Amalgamated free products of n-groups

JACEK MICHALSKI

1. Introduction

The aim of this paper is to give a description for the amalgamated free products of n-groups. The present paper is the second in a series of papers devoted to the study of constructions of some special limits in the category $\mathbf{G r}_{n}$ of n-groups (in [7] two constructions of free products were given). Both these papers are based on the results of [6]. The relation of the functors Φ and Ψ to inductive and projective limits given in [6] is used to investigate the above-mentioned inductive limits of n-groups.

In these constructions the notion of a free covering group (cf. [10]) plays a central role. The paper [3] (cf. also [5]) contains a generalization of this notion, namely a free covering $(k+1)$-group of an $(n+1)$-group (where $n=s k$). The assignment of free covering $(k+1)$-groups to ($n+1$)-groups is functorial. This leads to the functor $\boldsymbol{\Phi}_{s}: \mathbf{G r}_{n+1} \rightarrow \mathbf{G r}_{k+1}$ (in fact a class of functors depending on which construction of the free covering ($k+1$)-group we consider), which is left adjoint to the forgetful functor $\Psi_{s}: \mathbf{G r}_{k+1} \rightarrow \mathbf{G r}_{n+1}$ (cf. [3], [6]). Here (contrary to [7]) the meaning of Φ_{s} is the same as in [6]. In Proposition 1, by $\Phi_{q}(\tilde{H})$ and $\Phi_{q}\left(\tilde{G_{t}}\right)$ we mean the respective free covering $(k+1)$-groups of the $(q k+1)$-groups \tilde{H} and $\tilde{G_{t}}$, disregarding their constructions.

In a category with initial objects any free product with an amalgamated initial object is isomorphic to the corresponding free product. The construction of free products of n-groups was given in [7]. However, the construction of amalgamated free products given here exploits the non-emptiness of amalgamated sub- $(n+1)$ groups. Therefore we always assume that a polyadic group is nonempty (like in [7]).

The terminology and notation of this paper is the same as in [5], [6], [7]. We recall only that $\left(\mathbb{C}_{s, k+1}, \varphi\right)$ denotes the cyclic ($k+1$)-group of order s (cf. [10], [3]) and the letters f and g denote the $(n+1)$-group and $(k+1)$-group operations, respec-

[^0]tively, in the $(n+1)$-groups and $(k+1)$-groups under consideration. The symbol $f_{(s)}$ is understood as in [7] (in particular $f_{(0)}(x)=x$). Throughout the paper we assume $n=s k, s=m q, n>1$.

Let us introduce some new abbreviations of the notation. In place of $f\left(\ldots, x_{1}, \ldots, x_{r}, \ldots, x_{1}, \ldots, x_{r}, \ldots\right)$ with x_{1}, \ldots, x_{r} repeated t times we write $\left.f\left(\ldots, \llbracket x_{1}, \ldots, x_{r}\right]^{t}, \ldots\right)$. In particular, instead of $f(\ldots, x, \ldots, x, \ldots)$ with x repeated t times we write briefly $f\left(\ldots, \llbracket x \rrbracket^{t}, \ldots\right)$.

2. Preliminaries

We start with recalling the construction of an amalgamated free product in the category $\mathbf{G r}_{2}$ of groups (cf. [2], [11]).

Consider a nonempty family of monomorphisms $\left\{\gamma_{t}: B \rightarrow A_{t}\right\}_{t \in T}$ in $\mathbf{G r}_{2}$, where the groups A_{t} are mutually disjoint. Let e denote the neutral element of A_{t} for each $t \in T$, and $B_{t}=\gamma_{t}(B)$. Form a set D_{t} consisting of exactly one representative for any left coset $x B_{t}$ of the subgroup B_{t} and such that $e B_{t} \cap D_{t}=\{e\}$. Thus every element $a \in A_{t}$ can be expressed uniquely in the form $a=\hat{a} \gamma_{t}(b)$ where $\hat{a} \in D_{t}$, $b \in B$. The sequences of the form $\hat{a}_{1} \ldots \hat{a}_{r} b$ where $\hat{a}_{i} \in D_{t_{i}}-B_{t_{i}}, b \in B, t_{i} \neq t_{i+1}$, $r=0,1,2, \ldots$, will be called words. In the set A of words define a binary operation which from any two words forms a word in the following manner. Juxtapose the words to get a "long word" and perform all the necessary cancellations. The set A with this operation is the free product of A_{t} with amalgamated subgroup B. Henceforth by the amalgamated free product of groups we always mean the group described above.

Lemma 1. Let $\left[L^{\prime} ;\left\{\gamma_{t}: \Phi_{n}\left(G_{t}\right) \rightarrow L^{\prime}\right\}_{t \in T}\right.$] be the free product of a nonempty family of groups $\left\{\Phi_{n}\left(G_{t}\right)\right\}_{t \in T}$ with amalgamated subgroup $\Phi_{n}(H)$ (i.e., the inductive limit of the family of monomorphisms $\left.\left\{\Phi_{n}\left(\varepsilon_{t}\right): \Phi_{n}(H) \rightarrow \Phi_{n}\left(G_{t}\right)\right\}_{t \in T}\right)$ where $\left\langle\Phi_{n}(H), \tau_{H}, \zeta_{H}\right\rangle$ and $\left\{\left\langle\Phi_{n}\left(G_{t}\right), \tau_{t}, \zeta_{t}\right\rangle\right\}_{t \in T}$ are the free covering groups of the $(n+1)$ groups H and $\left\{G_{t}\right\}_{t \in T}$, respectively. Then the morphism $\zeta: L^{\prime} \rightarrow \mathbb{C}_{n, 2}$ defined by $\zeta\left(\hat{a}_{1} \ldots \hat{a}_{r} b\right)=\varphi_{(r)}\left(\zeta_{t_{1}}\left(a_{1}\right), \ldots, \zeta_{t_{r}}\left(a_{r}\right), \zeta_{H I}(b)\right)$ (where $\hat{a}_{1} \ldots \hat{a}_{r} b \in L^{\prime}, b \in \Phi_{n}(H), \hat{a}_{i} \in \Phi_{n}\left(G_{t_{i}}\right)$ for $i=1, \ldots, r$) is an epimorphism and a pair $\left\langle L^{\prime}, \tau\right\rangle$, where τ is the inclusion of $\zeta^{-1}(0)$ into L^{\prime}, is the free covering group of the $(n+1)$-group $L=\zeta^{-1}(0)$. Furthermore, $\left[L ;\left\{\alpha_{t}: G_{t} \rightarrow L\right\}_{t \in T}\right]$, where $\tau \alpha_{t}=\Psi_{n}\left(\gamma_{t}\right) \tau_{t}$, is the free product of the $(n+1)$-groups $\left\{G_{t}\right\}_{t \in T}$ with an amalgamated sub-($n+1$)-group H.

Proof. The proof of this lemma is analogous to that of Lemma 1 of [7].
The following two lemmas concern the decomposition of an ($n+1$)-group $\mathfrak{G}=(G, f)$ into left cosets of a nonempty sub-($n+1$)-group H (cf. [1], [10]). As usual,
for the construction of the free covering group one fixes an element $c \in G$ (cf. [3], [5]). Since the element c is arbitrary, we may assume $c \in H$.

Lemma 2. Let H be a sub- $(n+1)$-group of an $(n+1)$-group $\mathfrak{G}=(G, f)$ and $a \in G$. Then every element of the form (a, l) (with $l=0,1, \ldots, n-1$) in the group $\mathfrak{G}^{* n}=\left(G^{* n}, f^{*}\right)$ belongs to $(a, 0) H^{* n}$.

Proof. Let $a \in G$ and $l=0,1, \ldots, n-1$. Then

$$
f^{*}((a, 0),(c, l-1))=\left(f\left(a, c, \llbracket c \rrbracket^{l-1}, \bar{c}, \llbracket c \rrbracket^{n-1-l}\right), l\right)=(a, l) \in(a, 0) H^{* n}
$$

since $(c, l-1) \in H^{* n}$.
Lemma 3. Two elements $\left(a_{1}, l_{1}\right)$ and $\left(a_{2}, l_{2}\right)$ of $\mathfrak{5}^{* n}$ belong to the same left coset of the subgroup $H^{* n}$ if and only if there exists an element $b \in H$ such that $a_{1}=$ $=f\left(a_{2}, b, \llbracket c \rrbracket^{n-1}\right)$.

Proof. Let $\left(a_{1}, l_{1}\right) \in\left(a_{2}, l_{2}\right) H^{* n}$. In view of Lemma $2\left(a_{1}, 0\right) \in\left(a_{2}, 0\right) H^{* n}$, whence $\left(a_{1}, 0\right)=f^{*}\left(\left(a_{2}, 0\right),(b, n-1)\right)=\left(f\left(a_{2}, b, \llbracket c \rrbracket^{n-1}, \bar{c}, \llbracket c \rrbracket^{n-1}\right), 0\right)=\left(f\left(a_{2}, b, \llbracket c \rrbracket^{n-1}\right) ; 0\right)$ for some $b \in H$. Thus $\left.a_{1}=f\left(a_{2}, b, \llbracket c\right]^{n-1}\right)$.

Conversely, let $a_{1}=f\left(a_{2}, b, \llbracket c \rrbracket^{n-1}\right)$. Thus $\left(a_{1}, 0\right)=f^{*}\left(\left(a_{2}, 0\right),(b, n-1)\right)$, whence $\left(a_{1}, 0\right) \in\left(a_{2}, 0\right) H^{* n}$. Then, by Lemma 2, $\left(a_{1}, l_{1}\right) \in\left(a_{2}, l_{2}\right) H^{* n}$.

3. A construction of amalgamated free products

Consider a nonempty family of monomorphisms $\left\{\varepsilon_{t}: H \rightarrow G_{t}\right\}_{t \in T}$ where H and G_{t} are nonempty ($n+1$)-groups. Choose an arbitrary but fixed element $c \in H$. Let $c_{t}=\varepsilon_{t}(c)$. Decompose every G_{t} into left cosets of the sub-($\left.n+1\right)$-group $H_{t}=\varepsilon_{t}(H)$ (i.e., elements a^{\prime} and $a^{\prime \prime}$ belong to the same coset if and only if there exists an element $b_{t} \in H_{t}$ such that $a^{\prime}=f\left(a^{\prime \prime}, b_{t}, \llbracket c_{t} \rrbracket^{n-1}\right)$) and choose one element in every coset distinct from H_{t}. The representative of the coset $a H_{t}$ (where $a \in G_{t}-H_{t}$) is denoted by \hat{a}. Therefore $a=f\left(\hat{a}, b_{t}, \llbracket c_{t} \rrbracket_{l}^{n-1}\right)$ for some $b_{t} \in H_{t}$. By a word we shall mean a sequence of the form $\hat{a}_{1} \ldots \hat{a}_{r} b c$, where $r=0,1, \ldots$ and for $i=1, \ldots ; r$ we have $a_{i} \in G_{t_{i}}-H_{t_{i}}, b \in H, t_{i} \neq t_{i+1}, l=0,1, \ldots, n-1, r+l \equiv 0(\bmod n)$. Now we define an ($n+1$)-ary operation f on the set L of all words. Given $n+1$ words, form by juxtaposition a "long word" and perform the following cancellations: If in the "long word" there appear neighbouring expressions of the form

1. $b_{1} c$ and $b_{2} c$, where $b_{1}, b_{2} \in H$, then we replace them by $b^{\varphi\left(l_{1}, l_{2}\right)} c$, where $b=f_{(\cdot)}\left(b_{1}, \llbracket c \rrbracket^{l_{1}}, b_{2}, \llbracket c \rrbracket^{l_{2}}, \bar{c}, \llbracket c \rrbracket^{n-1-\varphi\left(l_{1}, l_{2}\right)}\right)$. If $b=\bar{c}$ and $\varphi\left(l_{1}, l_{2}\right)=n-1$, then we cancel the resulting expression $\bar{c}^{n-1} c$, unless it remains at the end of the "long word".
2. \hat{a}_{1} and \hat{a}_{2}, where $\hat{a}_{1}, \hat{a}_{2} \in G_{t}-H_{t}$, then depending on the element $a=f\left(\hat{a}_{1}, \hat{a}_{2}, \bar{c}_{1},\left[\left[c_{t}\right]^{n-2}\right)\right.$ we replace them by
(a) $\hat{a} b c$, where $b \in H$ is the solution of the equation $a=f\left(\hat{a}, \varepsilon_{t}(b), \bar{c}_{t}, \llbracket c_{t} \rrbracket^{n-2}\right)$, if $a \notin H_{?}$;
(b) $a^{\prime} c$, where $\varepsilon_{t}\left(a^{\prime}\right)=a$, if $a \in H_{t}$.
3. $b_{1} c$ and \hat{a}_{1}, where $\hat{a}_{1} \in G_{t}-H_{t}$, then we replace them by $\hat{a} b c$, where $a=f_{(\cdot)}\left(\varepsilon_{t}\left(b_{1}\right),\left[c_{t}\right]^{l}, \hat{a}_{1}, \bar{c}_{t},\left[\left[c_{t}\right]^{n-1-\varphi(l, 0)}\right)\right.$ and b is the solution of the equation $a=f_{(\cdot)}\left(\hat{a}, \varepsilon_{t}(b),\left[c_{t} \rrbracket^{l}, \bar{c}_{t}, \llbracket c_{t}\right]^{n-1-\varphi(l, 0)}\right)$.

After a finite number of steps the "long word" becomes a word. Note that the resulting word does not depend on the order of the cancellations performed.

Define the family of morphisms $\left\{\alpha_{t}: G_{t} \rightarrow L\right\}_{t \in T}$ by the formula:

1. $\alpha_{t}(a)=\hat{a} b^{n-1} c$, where b is the solution of the equation $a=f\left(\hat{a}, \varepsilon_{r}(b), \llbracket c_{t} \rrbracket^{n-1}\right)$, if $a \in G_{t}-H_{t}$;
2. $\alpha_{t}(a)=a^{\prime} c$, where $\varepsilon_{t}\left(a^{\prime}\right)=a$, if $a \in \dot{H}_{t}$.

Theorem 1. The $(n+1)$-groupoid L is an ($n+1$)-group. The $(n+1)$-group L together with the family of morphisms $\left\{\alpha_{t}: G_{t} \rightarrow L\right\}_{t \in T}$ is the free product of the $(n+1)$-groups $\left\{G_{t}\right\}_{t \in T}$ with an amalgamated sub- $(n+1)$-group H. $=$

Proof. We use the same notation as in Lemma 1. Let $\left\langle\Phi_{n}(H), \tau_{H}, \zeta_{H}\right\rangle$ and $\left\{\left\langle\Phi_{n}\left(G_{t}\right), \tau_{t}, \zeta_{t}\right\rangle\right\}_{t \in T}$ be the free covering groups of the $(n+1)$-groups H and $\left\{G_{t}\right\}_{t \in T}$, respectively, with distinguished elements $c \in H$ and $c_{t}=\varepsilon_{t}(c) \in G_{t}$.

As was mentioned above, the elements of the free product L^{\prime} of the groups $\Phi_{n}\left(G_{t}\right)$ with an amalgamated subgroup $\Phi_{n}(H)$ are words of the form $\hat{a}_{1}^{*} \ldots \hat{a}_{r}^{*} b^{*}$, where $\hat{a}_{i}^{*} \in \Phi_{n}\left(G_{t_{i}}\right)-\Phi_{n}\left(H_{t_{i}}\right), \quad b^{*} \in \Phi_{n}(H), t_{i} \neq t_{i+1}, r=0,1,2, \ldots$. According to Lemma.2, the elements \hat{a}_{i}^{*} can be chosen to be of the form $\hat{a}_{i}^{*}=\left(\hat{a}_{i}, 0\right)$. On the other hand, by Lemma 3, the decomposition of $\Phi_{n}\left(G_{t}\right)$ into left cosets of the subgroup $\Phi_{n}\left(H_{t}\right)$ coincides for elements of the form $(a, 0)$ with the decomposition of the $(n+1)$-group G_{t} into left cosets of the sub- $(n+1)$-group H_{t}. Therefore every element of L^{\prime} is of the form $w=\left(\hat{a}_{1}, 0\right) \ldots\left(\hat{a}_{r}, 0\right)(b, l)$ where $b \in H, l=0, \ldots, n-1$ and $\hat{a}_{i} \in G_{t_{i}}-H_{t_{i}} ; t_{i} \neq t_{i+1}$ for $i=1, \ldots, r$. According to Lemma 1 the morphism $\zeta: L^{\prime} \rightarrow \mathbb{C}_{n, 2}$ defined by $\zeta(w)=\varphi_{(r)}\left(\zeta_{t_{1}}\left(\hat{a}_{1}, 0\right), \ldots, \zeta_{t_{r}}\left(\hat{a}_{r}, 0\right), \zeta_{H}(b, l)\right)$ is an epimorphism. Let $L=\zeta^{-1}(0)$ and let $\tau: L \rightarrow L^{\prime}$ be the inclusion of L into L^{\prime}. Then $w \in L$ if and only if $r+l \equiv 0(\bmod n)\left(\right.$ since $\left.\zeta(w)=\varphi_{(r)}(0, \ldots, 0, l) \equiv r+l(\bmod n)\right)$. The $(n+1)$ group operation f on L is simply the long product obtained from the group operation f^{*} on L^{\prime}. To simplify words of the form $(a, 0)$ in the $(n+1)$-group L we write simply a. Then $\tau(a)=(a, 0) \in L$. Let $w=\left(\hat{a}_{1}, 0\right) \ldots\left(a_{r}, 0\right)(b, l) \in L$. Then (cf. [5])

$$
\begin{gathered}
w=f_{\cdot \cdot}^{*}\left(\left(\hat{a}_{1}, 0\right), \ldots,\left(\hat{a}_{r}, 0\right),(b, 0), \llbracket(c, 0) \rrbracket\right)= \\
=f_{(\cdot)}^{*}\left(\tau\left(\hat{a}_{1}\right), \ldots, \tau\left(\hat{a}_{r}\right), \tau(b), \llbracket \tau(c) \rrbracket^{l}\right)=\tau\left(\hat{a}_{1} \ldots \hat{a}_{r} b c\right) .
\end{gathered}
$$

Thus it is convenient to define L as the set of all sequences of the form $\hat{a}_{1} \ldots \hat{a}_{r} b{ }_{c}^{l}$ where $b \in H, r=0,1,2, \ldots, l=0, \ldots, n-1, r+l \equiv 0(\bmod n)$ and $a_{i} \in G_{t_{i}}-H_{t_{i}}, t_{i} \neq$ $\neq t_{i+1}$ for $i=1, \ldots, r$. The $(n+1)$-ary operation f on L is given by juxtaposition of $n+1$ words and performing all possible cancellations:

1. If there appear neighbouring expressions $b_{1} c$ and $b_{2} c$, where $b_{1}, b_{2} \in H$, then

$$
\begin{gathered}
\tau\left(\ldots b_{1}^{l_{1}} b_{2} c \ldots\right)=f_{(\cdot)}^{*}\left(\ldots, \tau\left(b_{1}\right), \llbracket \tau(c) \rrbracket^{l_{1}}, \tau\left(b_{2}\right), \llbracket \tau(c) \rrbracket^{l_{2}}, \ldots\right)= \\
=f_{(\cdot)}^{*}\left(\ldots,\left(f\left(b_{1}, \llbracket c \rrbracket^{l_{1}}, b_{2}, \llbracket c \rrbracket^{l_{2}}, \bar{c}, \llbracket c \rrbracket^{n-1-\varphi\left(l_{1}, l_{2}\right)}\right), \varphi\left(l_{1}, l_{2}\right)\right), \ldots\right)=. \\
=f_{(\cdot)}^{*}\left(\ldots, \tau\left(f \left(b_{1}, \llbracket c \rrbracket^{\left.\left.\left.l_{1}, b_{2}, \llbracket c \rrbracket^{l_{2}}, \bar{c}, \llbracket c \rrbracket^{n-1-\varphi\left(l_{1}, l_{2}\right)}\right)\right), \llbracket \tau(c) \rrbracket^{\varphi\left(l_{1}, i_{2}\right)}, \ldots\right)=}\right.\right.\right. \\
=\tau\left(\ldots f\left(b_{1}, \llbracket c \rrbracket^{l_{1}}, b_{2}, \llbracket c \rrbracket^{l_{2}}, \bar{c}, \llbracket c \rrbracket^{n-1-\varphi\left(l_{1}, l_{2}\right)}\right)^{\varphi\left(l_{1}, l_{2}\right)} c \ldots\right) .
\end{gathered}
$$

If we obtain the expression $\bar{c}{ }^{n-1}$ not at the end of the "long word", then as in the proof of Theorem 2 of [7] one can show that it may be cancelled.
2. If there appear neighbouring expressions \hat{a}_{1} and \hat{a}_{2}, where $\hat{a}_{1}, \hat{a}_{2} \in G_{t}-$ $-H_{t}$, then

$$
\begin{gathered}
\tau\left(\ldots \hat{a}_{1} \hat{a}_{2} \ldots\right)=f_{(\cdot)}^{*}\left(\ldots, \tau\left(\hat{a}_{1}\right), \tau\left(\hat{a}_{2}\right), \ldots\right)= \\
=f_{\cdot \cdot \cdot}^{*}\left(\ldots,\left(f\left(\hat{a}_{1}, \hat{a}_{2}, \bar{c}_{t}, \llbracket c_{t} \rrbracket^{n-2}\right), 1\right), \ldots\right)=f_{(\cdot)}^{*}(\ldots,(a, 1), \ldots)
\end{gathered}
$$

where $\left.a=f\left(\hat{a}_{1}, \hat{a}_{2}, \bar{c}_{t}, \llbracket c_{t}\right]^{n-9}\right) \in G_{i}$. Consider two cases:
(a) Let $a \notin H_{t}$. Then $(a, 1)=f^{*}\left((\hat{a}, 0),\left(\varepsilon_{t}(b), 0\right)\right)=\left(f\left(\hat{a}, \varepsilon_{t}(b), \bar{c}_{t},\left[c_{t} \rrbracket^{n-2}\right), 1\right)\right.$, thus $a=f\left(\hat{a}, \varepsilon_{t}(b), \bar{c}_{t}, \llbracket c_{t} \rrbracket^{n-2}\right)$ and therefore $b \in H$ given by the equality $(a, 1)=$ $=f^{*}\left((\hat{a}, 0),\left(\varepsilon_{t}(b), 0\right)\right)$ is the solution of the equation $\left.a=f\left(\hat{a}, \varepsilon_{t}(b), \bar{c}_{t}, \llbracket c_{t}\right]^{n-2}\right)$. Hence

$$
\tau\left(\ldots \hat{a}_{1} \hat{a}_{2} \ldots\right)=f_{\cdot .)}^{*}(\ldots,(\hat{a}, 0),(b, 0), \ldots)=f_{(.)}^{*}(\ldots, \tau(\hat{a}), \tau(b), \ldots)=\tau\left(\ldots \hat{a} b{ }^{0} \ldots\right)
$$

(b) Let $a \in H_{i}$. Then

$$
\tau\left(\ldots \hat{a}_{1} \hat{a}_{2} \ldots\right)=f_{(\cdot)}^{*}(\ldots,(a, 1), \ldots)=f_{(\cdot)}^{*}(\ldots, \tau(a), \tau(c), \ldots)=\tau\left(\ldots a^{\prime} c \ldots\right)
$$

where $\varepsilon_{t}\left(a^{\prime}\right)=a$.
3. If there appear neighbouring expressions $b_{1} c$ and \hat{a}_{1}; where $\hat{a}_{1} \in G_{t}-H_{t}$; then

$$
\begin{gathered}
\tau\left(\ldots b_{1} c \hat{a}_{1} \ldots\right)=f_{(\cdot)}^{*}\left(\ldots,\left(\varepsilon_{t}\left(b_{1}\right), l\right),\left(\hat{a}_{1}, 0\right), \ldots\right)= \\
=f_{(\cdot)}^{*}\left(\ldots,\left(f\left(\varepsilon_{t}\left(b_{1}\right), \llbracket c_{t} \rrbracket^{l}, \hat{a}_{1}, \bar{c}_{t},\left[c_{t} \rrbracket^{n-1-\varphi(l, 0)}\right), \varphi(l, 0)\right), \ldots\right)=f_{(\cdot)}^{*}(\ldots,(a, \varphi(l, 0)), \ldots)\right.
\end{gathered}
$$

where $a=f_{(\cdot)}\left(\varepsilon_{t}\left(b_{1}\right), \llbracket c_{t} \rrbracket^{t}, \hat{a}_{1}, \vec{c}_{t}, \llbracket c_{t} \rrbracket^{n-1-\varphi(l, 0)}\right)$. Then

$$
(a, \varphi(l, 0))=f^{*}\left((\hat{a}, 0),\left(\varepsilon_{t}(b), l\right)\right)=\left(f\left(\hat{a}, \varepsilon_{t}(b), \llbracket c_{t} \rrbracket^{l}, \bar{c}_{t}, \llbracket c_{t} \mathbb{T}^{n-1-\varphi(l, 0)}\right), \varphi(l, 0)\right)
$$

thus $\left.a=f_{(\cdot)}\left(\hat{a}, \varepsilon_{t}(b), \llbracket c_{t}\right]^{l}, \bar{c}_{t}, \llbracket c_{t} \rrbracket^{n-1-\varphi(t, 0)}\right)$. and therefore $b \in H$, given by the equality $(a, \varphi(l, 0))=f^{*}\left((\hat{a}, 0),\left(\varepsilon_{t}(b), l\right)\right)$ is the solution of the equation $a=$ $\left.=f\left(\hat{a}, \varepsilon_{1}(b), \llbracket c_{t}\right]^{c}, \tilde{c}_{t}, \llbracket c_{t} \rrbracket^{n-1-\varphi(1,0)}\right)$. Hence

$$
\begin{aligned}
& \tau\left(\ldots b_{1} c \hat{a}_{1} \ldots\right)=f_{(.)}^{*}\left(\ldots,(\hat{a}, 0),\left(\varepsilon_{t}(b), l\right), \ldots\right)= \\
& =f_{(.)}^{*}\left(\ldots, \tau(\hat{a}), \tau(b),\left[\tau(c) \rrbracket^{\prime}, \ldots\right)=\tau(\ldots a b c \ldots) .\right.
\end{aligned}
$$

The uniqueness of the resulting word is implied by the uniqueness of the form of a word in the amalgamated free product of groups.

According to Lemma 1, $\tau \alpha_{t}(a)=\Psi_{n}\left(\gamma_{t}\right)(a, 0)$. Consider two cases:

1. Let $a \in G_{t}-H_{t}$. Then $(a, 0)=f^{*}\left((a, 0),\left(\varepsilon_{t}(b), n-1\right)\right)=\left(f\left(\hat{a}, \varepsilon_{t}(b), \llbracket c_{t} \rrbracket^{n-1}\right), 0\right)$; thus $a=f\left(\hat{a}, \varepsilon_{t}(b), \llbracket c_{t} \rrbracket^{n-1}\right)$ and therefore $b \in H$ given by the equality $(a, 0)=$ $=f^{*}\left((\hat{a}, 0),\left(\varepsilon_{t}(b), n-1\right)\right)$ is the solution of the equation $a=f\left(\hat{a}, \varepsilon_{t}(b), \llbracket c_{t} \rrbracket^{n-1}\right)$. Hence $\gamma_{t}(a, 0)=(a, 0)(b, n-1)$, so $\tau \alpha_{t}(a)=(\hat{a}, 0)(b, n-1)=\tau\left(\hat{a} b^{n-1}\right)$.
2. Let $a \in H_{t}$. Then $\gamma_{t}(a, 0)=(a, 0)$, whence $\tau \alpha_{t}(a)=\tau(a, 0)=a^{a^{\prime} c}$ where $\varepsilon_{t}\left(a^{\prime}\right)=a$.

This completes the proof of Theorem 1.

4. Some properties of amalgamated free products

In view of Theorem 3 of [6], if every $(n+1)$-group G_{t} and also the ($n+1$)-group H are derived from ($k+1$)-groups, then the amalgamated free product is also derived from a $(k+1)$-group. The converse is also true except for the following two cases: when T has only one element or when at most one of the monomorphisms is not an isomorphism. Then the amalgamated free product is isomorphic either to G_{t} or to H. It may happen that in this case the amalgamated free product (being isomorphic to one of the $(n+1)$-groups G_{t}) is derived from a ($k+1$)-group; none the less the ($n+1$)-group H (as a sub- $(n+1)$-group of that $(n+1)$-group G_{t}) need not be derived from any ($k+1$)-group. For this reason we have to make some additional assumptions.

Theorem 2. Let L be the free product of ($n+1$)-groups $\left\{G_{t_{1}}\right\}_{t \in T}$ with an amalgamated sub-($n+1$)-group H, where more than one monomorphism $\varepsilon_{t}: H \rightarrow G_{t}$ is not an isomorphism. Then the $(n+1)$-group L is derived from a $(k+1)$-group if and only if every $(n+1)$-group G_{t} and the $(n+1)$-group H are also derived from $(k+1)$-groups.

Proof. We use the notation of Theorem 1. Let L be an $(n+1)$-group derived from a certain $(k+1)$-group and let the word $w=\hat{a}_{1} \ldots \hat{a}_{r} b c$ be skew to the element
$\stackrel{0}{c}=\alpha(c) \in \alpha(H) \quad$ (where $\alpha=\alpha_{t} \varepsilon_{t}$) in that ($k+1$)-group. In view of Corollary 2 of [9] the element w is s-skew to $c{ }_{c}^{0}$ in the ($n+1$)-group L.

Suppose that $r \neq 0$. Then $a_{1} \in G_{t_{2}}$ for some $t_{1} \in T$. Take any element of the form $\hat{a} \bar{c} \bar{c} \boldsymbol{c}$ where $a \in G_{t}-H_{t}$ and $t \neq t_{1}$. From the definition of an s-skew element (cf. [9]) it follows that $w \llbracket c c \rrbracket^{k-1} \llbracket \hat{a}^{n-1} c \rrbracket^{n-k-1}=\hat{a} \bar{c}^{n-1} c w \llbracket c c \rrbracket^{0-1}\left[\hat{a} \bar{c}^{n-1} c \rrbracket^{n-k}\right.$. After performing all the necessary cancellations the reduced word on the left side of the equality starts with \hat{a}_{1}, the reduced word on the right side starts with \hat{a}. This contradicts the uniqueness of the form of a reduced word, since $\hat{a}_{1} \neq \hat{a}\left(t_{1} \neq t\right)$.

Thus the word w is of the form $w=b c$. Since $w=b \stackrel{0}{0}=\alpha(b) \in \alpha(H)$, by Proposition 3 of [9] the sub- $(n+1)$-group $\alpha(H)$ of the $(n+1)$-group L is also a sub- $(k+1)$ group of the creating $(k+1)$-group of L. Hence the $(n+1)$-group H (isomorphic to the $(n+1)$-group $\alpha(H)$) is also derived from a $(k+1)$-group. On the other hand $\alpha(H) \subset \gamma_{t}\left(G_{t}\right)$; so every $(n+1)$-group $\gamma_{t}\left(G_{t}\right)$ is derived from a ($k+1$)-group.

Conversely, let $(n+1)$-groups $\left\{G_{t}\right\}_{t \in T}$ and H be derived from $(k+1)$-groups. Then, by Theorem 3 of [6], the ($n+1$)-group L is also derived from a $(k+1)$-group, which completes the proof of Theorem 2.

In [6] we proved a general theorem on the inductive limits of covering ($k+1$)groups of $(n+1)$-groups. This theorem applied to the case of the free product yields Theorem 4 of [7].

In a category complete with respect to inductive limits the free product is a particular case of the free product with an amalgamated subobject (taking an initial object for the subobject). This is the case for the category $\mathbf{G r}_{2}$ and also for the categories $\mathbf{G r}_{n}$ with $n>2$. Therefore in $\mathbf{G r}_{2}$ the construction of a free product is a particular case of the construction of the free product with an amalgamated subgroup (in this case a one-element group). Note that the situation is quite different when we pass to $\mathbf{G r}_{n}$ for $n>2$. In the construction of a free product with an amalgamated sub-n-group presented here it is important that this sub-n-group is nonempty. Hence the construction is not a generalization of the construction of the free product. In particular, Theorem 4 of [7] is not applicable to the description of an amalgamated free product of covering ($k+1$)-groups of ($n+1$)-groups.

Proposition 1. Let $\left\{\varepsilon_{t}: H \rightarrow G_{t}\right\}_{t \in T}$ and $\left\{\varepsilon_{t}^{\prime}: H^{\prime} \rightarrow G_{t}^{\prime}\right\}_{t \in T}$ be nonempty families of monomorphisms, where $\left\langle H^{\prime}, \lambda_{H}, \zeta_{H}\right\rangle$ and $\left\{\left\langle G_{t}^{\prime}, \lambda_{t}, \zeta_{t}\right\rangle\right\}_{t \in T}$ are covering $(k+1)$ groups of indices q_{H} and $\left\{q_{t}\right\}_{\in T}$ of the $(n+1)$-groups H and $\left\{G_{t}\right\}_{\epsilon T T}$, respectively, and in addition $\Psi_{s}\left(\varepsilon_{t}^{\prime}\right) \lambda_{H}=\lambda_{t} \varepsilon_{t}$ for each $t \in T$. Then for each $t \in T$ we have $q_{t}=q_{t}$ and the free product of the $(k+1)$-groups $\left\{G_{t}^{\prime}\right\}_{t \in T}$ with an amalgamated sub- $(k+1)$-group H^{\prime} is a covering $(k+1)$-group of index q_{H} of the free product of the $(n+1)$-groups $\left\{G_{t}\right\}_{t \in r}$ with an amalgamated sub- $(n+1)$-group H.

Proof. The commutativity of the diagram

together with Theorem 4 of [5] implies the existence of morphisms $\xi_{1}: \mathbb{G}_{q_{H}, k+1} \rightarrow$ $\rightarrow \mathbb{C}_{q_{t}, k+1}$ such that $\xi_{t} \zeta_{H} \neq \zeta_{t} \varepsilon_{t}^{\prime} \cdot$ Since the morphisms $\dot{\varepsilon}_{t}^{\prime}: H^{\prime} \rightarrow G_{t}^{\prime}$ are (by assumption) monomorphisms, the morphisms ξ_{t} are isomorphisms (cf. Corollary 4 of [8]). Hence $q_{H}=q_{t}$. For simplicity we shall write q instead of q_{H}. In view of Corollary 3 of [5], the ($n+1$)-groups H and $\left\{G_{t}\right\}_{\epsilon \in T}$ are derived from ($q k+1$)-groups \tilde{H} and \widetilde{G}_{t}, respectively, where in addition (see the remark on the definition of the functor Φ in the Introduction) $H^{\prime}=\Phi_{q}(\tilde{H}), G_{t}^{\prime}=\Phi_{q}\left(\tilde{G}_{t}\right), \lambda_{H}=\Psi_{m}\left(\tau_{\tilde{G}}\right), \lambda_{t}=\Psi_{m}\left(\tau_{t}\right) \quad$ (here $s=m q)$. Let $\left[\tilde{L} ;\left\{\tilde{q}_{t}: \tilde{G}_{t} \rightarrow \tilde{L}\right\}_{t \in T}\right],\left[L ;\left\{\alpha_{t}: G_{t} \rightarrow L\right\}_{t \in T}\right],\left[L^{\prime} ;\left\{\alpha_{t}^{\prime}: G_{t}^{\prime} \rightarrow L^{\prime}\right\}_{t \in T}\right]$ be the amalgamated free products. The functors Ψ_{m} and Φ_{q} preserve and reflect amalgamated free products (cf. [6]). Hence $L=\Psi_{m}(\widetilde{L}), L^{\prime}=\Phi_{q}(\widetilde{L})$. Let $\left\langle L^{\prime}, \tau_{\bar{L}}\right\rangle$. be the free covering ($k+1$)-group of the ($q k+1$)-group \tilde{L}. Thus, by Corollary 4 of [5], $\left\langle L^{\prime}, \lambda_{L}\right\rangle$ (where $\lambda_{L}=\Psi_{m}\left(\tau_{L}\right)$) is a covering $(k+1)$-group of index q of the $(n+1)$-group L, which completes the proof of Proposition 1.

References

[1] W: Dörnte, Untersuchungen über einen verallgemeinerten Gruppenbegriff, Math. Z., 29 (1929), 1-19.
[2] A: G. Kuroš, Group theory, Nauka (Moscow, 1967). (Russian)
[3] J. Michalski, On some functors from the category of n-groups, Bull. Acad. Polon. Sci. Sér. Sci. Math., 27 (1979), 437-441.
[4] J. Michalski, Inductive and projective limits of n-groups, Bull. Acad. Polon. Sci. Sér. Sci. Math., 27 (1979), 443-446.
[5] J. Michalski, Covéring k-groups of n-groups, Arch. Math. (Brito), 17 (1981), 207-226.
[6] J. Michalski, On the category of n-groups, Fund. Math., 122 (1984), 187-197.
[7] J. Michlalski, Free products of n-groups, Fund. Math., 123 (1984), 11-20.
[8] J. Michalski, Morphisms in the category of covering k-groups of n-groups, Demonstratio Math., 16 (1983), 977-990.
[9] J. Michalski, On s-skew elements in polyadic groups, Arch. Math. (Brno), 19 (1983), 215218.
[10] E. Post, Polyadic groups, Trans. Amer. Math. Soc., 48 (1940), 208-350.
[11] Z. Semadeni, A: Wiweger, Einführung in die Theorie der Kategorien und Funktoren, Teubnẹr (Leipzig, 1979).

[^0]: Received September 22, 1982, and in revised form February 6, 1984.

