., Cod—~1, Sut—1, Cnt, SnZ, Cal+1, Snl+1, }

‘We have ¢,(T*)~1/fn. So the second inequality in (29) is not true for g} (T*)~
~Vn.
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