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On partial asymptotic stability and instability. III
(Energy-like Ljapunov functions)

L. HATVANI

Dedicated to Professor LdszIlé Leindler on his 50th birthday

1. Introduction

The main tools in the proofs of the theorems in [1]—[2] were certain invariance
principles. Their applications were made possible by the special structure of the basic
differential equation: in [1] and [2] the equations were autonomous and asymptotically
autonomous, respectively.

In this paper we study the case, when there are no direct restrictions on the
right-hand side of the equation. Theorems of such type have been established first
by A. M. Liapunov [3]. Besides some other conditions, he required the Ljapunov
function V" to be decrescent, i.e. V(x,t)—0 uniformly in ?€R, as x-0.
V. V. RUMIANCEV [4] generalized these theorems to partial asymptotic stability.
Since the uncontrolled part z of the coordinates may be unbounded along motions,
the condition that ¥ be decrescent has come into these generalizations even in a
stronger form: the condition “V'(y, z, t)—0 uniformly in (z, 1)éR*XR, as y—-0”
are required in them. Sometimes in practice it is very difficult to construct such a
Ljapunov function. For example, the total mechanical energy of a mechanical
system is decrescent with respect to the velocities only in that case when no potential
forces act on the system. Namely, let us consider again the motion of a material
point in a constant field of gravity along a surface under the action of frictional
forces [1}, [2]. It is a very reasonable conjecture that if the surface is a cup looking
upward then the equilibrium is asymptotically stable with respect to the velocities.
However, using the generalizations established in [4] one can prove this property
only in that case when the surface is a horizontal plane.

In mechanics the total mechanical energy, i.e. the sum of the kinetic and poten-
tial energy is often used as a Ljapunov function for stability investigations. These
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applications inspired us to give a sufficient condition for partial asymptotic stability
using a non-decrescent Ljapunov function which is the sum of two auxiliary func-
tions. The result will be applied to the study of the conditions of the asymptotic
stability with respect to the velocities of equilibrium states in mechanical systems
under the action of dissipative and potential forces depending also on the time.

.2, The main»gh'ecrems- T

Consider the differential equation
@1 T X2 X(x 1) (1€R., XERY.
Let x=(y,z) be a partition of the vector x¢R* (y€R™, z€R", l=m=k, n=k—m)

and suppose that the right-hand side of (2.1) satisfies the same conditions as in [1]
(see Section 2), i.e. the function X is defined on the set I'y(H):

I y(H) = G, (H)XR+, G, (H) = {0, Z)GR"'XR" W <H} O<H=w),
1t 18 contmuous in x and measurable in ¢, and satisfies the Caratheodory condmon
locally. The solutions of (2.1) are z-continuable, and x=0-1is a solution of the
equation, i.e. X(0,)=0 for all, #«¢R, . S

- Let A" be the class of continuous strictly mcreasmg functlons a: R, R,
such that a(0)=0., : :

. For formulatlng our main result a new- concept is needed. A contlnuous func-
tion ¢@: R+—-R+ ~is said to be integrally positive (see [5], [6]) if - f o) dt=oo
whenever L o .

1= U[a.,ﬂ.] and o< Bi< diny, Bi 0 ;’a>:0'

hold for all i=1,2, ... w1th some posmve constant ‘8.

' Denote by [czz]+ and [a]_ the posmve and the negatlve parts of the real num-
ber a, respectlvely, Le. [oc]+ —max {o, oc} [a]_ '=max {0 —al.

Theorem 2.1. Suppose that there exist two- functwns W, Ve: Ty(H )—»R which
are continuous, locally Llpschttzzan and sattsfy the followmg condmons on the set
F,(H): :

(l) V(xs ’) _I/l(ts t)+V2(x’ )ZO
(i) Vi(x, 1)=0; R
(m) the derwatne of V with lespecl to (2.1) admits an estiniate

Vix, )= —(p(t)c(V(\ 1))

with some c€ X and some integrally positive function ¢: R, —~R.;
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(iv) for every. o, a; >0- andfor every continuous function..&: R; —R" the inequal-
ities V(&(1), 1)=a, V,({(t) t)ZOt1 (16R+) tmply that the functzon

f [V"(g(s)a S)]+( )ds

is uniformly continuous on R, where the symbol [l means that ‘ezther the
positive part [-], or the negative part [ -1_ is considered for all sER, .

Then for every solution x(t) of (2.1) defined for all t large enough  lim Vi(x(@), t)=
=0, and V(x(t) t) has aﬁmte limit as t—co.

Proof Define the functlons v (t): V(x(t),t) vz(t) V,,(x(t), t) v(2) —vl(t)+
+v2(t) Obviously, »(¢) is nonincreasing, and bounded from below, so 11m v(t)=: %
exists and is finite. It is sufficient to show that ‘1_1.12 v, (1)=0.

. Suppose the contrary. Then, in consequence of (i)—(iii) we have
Cn lifninfvl-(t) < limsupvl.(t =: vf = oo,
vz* = lim inf vf.(t) = vo u1 <y, = hm sup vz(t)

Now we show the existence of a sequence of dlS_]OlI’lt mtervals on which the
variations of the function vz(t) are bounded from below by a positive constant.
Indeed, let g:=v;/4=0 if vf <o, and let &=0 be arbitrary if v}=oc. There
exists a T€R, such that v,=v(f)<v,+¢ forall t=T. For the sake of definiteness
let us suppose that “plus” sign stands in condition (iv) of the theorem. Obviously,
an appropriate sequence T<f|<f] <...<f;<f]<... has the properties

v (1) =3e, n()=¢g e=un@)=3e for (€,f] (=12..).
Since v,(1)=v()—2,(¢), we obtain ' :

v (1)) = vy—2e, v () = vp—e (i=1,2..)
Consequently, Sl ' o

4 TR 4

0<e=u()-v() = f [Va(x (), t)]+dt (i=1,2.).
4

Hence, because of condmon (iv), it follows that #;—1/=6=>0 (i=1,2,...) with

some constant 8. By condition (iii) this implies v(t)—» — oo, Wthh is a contradlctlon

The theorem is proved. : :

If the function V; in the theorem is even positive definite with respect to y,
then for every solution” x(1)=(y(¢), z(t)) defined for all ¢ large enough y(¢)-~0 as
t—oo, If, in addition, ¥(0,7)=V(0,1)=0 and ¥(x,f)=0, then V=W +V; is
a positive y-definite Ljapunov-function to (2. l) so the zero solutlon is even y-stable
[41, which-leads-to thé following S :
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Corollary 2.1. Suppose that there exist two Ljapunov functions
Vi Va: I,(H) =R (0 <H <H)

satisfying the following conditions on the set I' ,(H’):
@) Va(x, )=0;
(i) there is a functiqn a, €4 such that

a(Yh) =V, z, 0.

Suppose, in addition, that conditions (iii)}—(iv) in Theorem 2.1 are also satisfied.

Then the zero solution of (2.1) is asymptotically y-stable and for every solution
x(t) with sufficiently small initial values the functzon Va(x(2), t) has a finite limit
as t—oo,

Let x=(y’, z’) be another partition of the vector x€R*: y’¢R™,z’¢R", m=m'=
=k, w=k—m'. If V] is decrescent with respect to y’, then condition (iii) becomes
simpler:

Corollary 2.2. Suppose that there exist two Ljapunov functions
%.¥: I,(H) ~R (0<H <H)
satisfying the following conditions on the set I',(H"):

@) ¥Va(x, 1)=0;
(ii) there are functions a,, b,€¢ A" such that

a,(y) =0,z 0= by

Vix, ) =—o@)c(y’)

(iii) an inequality

holds with some c€X" and some integrally positive ¢: R, ~R,;
(@iv) for every a, =0 the function

f sup {[V2(y,a zla S)]+(—): (,V,, z’)€>Ma.ﬂ(S)} ds

is unformly continuous on R, , where
M 5(5) = {(y", 2)ER"XR" : V(' Z,9) =a, |y'| =B}
Then the statement of Cor ollary 2 1 holds.

Remark 2.1. In condmon (iii) of Theorem 2.1 (and Corollanes 21-22) ¢
is integrally positive which, roughly speaking, means that it cannot be small in
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average in any period as 7—<o. It can be formulated also in the following way:

for every =0
144

lim inf [ o@ds=>o0.
t

Therefore, for example, every nonnegative continuous periodic function not vanishing
on any interval is integrally positive. But, obviously, a function tending to zero as.
t-e cannot be integrally positive even if its integral equals infinity. However, by
experiences asymptotic stability may appear also in this case.
Let us relax the condition of integral positivity. We say that a continuous func-
tion ¢: R, —~R, is weakly integrally positive [6] if f @=o whenever
f

I= 'U1 @, B), si<Pi<or, P~ =d>0, a,=Bi=y (i=12..)

hold with some positive constants J, y. :

It is easy to see that any nonincreasing function whose integral on R, equals
infinity is weakly integrally positive.

We say that equation (2.1) has property P with respect to ¥, ¥; if for every
&, >0 there exist #>0, T€R, such that for every solution x(¢) of (2.1) the point
(x(z), t) cannot be contained in the set

Mz, a,n) = {(x, 0): a =V (x, )+Va(x, ) < ate, Vi(x, D) =n}

during any period longer than T. -

Analysing the proof of Theorem 2.1 one can show that property P makes it
possible to choose the sequence {(#;, #;)} in the proof so that the inequality ¢/, , —
—t{=y holds for all i=1,2,.... Consequently, possessing property P we can
assume the function ¢ in condition (iii) of Theorem 2.1 to be weakly integrally
positive instead of integrally positive.

Property P is often guaranteed by means of another auxiliary function [5),
[6], [14). For example, if for some &, o, n there exists a function W: M(e, a, n)~R
such that for every continuous function {: R.—~R, with ({(¢), t)eM(e, a,n)
(t€R,) the function W({(z),t) is bounded from above and the condition

toto
lim [ W@, )dr=e

to

holds uniformly with respect to #,ER,, then (2.1) has property P.

11
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:.3.- Applications .

1. Consider the generahzed Liénard equation
(€B)) x+a(t)g(x, 2%+ b(Of(x) =
.where the functions a: R, —~R,, g: R®®~R,, f: R—R arecontinuous, b: R, ~R_
'1s contmuously differentiable, and b(t)>0 F (x) f Ff@)du=0 for all t¢R,,

x€R. This equation; which describes the oscillation of a material pomt round the
origin - x=0, - has been investigated by many authors [7]—[12]. In [13] we obtained
sufficient conditions for the asymptotic stability if O0=a(t)=4,, 0<by,=b(t)=8,
(t€¢R,), and for the asymptotic x-stability provided that 'l_i.rg b(t)=co. Using our
results proved in Section 2 of the present paper we can sharpen these theorems and
get sufficient conditions for the asymptotic x-stability, too.

Frrst we deﬁne the auxiliary functions

V() =222, Vi(x, 1) := bOF ().
‘The derivatives of V:=V+V, and ¥, read as follows:
Vix, %, 1) = —a(g(x, )F*+b()F(x) = =2a()g(x, W @) +Hb /b (t))Vé(x, %, 1),
Vz(x X, 1) = (b(t)/b(i))Vz(x, X, t)+b(t)Xf ().
Applying Corollary 2.1 we obtain the following
-Corollary 3.1. Suppose that :
(i) b(t)=0 and- b(2)/b(t) is bounded from below on R, ;
() a(t) is integrally positive on R, ;
* (i) for every O=<c,<C, there is'a g,>0 such that

g(u, U) =g, (UER, ¢y = ol = Cy);

(1v) f(x) is bounded on R.

. THen the zero solution of (3.1) is asymptottcally x-stable and for every solution
x(t) the function b(t)F(x(t)) has a finite limit. _

Some conditions in this corollary become simpler if the solutions are gnaranteed
to be bounded.

Corollary 3.2. Suppose that

() —Bo=b(1)=0, b(t)=by>0 (1€ R,);
(ii) a(t) is integrally positive on R ;
(iil) g(u, v)>0 if v=0;
(iv) l}l}irn@ F(x)=co.
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Then the zero solution of (3.1) is asympltotically x-stableand for every solution
.x(t) the funcuon F(x(?)) has a finite limit. o

Proof. By condltrons (1) (iv) we have V(u, v, z)<0 ,H_l'lpll V(u,v 1)=co,
Consequently, x and X are bounded on R, along every solution, so the conditions

- of Corollary 3.1 are satisfied.

Surprisingly, the boundedness, even the stability with respect to x, can be
guaranteed by a modification of cond1t1on (ii) provided g(u z/)>0 on R?

Corollary 33, Suppose that
() b(t)<0 and b(2)/b(t) is.bounded from below on R,;

(i) a(?)=0 for t€R,, and f dtfa(t)<oo;

(il)) g, v)=0 for ()R,

Then the zero solution of. 3.1 is stable asymptotically stable with respect to x,
and every solution x(t) with sufficiently small initial values |x(t,), |% (t,)| has a finite
limit as t— .

Proof. All the conditions of . Corollary 3.4in [12] are. obvrously met by g:=x,
=%, A(9):=1,11(t, 9):=b(1) F (), Q(t, 4, )= —a(t)g(g, )4, a=1. Consequently,
the zero solution of (3.1) is stable and every solution has a finite limit as 7— eo.
By Schwarz’s inequality, condition (ii) implies the function a(f) to be integrally
positive, so- all the condition of Corollary 3.1-are satisfied. .

The case of nondecreasing function b(¢) will be treated for a mechanical system
of arbltrary degree of freedom.

II. Consider a holomorphic mechanical system of r degrees of freedom w1th
time-independent constraints under the action of potential and dissipative forces
dependmg on the time, too. Let the motlons be descnbed by the Lagranglan equatron

AT O or e
(3-2) g og - 8 g qER‘).. ‘

Here we use the same.notations as in [1]—[2] T= T(q, q) (1/2)qTA(q)q is the
kinetic energy; P(q,?): gz(t)P*(q) denotes the potentlal eniergy in which g: R, —
—(0, =) and P*: R"—~R, are continuously differentiable functions. By 0=0(g, ¢, ?)
we denote the resultant of frictional and.gyroscopic forces. This means that
0"(g, 4, 1)§=0 for all values of the variablés. Assume that g=4=0 is an equi-
‘librium state to system (3.2)'and P*(0)=0.

' In [1], [2] we investigated the statiopary case (i.e. P andAQ were independent
of ). In the instationary case it gives rise to difficulties. that the total mechanical

1"
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energy is not constant along the motions and the invariance principle cannot be
applied any more [5], [6]. L. SALvADORI [14] has given a sufficient condition for the
asymptotic stability of the equilibrium g=¢=0 of (3.2) with respect to the coordi-
nates g. Now we are interested in the asymptotic behaviour of the velocities provided
that the dissipation is complete in a certain sense. Particularly, we seek for con-
ditions of the asymptotic stability of the equilibrium g=4=0 with respect to the
velocities.

If g is nonincreasing the results proved in paragraph I of the present section
for the case of one degree of freedom can be generalized to (3.2). In the sequel g is
not supposed to be monotone.

By the transformation §=g(¢)y, introduced by L. SALVADORI [14), system (3.2)
can be rewritten into the form

s = ot
(3.3) =gy
dorr orT _ _gort 9P 0
dt 9y gaq—gi}y gaq?
where

T*(q,») = (1/2y"4(@)y, 25, ) =02(q. 2 ).

Denote by A(g) and A(g) the smallest and the largest eigenvalue of the positive sym-
metric matrix 4(g), respectively. For M>0 let the set” EyCR be defined by
E, = {gcR": P*(q)é M}.

The derivative of the function' H(q, y):=T*+ P* with respect to (3.3) is

H(g, y, ) =-2@/)T*+(1/g)y0*.

Making the choice ¥;:=T* V;:=P*, from Theorem 2.1 we obtain a lemmé, which
may be of some independent interest.

Lemma 3.1. Suppose that for every M =0 there exist a function ¢: R, —+R,
and a constant L such that @+24/g is integrally positive and the following conditions
are satisfied:

@) Q"(9, 4, Nd= - () AP for all q€Ey, 4ER', t€R,;

(ii) {grad P*(g)| él;[’»(q)]"2 (g€ En);

(iii) the function f g(s) ds is uniformly continuous on R, .
Then for every mootion g=q(t) of (3.2) we have
69 §) = o(gI[Aq@O)]" . P*(a(9) - const. (¢ ~=).

If it is ““a priori” known that ¢(¢) is bounded along every motion (e g PXg)—+<
as |g|—<), then A(g) can be replaced by 1 in (1) condition (ii) is not needed and
one can state §(t)=o0(g(t)) (t—+).
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Let us now consider the case of the viscous friction, i.e. if Q(q, 4, t)=—B(qg, t)g
where B is a symmetric positive semi-definite matrix; the smallest eigenvalue of it
we denote by f(q, t).

Theorem 3.1. Suppose that for every M=>0 the following conditions are sat-
isfied: :

(i) there acts viscous friction on the system such that “‘the dissipation of the
energy is integrally complete”, i.e. the function

inf {B(q, /A(q, 1): q€EM}+24(1)/g()
is integrally positive;
(i) inf {A(q): 9€Ey}>0;
(iii) the functions g and grad P*(q) are bounded on R, and E,;, respectively.
Then the equilibrium q=q¢=0 of (3.2) is asymptotically stable with respect to
the velocities.

Finally, we examine the case of ““weakly integrally complete dissipation’ starting
from Remark 2.1. In order to guarantee property P, let us consider the auxiliary
function W (g, y)=y"A(q) grad P*(q). If g is nondecreasing, A and grad P* are
continuously differentiable, then the derivative W4 can be estimated as follows:

Wia (g, v, 1) = —g(r)[grad P*(q)P+

90 2(4, 2. 1)
+20 a0 [535 R@)+ r@]+ 22282 £ ),

where de# and F;: R"—~R, are appropriate continuous functions.

(3.5)

Theorem 3.2. Suppose that in some neighbourhood NCR' of the origin the
Jollowing conditions are satisfied:

(i) ¢g=0 is the only equilibrium position of (3.2) in N;

(ii) there acts viscous friction on the system with “weakly integrally complete
dissipation”, i.e. the function

o (t) := inf {f(g, 1): gEN}

is weakly integrally positive on R, ;
(iii) the function

+ [ sup {IB(g, )l g€ N}ds

is bounded on R, ;
(iv) the function g is nondecreasing and bounded on R., .
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Then -the equilibrium state: q=4=0 of (3.2) is stable, asymptotically. stable with
respect to the velocities, and for every motion q(t) with sufficiently small-initial values
P*(g(t))—const. as t—oo.

- Proof. By (i) and .condition P*(g)=0. function P is .positive definite. :Con-
sequently, the solution ¢g=y=0 of (3.3) is stable and q(z)€N forall r=¢, provided
that |g(4)|, |4 (to)| .are sufficiently small. In accordance with Remark 2.1' we have
only to prove the existence of property P.with respect to T* and P*.

Let ¢>0, o, g (O<r1<a) be given, and define

S n) = {(g »): qEN T*(q, )<n, P*(q)>a n}.
Condition (1) implies that

| = inf {[grad P*()]: PY(@)'= a1 >0, geN} > 0.
Since’ : o o :

f (g (s)/g2(s)) ds7= l/g(())‘—l/g(_t) é const. (t=0),

by condition (iii), and inequality (3 5) we have the estimate

Wen(g, y, ) =—g(@f{m— [cl+c2(g(t)/g N1ddyh - catP(t)IyI}

on the set S(a, n)XR,, where ¢, cz, ¢y are positive constants, ¥: R, —~R, is
a continuous function such that f Y (s) ds/t is bounded on R+ Consequently,

if u is sufficiently small, then- for arbitrary contmuous functlons u,v: R, —+S(a, 1)

we have
toto

Jim [ W<33)(u(z) (), t)dt__—oo' |

L/

uniformly with respect to, toe R, , which 1mp11es property P
The theorem is proved.: o -

The author is very grateful to L. Pintér and J. Terjeki for many useful” dlS-
cussions,
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