On approximation by arbitrary systems in L^2 -spaces

ing the state of the second second

NGUYEN XUAN KY

Dedicated to Professor László Leindler on his 50th birthday

1. Introduction. Let $-\infty < a < b < \infty$, p=b-a. Let $L^2=L^2[p]$ be the space of all square integrable functions defined on $(-\infty, \infty)$ which are p-periodic. The norm in $L^2[p]$ is defined by

$$||f||_2 = \left\{ \int_a^b |f(x)|^2 dx \right\}^{1/2}, \quad f \in L^2[p].$$

Let $\Phi = \{\varphi_k\}_{k=0}^{\infty}$ be a complete orthonormal system in $L^2[p]$. For $f_1, f_2, ..., f_n \in L^2[p]$ let us denote by $[f_1, f_2, ..., f_n]$ the linear span of $f_1, f_2, ..., f_n$. For any $f \in L^2[p]$ let

(1)
$$E_n = E_n^{\Phi}(f) = \inf_{q \in [\varphi_0, \varphi_1, \dots, \varphi_n]} ||f - q||_2, \quad n = 0, 1, 2, \dots$$

be the *n*-th best approximation of f with respect to the system Φ . We know that $E_n^{\Phi}(f)$ can be given by the generalized Fourier coefficients of f with respect to the system Φ , more precisely,

$$E_n^{\Phi}(f) = \left[\sum_{k=n+1}^{\infty} c_k^2(f)\right]^{1/2}, \quad n = 0, 1, 2, \dots$$

where

$$c_k(f) = \int_a^b f(x) \varphi_k(x) dx, \quad k = 0, 1, 2, \dots$$

In this paper we give an answer to the following question due to Prof. L. Leindler: Characterize those orthonormal systems Φ for which

$$E_n^{\Phi}(f) \leq c\omega(f, 1/n), \quad \forall f \in L^2[p], \quad n = 1, 2, \dots$$

where $\omega(f, \delta)$ denotes the L²-modulus of continuity of f, i.e.

$$\omega(f,\delta) = \sup_{|h| \le \delta} \|f(x+h) - f(x)\|_2.$$

Received May 21, 1984.

2. Lemmas. We need the following lemmas.

Lemma 1. Let $\varrho_n > 0$ (n=1, 2, ...). Suppose that the system $\Phi = {\varphi_k}_{k=0}^{\infty}$ contains a constant function, say: $\varphi_0 \equiv C$. The following statements are equivalent:

a) There exists an absolute constant C_1 such that

(3)
$$E_n^{\Phi}(f) \leq C_1 \omega(f, \varrho_n), \quad \forall f \in L^2[\rho].$$

b) There exists an absolute constant C2 such that

(4)
$$E_n^{\Phi}(F) \leq C_2 \varrho_n ||f||_2, \quad \forall f \in L^2[p]$$
 where $F(x) = \int_a^x f(t) dt$.

Proof. 1. a) \rightarrow b): Let h>0. By the formula

$$F(x+h)-F(x) = \int_{0}^{h} f(x+t) dt$$

we have

$$||F(x+h)-F(x)||_2 = \left||\int_0^h f(x+t) dt\right||_2 \le \int_0^h ||f(\cdot+t)||_2 dt = \int_0^h ||f||_2 dt = h ||f||_2$$

hence $\omega(F, \delta) \leq \delta \|f\|_2$. So, from a) we obtain

$$E_n(F) \leq C_1 \omega(F, \varrho_n) \leq C_1 \varrho_n ||f||_2.$$

This proves (4).

2. b) \rightarrow a): We apply the transform of Steklov: Let

$$f_n(x) = \varrho_n^{-1} \int_0^{\varrho_n} f(x+t) \, dt, \quad x \in [a, b].$$

Then $f_n(x)$ is absolute continuous, therefore $f_n(x)$ is an integral function of f'_n :

$$f_n(x) = \int_a^x f_n'(t) dt + f_n(a) = \tilde{f}_n(x) + f_n(a).$$

Since the system Φ contains the constant function we have $E_n(f_n) = E_n(f_n)$. On the other hand, we have

$$||f - \tilde{f}_n||_2 = ||\varrho_n^{-1} \int_0^{\varrho_n} [f(x+t) - f(x)] dt||_2 \le \omega(f, \varrho_n),$$

$$||\tilde{f}_n'||_2 = \varrho_n^{-1} ||f(x+\varrho_n) - f(x)||_2 \le \varrho_n^{-1} \omega(f, \varrho_n).$$

Hence we obtain by (4):

$$E_n(f) = E_n(\tilde{f}_n) + \|f - \tilde{f}_n\|_2 \le C_2 \varrho_n \|\tilde{f}_n'\|_2 + \omega(f, \varrho_n) \le (1 + C_2)\omega(f, \varrho_n).$$

This proves (3).

Now, we introduce the following class of functions:

$$L_n = [\varphi_0, \varphi_1, ..., \varphi_n], L_n^{\perp} = \{g \in L^2[p]: (g, q) = 0, \forall q \in L_n\}, n = 0, 1, 2, ...$$

where $(g, q) = \int_{a}^{b} g(x)q(x) dx$. If the system Φ is complete, then this definition is equivalent to the following:

(5)
$$L_n^{\perp} = \left\{ g = \sum_{k=n+1}^{\infty} c_k \varphi_k : \sum_{k=n+1}^{\infty} c_k^2 < \infty \right\}, \quad n = 0, 1, 2, \dots.$$

We notice that L_n and L_n^{\perp} are (linear and closed) subspaces of $L^2[p]$.

Lemma 2. (4) is equivalent to the following:

(6)
$$||G||_2 \le C_2 \varrho_n ||g||_2, \quad \forall g \in L_n^{\perp}, \quad n = 0, 1, 2, \dots$$

where $G(x) = \int_{-\infty}^{x} g(t) dt$.

Proof. Let $f \in L^2[p]$ and let S(f) be the generalized Fourier series of f with respect to the system Φ , that is

$$S(f) = \sum_{k=0}^{\infty} c_k(f) \varphi_k$$

where

$$c_k(f) = \int_a^b f(x) \varphi_k(x) dx, \quad k = 0, 1, 2, \dots$$

We have by the minimum property of an orthonormal system:

$$E_n^{\Phi}(f) = \Big\| \sum_{k=n+1}^{\infty} C_k(f) \varphi_k \Big\|_2,$$

or, equivalently,

(7)
$$E_n(f) = \sup_{\substack{g \in L_n^{\perp} \\ ||g||_2 \leq 1}} \int_a^b f(x)g(x) dx, \quad n = 0, 1, \dots.$$

Now, we apply this formula for the proof of Lemma 2.

a) (6) \rightarrow (4): Let $f \in L_n$, $g \in L_n^1$, $||g||_2 \le 1$, and let

$$G(x) = \int_{a}^{x} g(t) dt, \quad F(x) = \int_{a}^{x} f(t) dt.$$

We have by integration by parts and (6):

$$\int_{a}^{b} F(x)g(x) dx = FG|_{a}^{b} - \int_{a}^{b} f(x)G(x) dx =$$

$$= \int_{a}^{b} f(x)G(x) dx \le ||f||_{2} ||G||_{2} \le C_{2} \varrho_{n} ||f||_{2}$$

(we notice that since $g \in L_n^{\perp}$ and $\varphi_0 \equiv C$, we have G(a) = G(b) = 0). From the last inequality we obtain (4) by an application of (7).

b) (4) + (6): Let $f \in L^2$, $g \in L_n^{\perp}$, $||g||_2 \le 1$. Since

$$\int_a^b F(x)g(x)\,dx = \int_a^b G(x)f(x)\,dx,$$

from (4) and (7) we have

(8)
$$\int_{a}^{b} f(x) G(x) dx \leq C_{2} \varrho_{n} ||f||_{2}.$$

Now, let $0 \neq g \in L_n^{\perp}$ be fixed. Let $g^* = g/\|g\|_2$; then $g^* \in L_n^{\perp}$ and $\|g^*\|_2 = 1$. Let

$$G^*(x) = \int_a^x g^*(t) dt.$$

From (8) we obtain:

$$\int_a^b f(x) G^*(x) dx \leq C_2 \varrho_n ||f||_2, \quad \forall f \in L^2[p].$$

Hence, $||G^*||_2 \le C_2 \varrho_n$ from which it follows that $||G||_2 \le C_2 \varrho_n ||g||_2$. This proves (6). Now let us denote by I the integral operator, that is,

$$If(x) = \int_{a}^{x} f(t) dt, f \in L^{2}[p], x \in [a, b],$$

and let If(x) be a *p*-periodic function. We know that the operator I is a bounded linear operator of the space L^2 to L^2 . Let $I_n: L_n^{\perp} \to L^2[p]$ be the restriction of I to the space L_n^{\perp} , and let $|||I_n|||$ denote the norm of I_n , that is,

(9)
$$|||I_n||| = \sup_{\substack{g \in L_n^{\perp} \\ ||g||_2 \le 1}} ||I_n g||_2 = \sup_{\substack{g \in L_n^{\perp} \\ ||g||_2 \le 1}} ||Ig||_2.$$

Then we have

(10)
$$||Ig||_2 \le |||I_n||| ||g||_2, \quad g \in L_n^{\perp},$$

so that (6) is always true for $C_2 \varrho_n = ||I_n|||$.

Therefore we have:

Lemma 3. Let $\lambda_n = ||I_n|| (n=0, 1, 2, ...)$.

a) We have

(11)
$$E_n(F) \leq \lambda_n ||f||_2, \quad \forall f \in L^2[p],$$

where F(x) = If(x).

b) The order λ_n is best possible, this means that if for $\lambda'_n > 0$:

$$E_n(F) \leq \lambda_n ||f||_2, \quad \forall f \in L^2[p],$$

then $\lambda'_n \geq \lambda_n \ (n=0, 1, 2, \ldots)$.

Proof. a) is proved above. Claim b) follows from the fact that if $E_n(F) \le \le \lambda'_n ||f||_2$, $\forall f \in L^2[p]$, then by Lemma 2 we have $||G||_2 \le \lambda'_n ||g||_2$, $\forall g \in L_n^{\perp}$, hence we obtain by the definition of the norm $||I_n||$ that $\lambda'_n \ge ||I_n|| = \lambda_n$.

In the following we consider only a complete orthonormal system $\Phi = {\varphi_0, \varphi_1, ...}$ which satisfies the following conditions:

(12)
$$\varphi_0(t) \equiv C \text{ (constant)},$$

(13) for
$$n = 0, 1, 2, ..., I\varphi_{n+1} \in L_n^{\perp}$$

We remark that the condition (13) is equivalent to the following: for n=0, 1, 2, ..., if $g \in L_n^{\perp}$ then $Ig \in L_n^{\perp}$.

Lemma 4. Let $\Phi = \{\varphi_0, \varphi_1, ...\}$ be the complete orthonormal system satisfying (12) and (13). Let $\psi_k = I\varphi_k$, k = 0, 1, 2, ..., where I denotes the integral operator. Then for n = 0, 1, 2, ... the system $\{\psi_k\}_{k=n+1}^{\infty}$ is complete, linearly independent in the subspace L_n^{\perp} .

Proof. a) $\{\psi_k\}_{k=n+1}^{\infty}$ is linearly independent. Suppose that α_k (k=n+1, n+2, ..., n+m) are real numbers satisfying

$$\sum_{k=n+1}^{n+m} \alpha_k \psi_k = 0.$$

Then by differentiation we have

$$\sum_{k=n+1}^{n+m} \alpha_k \varphi_k = 0$$

hence $\alpha_k=0$ (k=n+1,...,n+m), since $\{\varphi_k\}_{k=0}^{\infty}$ is independent.

b) $\{\psi_k\}_{k=n+1}^{\infty}$ is complete in L_n^{\perp} . Suppose that $g \in L_n^{\perp}$ satisfies

$$\int_a^a g(x)\psi_k(x)\,dx=0 \quad (k\geq n+1).$$

Let Ig=G(x). Integrating by parts we obtain (by (12) we have $\psi_k(a)=\psi_k(b)=0$ for $k \ge n+1>0$):

(14)
$$0 = \int_{a}^{b} g(x)\psi_{k}(x) dx = \int_{a}^{b} G(x)\varphi_{k}(x) dx \quad (k \ge n+1).$$

Since $g \in L_n^{\perp}$, by (13) we have $G \in L_n^{\perp}$, that is

$$\int_{a}^{b} G(x)\varphi_{k}(x) dx = 0 \quad (k \le n)$$

and so (14) is valid for every k=0, 1, 2, ... from which it follows by the completeness of the system $\Phi = \{\varphi_k\}_{k=0}^{\infty}$ that $G(x) \equiv 0$, therefore $g(x) \equiv C$ (constant). But $g \in L_n^{\perp}$, so by (12) we have $g(x) \equiv C = 0$.

Let now $n \ge 0$ and fixed. Let $\Phi_n = [\psi_{n+1}, \psi_{n+2}, ...]$. Since Φ_n is linearly independent (Lemma 4), by the process of Gram—Schmidt we obtain the orthonormal system $H = (h_1, h_2, ...) \subset L_n^{\perp}$ as follows. For m = 1, 2, ... let

(15)
$$\Delta_{m}(\Phi_{n}) = |a_{lk}^{(n)}|_{l,k=1}^{m} = \begin{vmatrix} (\psi_{n+1}, \psi_{n+1})(\psi_{n+1}, \psi_{n+2}) \dots (\psi_{n+1}, \psi_{n+m}) \\ (\psi_{n+2}, \psi_{n+1})(\psi_{n+2}, \psi_{n+2}) \dots (\psi_{n+2}, \psi_{n+m}) \\ \vdots & \vdots \\ (\psi_{n+m}, \psi_{n+1})(\psi_{n+m}, \psi_{n+2}) \dots (\psi_{n+m}, \psi_{n+m}) \end{vmatrix}$$

be the *m*-th Gram—Schmidt's determinant of the system Φ_n . Let $D_{m,l}^n = D_{m,l}(\Phi_n)$ be the cofactor of an element $a_{lm}^{(n)}$ (l=1, 2, ..., m). We define the following infinite matrix:

$$(16) \quad A(\Phi_n) = (\alpha_{lk}^{(n)})_{l,k=1}^{\infty} = \begin{pmatrix} \frac{1}{\sqrt{\Delta_1(\Phi_n)}} & \frac{D_{12}(\Phi_n)}{\sqrt{\Delta_1(\Phi_n)\Delta_2(\Phi_n)}} & \frac{D_{13}(\Phi_n)}{\sqrt{\Delta_2(\Phi_n)\Delta_3(\Phi_n)}} \cdots \\ 0 & \frac{D_{22}(\Phi_n)}{\sqrt{\Delta_1(\Phi_n)\Delta_2(\Phi_n)}} & \frac{D_{33}(\Phi_n)}{\sqrt{\Delta_2(\Phi_n)\Delta_3(\Phi_n)}} \cdots \\ \vdots & \vdots & \vdots \end{pmatrix}.$$

From the matrix $A(\Phi_n)$ we define the matrix $A_m(\Phi_n)$:

(17)
$$A_{m}(\Phi_{n}) = \begin{pmatrix} \alpha_{11}^{(n)} & \alpha_{12}^{(n)} & \dots & \alpha_{1m}^{(n)} \\ 0 & \alpha_{22}^{(n)} & \dots & \alpha_{2m}^{(n)} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \alpha_{mm}^{(n)} \end{pmatrix} = (\alpha_{lk}^{(n)})_{l, k=1}^{m}.$$

Let $B_m(\Phi_n) = A_m^{-1}(\Phi_n)$ be the inverse matrix of $A_m(\Phi_n)$:

(18)
$$B_{m}(\Phi_{n}) = (\beta_{ik}^{(n)})_{i,k=1}^{m} = \begin{pmatrix} \beta_{11}^{(n)} & \beta_{12}^{(n)} & \dots & \beta_{1m}^{(n)} \\ \beta_{21}^{(n)} & \beta_{22}^{(n)} & \dots & \beta_{2m}^{(n)} \\ \beta_{m1}^{(n)} & \beta_{m2}^{(n)} & \dots & \beta_{mm}^{(m)} \end{pmatrix}.$$

From the the matrix $B_m(\Phi_n)$ (m=1, 2, ...) we define the infinite matrix:

(19)
$$B(\Phi_n) = (\beta_{lk}^{(n)})_{l,k=1}^{\infty}.$$

The process of Gram-Schmidt gives the following formula:

(20)
$$\Phi_n A(\Phi_n) = H, \quad HB(\Phi_n) = \Phi_n$$

where $\Phi_n A(\Phi_n)$ and $HB(\Phi_n)$ denote the usual products of matrices (infinite matrices).

Now we return to the determination of the exact value of $|||I_n|||$. Let $g \in L_n^{\perp}$. Then we have

$$g = \sum_{k=n+1}^{\infty} C_k \varphi_k, \quad \|g\|_2 = \left(\sum_{k=n+1}^{\infty} C_k^2\right)^{1/2}.$$

Since the operator I is linear and continuous (in the metric of L^2), we have

$$Ig = \sum_{k=n+1}^{\infty} C_k I \varphi_k = \sum_{k=n+1}^{\infty} C_k \psi_k = \sum_{l=1}^{\infty} d_l h_l$$

where

(21)
$$d = CB(\Phi_n)$$

with $C=(C_{n+1},C_{n+2},...)$, $d=(d_1,d_2,...)$. By Parseval's formula we have

(22)
$$||Ig||_2 = \left(\sum_{i=1}^{\infty} d_i^2\right)^{1/2}.$$

Let l^2 denote the Hilbert space of all sequences $c = (c_1, c_2, ...)$ for which $||c||_{l^2} = (\sum_{k=1}^{\infty} c_k^2)^{1/2} < \infty$. Now, from (21), (22) we obtain

(23)
$$|||I_n||| = \sup_{\substack{g \in L_n^{\perp} \\ ||g||_{1} \le 1}} ||Ig||_2 = \sup_{\substack{c \in I^2 \\ ||c||_{l^2 \le 1}}} ||CB(\Phi_n)||_{l^2}.$$

Finally, from (23), by a known theorem of functional analysis (see e.g. Л. В. Канторович—Г. П. Акилов [1], р. 193) we have

(24)
$$|||I_n||| = \sup_{m \ge 1} \max_{1 \le j \le m} \sqrt{\lambda_j [B_m^*(\Phi_n) B_m(\Phi_m)]}$$

where $B_m^*(\Phi_n)$ denotes the adjoint matrix of $B_m(\Phi_n)$ and $\lambda_j[B_m^*(\Phi_n)B_m(\Phi_n)]$ denotes an eigenvalue of the matrix $B_m^*(\Phi_n)B_m(\Phi_n)$.

3. So, the formula (24), and Lemmas 1, 3 prove the following theorem.

Theorem. Let $\Phi = \{\varphi_k\}_{k=0}^{\infty}$ be a complete orthonormal system in $L^2[p]$, which satisfies the conditions (12) and (13). Let $B_m(\Phi_n)$ be the matrix defined by (15), (16), (17), (18), and let $\lambda_j^{(n,m)}$ be the eigenvalues of the self-adjoint matrix $B_m^*(\Phi_n)B_m(\Phi_n)$. Let

(25)
$$\varrho_n = \varrho_n(\Phi) = \sup_{m \ge 1} \max_{1 \le j \le m} \sqrt{\lambda_j^{(n,m)}}, \quad n = 0, 1, 2, \dots.$$

Then we have ...

a)
$$E_n^{\phi}(f) \leq C_3 \omega(f, \varrho_n), \quad \forall f \in L^2[p], \quad n = 1, 2, \dots$$

where C_3 is an absolute constant (we can select $C_3=2$; see the proof of Lemma 2);

b) ϱ_n is best possible, that is if $E_n(f) \leq C_4 \omega(f, \varrho'_n)$, $\forall f \in L^2$, n = 1, 2, ..., then $\varrho_n = O(\varrho'_n)$.

Remark 1. Let $\Omega(p)$ be the set of all functions f, which are absolute continuous in [a, b] and for which $f' \in L^2[p]$, $||f'||_2 \le 1$. Let

$$E_n^{\Phi}(\Omega) = \sup_{f \in \Omega} E_n^{\Phi}(f)$$
 and $d_n(\Omega) = \inf_{\Phi \in \mathscr{S}} E_n^{\Phi}(\Omega)$, $n = 0, 1, 2, ...,$

where \mathcal{S} denotes the class of orthonormal systems in $L^2[p]$; $d_n(\Omega)$ is called the *n*-th width of the set Ω . If for some $\Phi^* \in \mathcal{S}$ we have $d_n(\Omega) = E_n^{\Phi^*}(\Omega)$, n = 0, 1, 2, ..., then we say that Φ^* is an extremal system for the set Ω .

Let now T be the trigonometric system

$$T = \left\{ \frac{1}{\sqrt{2\pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\sin x}{\sqrt{\pi}}, \dots, \frac{\cos nx}{\sqrt{\pi}}, \frac{\sin nx}{\sqrt{\pi}}, \dots \right\}.$$

We know that for a set $\Omega = \Omega(2\pi) \subset L^2[2\pi]$, the system T is an extremal system in $L^2[2\pi]$, and

$$d_n[\Omega(2\pi)] = E_n^T[\Omega(2\pi)] = 1/(n+1), \quad n = 0, 1, 2, ...$$

(See e.g. G. G. LORENTZ [2] p. 140.) So the system

$$T_p = \left\{ \frac{1}{\sqrt{2p}}, \frac{2\sqrt{\pi}}{p} \sin\left(\frac{p}{2\pi}t + a\right), \frac{2\sqrt{\pi}}{p} \cos\left(\frac{p}{2\pi}t + a\right), \ldots \right\}$$

is orthonormal in $L^2[p]$; it is an extremal system for the set $\Omega = \Omega(p) \subset L^2[p]$ and

(26)
$$d_n[\Omega(p)] = E_n^{T_p}[\Omega(p)] = (1/(n+1))(2\pi/p), \quad n = 0, 1, 2, \dots$$

We return to the definition of $\varrho_n(\Phi)$. We have

(27)
$$\varrho_n(\Phi) = |||I_n||| = \sup_{\substack{g \in L_n^{\perp} \\ ||g||_{\infty} \leq 1}} ||Ig||_2 \ge \sup_{If \in \Omega} E_n^{\Phi}(If) = E_n^{\Phi}(\Omega), \quad n = 0, 1, 2, \dots.$$

From (26) and (27) we obtain that

(28)
$$\varrho_n(\Phi) \ge (2\pi/p)(1/(n+1)), \quad n = 0, 1, 2, ...$$

Remark 2. From the above theorem and (28) it follows that for some orthonormal system Φ satisfying (12) and (13), the following statements are equivalent:

a)
$$E_n^{\Phi}(f) \leq C_5 \omega(f, 1/n), f \in L^2[p], n = 1, 2, ...,$$

b)
$$(2\pi/p)(1/(n+1)) \le \varrho_n(\Phi) \le C_6(1/n), \quad n=1,2,...,$$

where $\varrho_n(\Phi)$ is defined by (25); C_5 and C_6 denote absolute constants.

Remark 3. For the trigonometric system T, the following inequalities are valid (for $\varrho_n(T)=1/(n+1)$):

(29)
$$E_n^T(f) \leq C_7 \varrho_n(T) \|f'\|, \ \forall f \in L^2[2\pi], \ f' \in L^2[2\pi],$$
$$\|t'_n\| \leq C_8 \varrho_n^{-1}(T) \|t_n\|, \ \forall t_n \in T_n$$

where T_n denotes the set of all trigonometric polynomials of order at most n, and $C_7 = C_8 = 1$. The two inequalities in (29) play an important role in the proofs of the direct and converse approximation theorems.

We can ask: is (29) true for an arbitrary system? The answer is that in general (29) is not true. Indeed, let us consider the following system. Let $n_0 \ge 1$ be a fixed integer. Let

$$T = \left\{ \frac{1}{\sqrt{2\pi}}, \frac{\cos kx}{\sqrt{\pi}}, \frac{\sin kx}{\sqrt{\pi}} \right\}_{k=1}^{\infty} = \left\{ \frac{1}{\sqrt{2\pi}}, C_k(x), S_k(x) \right\}_{k=1}^{\infty}.$$

We consider the following system:

$$\begin{split} T^* &= \big\{ 1 \big/ \sqrt{2\pi}, \ C_1, \, S_1, \, C_2, \, S_2, \, \dots, \, C_{n_0-1}, \, S_{n_0-1}, \, C_{n_0+1}, \, S_{n_0+1}, \\ & C_{n_0+2}, \, S_{n_0+2}, \, \dots, \, C_{n_0^2-1}, \, S_{n_0^2-1}, \, C_{n_0}, \, S_{n_0}, \, C_{n_0^2+1}, \, S_{n_0^2+1}, \\ & C_{n_0^2+2}, \, S_{n_0^2+2}, \, \dots, \, C_{n_0^4-1}, \, S_{n_0^4-1}, \, C_{n_0^2}, \, S_{n_0^2}, \, C_{n_0^4+1}, \, S_{n_0^4+1}, \, \dots \big\}. \end{split}$$

We have $\varrho_n(T^*) \sim 1/\sqrt{n}$. So the second inequality in (29) is not true for $\varrho_n^{-1}(T^*) \sim \sqrt{n}$.

References

[1] Л. В. Канторович—Г. П. Акилов, Функциональный анализ, Nauka (Москва, 1977).

[2] G. G. LORENTZ, Approximation of functions, Holt, Rinehart and Winston (New York, 1966).

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES P. O. BOX 127 1364 BUDAPEST, HUNGARY