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Varieties of algebfas. as a lattice with an additional operation

AWAD A. ISKANDER

1. Introduction

Let f be a non- tr1v1al associative and commutative ring with 1. In the present
paper we are concerned ‘with varieties (equational classes) of f-algebras that are
not necessarily associative and not necessarily with 1. These are classes of algebras
closed under the formation of subalgebras, homomorphic images and Cartesian
products; equivalently, classes of all algebras satisfying given sets of polynomial
identities. Two basic properties of free groups enhanced the theory of group varie-
ties: a: subgroup of a free group is free, and a fully invariant subgroup of a fully
invariant subgroup of a free group is fully invariant. Given two group varieties
U, ¥, U-¥ is the class of all groups that are Schreier-extensions of a group in %
by a group in ¥". It turns out that % - ¥ is a variety. Under this multiplicatior,
the groupoid of group varieties is a free monoid with zero. This was shown inde-
pendently by B. H. NEUMANN, HANNA NEUMANN and P. M NEUMANN [15] and
by A. L. SMELKIN [21]. A similar result holds for the groupoid of Lie algebra
varieties over a field of characteristic 0; this is due to V. A. PARFENOV [18]. A sub-
algebra of a free associative algebra need not be free, P. M. COHN [4]. A T-ideal of a
T-ideal. of a free associative algebra may not be a T-ideal, A. I. MAL’CEvV [13],
A. A. ISKANDER [11]. It turns out that the groupoid of ring varieties is not associa-
tive and certainly not relatively free. It is not even power associative. The groupoid
of varieties of f-algebras contains infinite submonoids. This groupoid has some
sort of decomposition. The minimal varieties are determined. If f has exactly 2
idempotent ideals, then a family of identities that is attainable on all power associa-
tive algebras is equivalent to x=x or x=y.

The author wishes to express his gratitude to the referee who made several
valuable comments and gave the shorter proof of Proposition 35. o

Received July 9, 1982.
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The word “algebra” will mean “f-algebra”. The word “variety” will mean
“variety of f-algebras”. An algebra is called power-associative if every subalgebra
generated by one element is associative. By a theorem of A. A. ALBERT [1], [2], if
t is a field of characteristic not 2, 3 or 5, then an algebra is power associative if it
satisfies (xx)x=x(xx) and ((xx)x)x=(xx)(xx). Let &if, i=0,1,2,3, denote,
respectively, the varieties of all algebras, all power-associative algebras, all associative
algebras and all associative and commutative algebras. If ¥ is a variety, we denote
by LY the set of all subvarieties of ¥". Under class inclusion L¥" is a complete
modular lattice. Under an additional operation L¥" is a partially ordered groupoid
with zero (¥7) and 1 (£); where & is the trivial variety of one-element algebras.

f;‘ For an account of the variety theory, the reader may consult [3], [5], [10], [14],
(161, [17.

Definition 1. Let %, B, €¢ 0f. Then € is an extension of A by B if €
possesses an ideal isomorphic to 2 whose factor is isomorphic to B. If %, ¥, A
are classes of algebras, then % -, ¥ is the class of all algebras of ¢ that are exten-
sions of an algebra of # by an algebra of ¥~

We will write % ¥ for % -, ¥, i=0,1,2,3.

Ring extensions were introduced by C. J. EvErerT {8]. It is the analogue of
O. SCHREIER’s group extensions [20]. The concept of class multiplication for groups
may be found in HANNA NEUMANN [16]. A. 1. MAL’CEV [13] generalized class multi-
plication and proved the following theorem for algebraic systems. -

Theorem 1. If %, ¥, A are varieties, then U - ¥ is a subvariety of X .
(LA ; -,y is a partially ordered groupoid with zero and 1; A is the zero-element
and the trivial variety Eis 1. If £, B, CELA, then 7 4 (B - C)VC(H 5 B) -4 €.
1If B, then €« ACSEC 4 B and A -, CEB - €.

Although the lattice of group varieties has a complicated structure, the groupoid
of group varieties has a very simple structure: a free monoid with zero. However,
from A. A. IsKANDER [11], (L&/2Z; - ) (Z is the ring of integers) contains a denumer-
able set of idempotents. Thus, it is far from being free. We will show that (L#/if; -)
are not power-associative and, under some restrictions on ¥, a decomposition is
valid in (Loif; +). '

Theorem 2. Let i=0,1,2. Then {LoLit; -) is not power-associative; in fact,
(€6 C~C (€ %), where =38 If t is a field of characteristic 0,
then (L&Z3%; ) is isomorphic to the multiplicative monoid of natural numbers.

However, we will show that (L&/if; ) contains infinite associative sub-
groupoids.
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, Definition 2. Let ¥ €Lif, v #6&, ¥ =il. ¥ is i-indecomposable if
V=% W, U, WecLstit implies =& or ¥ =8&. ¥ isi-pscudo-indecomposable
if ¥" contains a non-trivial algebra satisfying xy=0 and ¥ =%W, U, WcLAit
implies % or # does not contain any non-trivial algebras . satisfying xy=0,
1-—0 1,2,3.

Theorem 3. LetfbeaDedektnddomam, i=0, 1, 2 3. If vV ELAIX, ¥V #Ait,
then either ¥~ does not contain any non-trivial algebras satisfying xy=0 or ¥ is
a product of a finite number of i-pseudo-indecomposable varieties; if t is a field of
characteristic 0, then v =& or ¥ is a product of a finite number of i-indecomposable
varieties.

An equationally complete variety is a variety whose lattice of subvarieties con-
tains exactly 2 elements; i.e., it is a minimal non-trivial variety. A. TARSKI {24] deter-
‘mined the equationally complete associative ring variéties: they are those determined
'by px=0, xy=0 for some prime p or by px=0, x—xP=0 for some prime p. The
following theorem determines the minimal varieties in Lofit, i=1, 2, 3:

Theorem 4. The equationally complete varieties of L/t i=1,2, 3, are exactly
the equationally complete varieties of LsZ3Y. They are the varieties determined by
one of the following sets of identities:

(1). for some maximal ideal m of ¥, ax=0 for all acm, xy=0;

(2) for some maximal ideal m of finite index in ¥, ax=0 forall ac¢m and
x—x"=0 where n=|t/m|. : : :

Thus the minimal varieties of L&Zit, i=1, 2,3, are those generated by f/m
for some maximal ideal of T of finite index in f or by the zero algebra on I/m where
m is a maximal ideal of {. :

Definition 3. Let I be a set of polynomial identities. An algebra R is /-inde-
composable if 4 is an ideal of R such that R/A satisfies 7 implies 4=%R. Iis attain-
able on AES HOF if for every ReH, the least ideal of ‘.R whose factor satlsﬁes
is J-indecomposable.

This concept is due to T. TAMURA [22] where he determined the sets of identities
attainable on the class of all semigroups. As shown by T. TAMURA and F. M. YAQus
'[23), the sets {xy—yx}, {px=0, x=x"}, p is prime, are not attainable on the class
of all associative rings. It was shown by A. A. ISKANDER [11] that a family of identities
‘that is attainable on the variety of all associative rings or on the variety of zll com-

mutatlve and associative rings is eqmvalent to x=x or x= =J. In general
‘ i P AR oAvn
Theorem 5. Let ¥ contain no tdempotenr zdefls omel Ilzm v, t “and su])pose

i=1,2,3. If I is a set of polynomial identities that is almmable on Ak, then 1 is
equwalenr on Ait 1o x=x.or x=y.
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M. V. VoLkov [25] introduced and successfully used the concept of:“S-joined
varieties”, where S is a submonoid of the multiplicative monoid of ¥ containing no
zero-divisors, to gain information about the lattice of subvarieties of a variety ¥
by studying the corresponding lattice of varieties of ¥-algebras, where ¥ is the ring
of fractions of frelative to S. In the present paper, we study a slightly more general
case and show that the S-joined subvarieties of a variety ¥” form a subgroupoxd of
<L'V’ -I’)

2. Relatively free algebras and T-ideals

Before we prove Theorems 2, 3, 4 and 5, we w111 need some preliminaries and
prove some other results. SR o

For every cardinal number n=0, X (n) is a set of cardmahty nand F(n, ¥") is the
free algebra of - ¥ € Lof/0f whose free generating set is X(n): Let X={x,, xy, -..}
be a denumerable set. F¥” will denote the free algebra of ¥~ whose free generating
set is X; Fi=F#«if, i=0,1,2,3. Let GO, G1, G2 and G3 be, respectively, the free
groupoid, the free power-associative groupoid, the free semigroup and the free
commutative semigroup whose set of free generators is X. The following lemma is
in the literature: o - '

Lemma 6. The t-module structure of Fi is the free unital t-module with basis Gi.
The multiplication in Fi is defined by (au)(bv)= (ab)(uv) a(bv)= (ab)v and dis-
tributivity, where a, bel, u, v€Gi, i=0, 2, 3.

For i=0, cf. J. M. OsBORN [17], p. 167. For i=2, cf. P. M. ConN [6], p. 30
and [7], p. 63. i=3 is similar.

If f5£0, feFO, d(f) denotes the degree of £, i.e., the hxghest among the lengths
of elements of GO with non-zero coefficients in f. o(f) denotes the order of f, i.e.,
the least among the lengths of elements ‘of GO with - non-zero coefficients in f
f (xl, ..., X,) will mean that the elements of X occurring at least once in fare among
X1s ey Xq. f is called homogeneous of degree r in x; if every element of GO with
non-zero coefficient in f has exactly r entries of x;; fis called homogeneous if it is
homogeneous in every x,€X. fis called multilinear if f is homogeneous of degree
at most 1 in every x;. Every variety of algebras is determined by a set of identities.
If ¥ ¢LOF, then the set of all f€FO, such that f=0 is an identity in ¥, is a
T-ideal of FO; that is an ideal of FO closed under all endomorphlsms of FO, cf.
(6], [17]. In fact, if #°¢L¥", then the identities f=0 of # relative to ¥~ form a
T-ideal . of, F¥". The correspondence between LYy and the T-ideals of F¥ is an
antiisomorphism of the lattice - (L¥; As V)-onto the lattice -of T-ideals of F¥".
"Script capital letters will denote classes or varieties of algebras; the corresponding
Latin capitals will denote the T-ideals of FO determined by them. Algebras will be
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denoted by German capitals and ideals of T will be denoted by lower case German
letters. Homomorphisms will be denoted by lower case Greek letters and will be
applied to the right.

. If ReAdOE, ASFO, BC1, then BR is the set of all ﬁmte sums of elements of
R of the type bx, beB, xcR and A(R) is the set of all elements of R that are equal
to f(ry, ..., rp) where ry, ..., r,éR and f€A.

Lemma 7. If ReAOY, ais an ideal of X, V is a T-ideal of FO, then a®R is an
ideal of R and V(R) is a T-ideal of R. V(‘.R) is the least ideal of R whose factor belongs
to v. F¥'=FQJV.

Cf. [5], [10], [14], [17].
The following lemma is a special case of a result of A. I. MAL’CEV-[13]:

Lemma 8. Let ', U, V', WeELAOL, WS H. Then (UNW) o (¥ NH)=
—(% YYNW . Furthermore REU «, V" iff REA and V(R)e%. i

Lemma 9. IfAisa baszs of identities for U<LsI0E, ACFO and “I/ELdOf
then A(V) is a basis of identities for U « ¥". The T-ideal of FO determined by U ¥
is the ideal of FO generated by U(V). .

The T-ideal of FO determined by % +, ¥~ will be denoted by UoV.

Proof. By Lemma 8, Re# ¥ iff V(R)E, ie., iff A(V(R))=0. Thus
A(V) is a basis of identities for % « ¥". Hence U(¥) is a basis for % « #". How-
ever, the ideal of FO generated by U(¥) is a T-ideal of F0 since it is the set of all
finite sums of w, fw, wg, (fw)g, f(wg), (f(gw))h, ... where weU(V), f, &, h, ...€ FO.

Proposition 10. If %, V' ¢LAOY are defined by multilinear identities, then
U - ¥ is definable by multilinear identities. If % is defined by a finite set of multi-
linear identities, V" is finitely based, U, ¥V €LA2E, then U ¥V is finitely based.

Proof. Suppose 0xg€F(Q and the number of elements of X occurring in g
is r. Let g=g(x;, ..., x,). Let D(g) be the set of all elements of FO obtained from
£ by a finite number of applications of the following: If A(x, ..., x,)€D(g) and
every x;, 1=i=m, occurs in h, then x,.,h, hx, 1€D(g). Suppose h,, ..., h, are
non-zero elements of FO. g« (hy, ..., h,) is the set of all h(xy, ..., x,)=g(h3, ..., h,)
such that h; is obtained from an element of ‘D (h;) by renaming the elements of X
so that k] and h] have no elements of X in common if i/, and n is the number of
elements of X occurring in hj, ..., h,. If ASU is a basis for %, BSV is a basis
for ¥ and every element in A is multilinear, then D=U{gx(hy, ..., h,): g€ A,
by, ..., h,€B} is a basis for % . ¥". This is true since every element of ¥ is a
finite sum of h(f;,....f), h€D(g), g€B, f1, ... L FO. If g is multilinear, then
g(vy, .., v), where v,,..,v€V, is a finite sum of elements .of the form
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g(hl(fl? s Sy s B (fss /), where hy,...,hecU{D(g): gEB}, fi, ..., f[€FO,
i.e., every element in A(V) is a finite sum of h(f;, ...,f;), where h€D, f;, ..., f,€ FO.
Since A(V)is a basis for % « ¥ (by Lemma 9), DE A(V), D isabasis for # ¥".
If every element in B is multilinear, then D(g) contains only multilinear elements
for every g€B and D is composed of multilinear elements. If %, ¥ € L#2f, then
in F2, D(8)={g, X,+18 8Xr41> X,+18%,42}- Thus D’ can be chosen finite in case
A is finite and B is finite. Thus % -, ¥ is finitely based; D'=U{g*’(hy, ..., h,):
. h,€B, g€ A}, where %’ is srmllar to %, using D’(h,) instead of D (h,).
For example, € -, € has the following basis:

[Ty, xal, x5, X4]]
s xa) [xg, xa)%s), [Dx, %ol xs0xs, x,0), [[x1, 2, %5 (x5, Xa)x5)],
[y, x2)xs, [%4, xs1%6 ], [[x15 x2];3, xe[xa, X511, [[%1, Xal X3, Xs([xs, X51%7)],
[xs0x1, x2), Xe[xa, x51], [xs[x1, _x}], xe([¥s, %5] x7)], [x3([x1, xe)x4), X5([x6, X7)x5)],
o ‘ 2y g) — (X3 X0) X35

where €=s73%, [x;, x2]=x; X, — X2 X, .

3. Proof of Theorem 2, ﬁrst part

‘By Lemma 8, (L&/2f; -,) lsahomomorphrc image of (Lif; ), i=0, 1 Thus,
it is sufficient to show that (€ -+ %) % =% « (% - %). This will be done by showing
_that ((CoC)oC)(F)#(C o(C oC))(F) where F is.the free associative algebra on 2
: generators a, b. We w111 show that

p = [alla, b], la, bla], [[a, b], [a, b]a]]E(CO(CoC))(F)

but p¢((C oC)oC)(F) Let T be the free semigroup on {a,b}. By Lemma 6,
the f-module structure of F'is a free unital module over { with basis T. Thus, every ele-
ment of F is a unique f-linear combination of elements of T. Let N= ((CoC)oC)(F),
L=C(F)= [F F] and M=C(L). Lis the ideal of F generated by [f, g]l=fg—gf,
* f,8€F. M is the ideal of L generated by all [u, v],.u, v€L. By Lemma 9, N is the
“ideal of F generated by (CoC)(C(F)); i.e., N is the ideal of F: generated by
 C(C(C(F))): Thus N is the ideal of F generated by [M, M], i.., N is the idéal of
- F generated by [u, v], u, veM. Let c=ab—ba=[a,b]. Elements of L are f-linear
- combinations of [u, v], s[u, v], [u, v]t, s[u, v]t; s, t,u, v€ET. By induction on the
length of #v, [u,v] is a f-linear combination of ¢, sc, ct, sct; s, (€T, ie., every ele-
ment in L is a T-linear combination of sct, where s, 1€ TU{1}, lc=c=cl. Elements of
"M are ¥-linear combinations of w[sct, ucv]z; where s, 1, u, v€T U{l}, w, ze LU{1}.
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The elements of M of least degree are of degree 5 and they are f-linear combina-
tions of

() [c,acl, e, cal, [, be), e, cb]
Elements of M of order 6 and degree 6 are f-linear combinations of
(i1) [e, a%c], [c, aca), [c, ca®], [ac, ca),

[, b2¢c), [e, beb), [c, cb?), [be, cb],

[c, abcl, e, bacl, [c, ach), [e, bcal,

[c, cab), [c, chal, [ac, bc], [ac, cb],

[ca, bcl, [ca,cb]. ‘

The ideal N of F generated by [M, M ] is generated by all [, v], u, v€M. The
elements of least degree in N are of degree 10. The clements of N of degree 10 are
f-linear combinations of ' _ v
(i) [le, acl e, cal], [lc, ac), [c, eb]], [fc. acl, [e, bel],

[Lc, cal, [¢, bel], [le, cal, e, eb]], [le, bel, [c, cb]].
The elements of N of order 11 and degree 11 are f-linear combinations of ad, da, bd,
db and (g, h} where d belongs to the set (iii), i.e., d is of degree 10, g belongs to the
set (i), i.e., g is of degreec 5, and h belongs to the set (i), i.e., A is of degree 6.

F(2,% (% »%)=F/K, where K=(Co(CoC))(F). Thus K is the ideal
of F generated by C((CoC)(F)). That is K is the ideal of F generated by
[(CoC)(F), (CoC)(F)I=[M, M], where M is the ideal of F generated by M. Now
afc, cal€M, [c, ca]eMEM. Hence p=lalc,ca], [c, ca]]€K. We will be through
if we show that p¢ N. Since p is homogeneous of degree 7 in @ and 4 in b, and by
Lemma 6, F is a free f-module whose basis is 7, p¢N iff p is a T-linear combina-
tion of

ul = [[e, acl, [c, a*]], u2 = [[e, ac), [¢, ca?],
u3 = [[c, acl, [¢, aca]], ud = [, ac), [ac, cal],
u5 = [[e, eal, [¢, a%]], u6 = [[c, cal, [c, ca®l],
u7 = {[c, cal, [c, aca]], u8 = [[c, cal, [ac, ca]],
u9 = a[[c, ac, [, ca]], ul0 = [{c, ac], [c, ca]]a.

The homogeneous elements of F of degree 7 in @ and 4 in b with 0 form a free

f-submodule P of rank (141]=330. The basis of P is the set of all words of T of

length 11 in which exactly 7 entries are a. Let R be the submodule of P spanned by
{ui: 1=i=10}, and let S be the submodule of P spanned by RU{p}. peN iff
PER, ie.,iff S=R. Let B be a subset of the basis of P, then if p€N, the images of



10

“A. A. Iskander *

R and S under the module homomorphism 3 {g;s;: s;€basis of P}~ > {a;s,;: 5,6 B}
coincide. Table I below gives the coefficients of p, u1, ..., ul0 as f-linear combina-

tions of elements of T in

.x1 = ba®ba®ba?b,
x3 = ba*baba®b,
x5 = baba®bab,
x7 = ababa®ba?b,
x9 = ba®ba®b?a?,

x2 = ba'ba®bab,
x4 = baba®ba®b,
x6 = a*b%a*bab,
x8 = a®b%aba®b,
x10 = a®bababa®b.

Table I
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
p -2 0 -1 -1 0 0 1 0 -2 2
ul 1 -1 0 0 0 —1 -2 1 0 -2
u2 2 1 0 1 1 0 -2 0 0 1
u3 -3 0 -2 0 0 0 4 0 0 0
ud 0 1 0 0 0. -1 -2 0 —1 2
us -2 0 0 1 —1 0 2 —1 0 1
ub —1 0 0 -2 0 0 1 0 —1 0
u7 3 0 2 1 0 0 -3 0 1 —1
us 0 0 0 -1 0 0 1 0 2 —1
u9 0 0 0 0 0 -1 -2 1 0 0
ul0 0 0 0 0 0 0 0 0 2 0
Table 11
~xl x2 x3 x4 x5 x6 x7 x8 x9 «x10
—ub 1 0 O 2 0 0 -1 0 1 0
ud 0 1 0 0O 0 -1 =2 0o -1 2
—u343ub 0 0 2 -6 O 0 -1 0 -3 0
—u8 S0 0 0 1 0 0 -1 0 -2 1
u2 —ud +2u6—3u8 0O 0 O 0 1 1 —1 0 -7 2
—u9 0O 0 O 0 0 1 2 -1 0 0
ul+u3+ud+ub+ul—

—u8—2u9 0 0 O 0 O 0 1 -1 =3 0
—2ul —u3 —-2ud —2u6 —

—u7 4+ 3u8+4u9 0 0 O 0 0 0 0 2 9 =2
-ul0 0 0 0 0 0 0 0 0 2 0
4p+u3 —2ub+3u7 +

+3u8—ul0 0 0 O 0-0 o 0 0 1 2
8p+2u3—4u6+6u7 + o

+6u8 —3ul0 0 0 O 0 0 0 0 0 0 4
U2 —u3 —ud +uS—u74 ] o ’

+u8+u9—ull 0 0 O 0 0 0 0 0 0 0
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The image of -R into the submodule £x3 is (2f)x3; the image of S"is ¥x3. If
2 is not invertible in ¥, then 2f#f and R=S. If 2 is invertible in ¥, from Table IT
we get bases for the images of R and S'in the free f-module ' {fxi: 1=i=10}.

The image of § into 3 {fxi: 1=i=10} is the whole submodule, i.., it is a
free f-module of rank 10. The image of R is a submodule generated by 9 elements.
If R=S, we geta free -module of two distinct ranks: 9 and 10. This is impossible
since f is a nontrivial commutative and associative ring with 1 and by reduction
to f/fm for any maximal ideal m of I, we get a vector space with two dimensions:
9 and 10, cf. P. M. Conn [6), p. 6. This concludes the proof of the first part of Theo-
Tem 2. ‘

4. Multinilpotent varieties

In this section we prove the second part of Theorem 2 and some results of
interest in their own right.

Let ¥ €L0f. If v 2ofif, then d(i, ¥)=<, otherwise d(i,¥") is the
least degree of elements of V(Fi), ¢(i, n, ¥") is the ideal of T generated by the coeffi-
cients of elements of V(Fi) of degree n, c(i, ¥)=c(i,d(i, ¥), ¥), i=0,1,2,3.

Since V¥ contains with every element of FO all its linearizations, i.e.,

f(xl, voey x_,-+x,,+1, cesy x")""f(xl, casy xj, caey x")—'f(xl, seey x,,+1, eeey x,,),

1=j=n, cf. J. GoLDMAN and S. KAss [9] and J. M. OsBorN [17], d(i, ¥") is achieved
by multilinear identities.

Lemma 11. If ¥, WeLAiX, then d(i, ¥ «W)=d(i, ¥)d(i, W). Thus, if
v 2Ait, WHAI, then ¥V W =Ail, ie, (Lfit; ) has no zero-divisors.
Furthermore, c(i,n, ¥)=o iff d{, ¥)=n. If V' SW, then d(i,¥)=d(i, W)
and ¢(i,n, ¥)2¢(i,n, W), n=1,i=0,1,2,3.

Proof. By Lemma 9, (VoW )(Fi) is the ideal of Fi generated by V(W (Fi)),
in the sense of the proof of Lemma 9. Thus the elements of least degreein (V oW )(Fi)
belong to V(W (Fi)). Let fe V(W (Fi)). Then f=g(w, ..., w,), where g(xy, ..., x,)€V,
Wi, ..o, We€W. o(f)=0(g) min {o(W)), ..., o(w)}=d(i, ¥') -d({i, #). If g is multi-
linear of degree d(i, ¥"), each of wy,...,w, are multilinear of degree d(i, #),
Wis ..., W, involves exactly nd(i, #") elements of X, then n=d(i, ¥°), fis multi-
linear and o(f)=d()=d(, ¥)dG, ). U ¥ =il, W =Lil, then d(i, ¥),
d(i, W)<<, and d(i, V" «W)=d(, ¥)d(i, #W)<e. V' SW iff V2W, from
which the rest of the lemma follows. .

. Definition 4. A variety Y €Lsfit is i-multinilpotent if  V(Fi)=
=2 {a, Fi": n=1} where ai, a,, ... are ideals of ¥ and Fi" is the set of all finite
sums of all possible products of n elements of Fi, i=0,1, 2, 3.
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It is clear that Fi"*'C Fi", n=1. Thus we can assume a,, a,, ... an ascending
chain of ideals of f.

Lemma 12. Let Mi be the set of all i-multinilpotent varieties. Then Miis a
complete sublattice of (LAit; A, V), i=0,1,2, 3:

Proof. Let ¥ a, acl, be i-multinilpotent varieties. Then there are ascending
chains of ideals of I: (ag,), n=1, a€l, such that Va(Fi)=2 {aa,Fi*: n=1}, acl.

(S (Va: ac ) (Fi) = 3 {Va(Fi): acl} =
= 2{2 {aa,,Fi": n= 1}: aEI} = 2{2 {{aa": aEI}Fi": n= 1}_

Thus, the intersection of any family of i-multinilpotent varieties is i-multinilpotent.
(N{Va: ac})(Fi) = N{Va(Fi): a€l}=
=N{3 {aa,Fi": n = 1}: acl} 2 3 {N{aa,: a€I}Fi": n= 1}.

If feVa(Fi) for all acl, f=fi+...+f, where each f; is of order and of degree n;,
m=<ny<...<n,, then f;€Fi" and fi€aa,; Fi" for all -acl, 1=j=r. Hence f;€N
N{aa,;: acl}Fi", 1=j=r, ie., €3 {N{aa,: a€l}Fi": n=1}. Thus, the join of
any family of i-multinilpotent varieties is i-multinilpotent.

Lemma 13. Let ¥ be i-multinilpotent, V", WeLit. Then (VoW)(Fi)=
—V(W(Fz)) i=2,3.

Proof. Since (VoW)(Fz) is the ideal of Fi generated by V(W(Fz)) (from
Lemma 9), we need to show that V(W(Fl)) is an ideal of Fi. W (Fi) is an ideal of
Fi. Hence W(Fi)"is an ideal of 'Fi and consequently &, (Fi)" is an ideal of Fi,
where a, is an idéal of T, nz1. If V(Fi)=2 {a, Fl : n=1), then V(W(Ft))—
=2 {a,W(Fi)": n=1} is an ideal of Fi.

Corollary 14. If %, V", W LA, V' is 1-mulnmlpotent then (U +; ’V) W=
=YV W), i=2,3.

Proof. (Uo(V oW))(Fi) is the ideal of Fi generated by U((V oW )(Fi)) (from
Lemma 9). From Lemma 13, (VoW)(Fi)=V(W (Fi)). Thus U((VoW)(Fi))=
= U(V(W(Fi))) ((UoV)oW)(Fi) is the ideal of Fi generated by (U o V)(W (Fi)).
This is also the ideal of Fi generated by U ( V(W (Fi))). Hence ((U oV)oW)(Fi)=
=(Uo(VoW))(Fi).

Since /it and & are i-multinilpotent, Mi generates a submonoid with zero of
(LAI; ), i=2,3.

By Lemma 12, if ¥ ¢L#Zif, the join of all z-multmllpotent varieties contained
in ¥ is i-multinilpotent, We will denote the largest z-multlmlpotent variety contained
in¥ by v,
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Lemma 15. Suppose ¥, W eLAit, V(Fi)=2 {a,Fi": n=1}, W(Fi)=
=3{b, Fi*: n=1}, (a,), (b,) are ascending chains of ideals of f If U=V W),
then U(Fi)=2 {¢c,Fi": n=1},  where =2 {a,by...0,: t1+. . +tr=n},
i=0,1,2,3.

Proof. (VoW)(Fi) is the ideal of Fi generated by V(W (Fi)).
VW (F)) =V(Z {0, W(Fiy': n=1})=
=0, b, Fi": n=1}+0a, > {b,Fi": n=1+...
= 2{> {a,by...0, Fi* _.Fi": tl4+...+tr=n}: n= 1} S {.Fi": n=1}.
If 3 {,Fi": n=1}2(VoW)(Fi), then > {a,b,...b,: t1+...+tr=n}Sh,, n=1.

Proposition 16. Let i=2,3. Then Mi is a submonoid with zero of {LsLif; ),
and (Mi; \,V, -) is isomorphic to the partially ordered monoid of ascending chains
of ideals of ¥, where (a,)=(b,) iff a,20, for all n=1 and (a,)-(,)=(c,), where
=2 {a,b,...b,: t1+...+tr=n}.

Proof. For i=2,3, Fiis associative. Thus Fi" Fi"=Fi™*". From the proof
of Lemma 15, the product of i-multinilpotent varieties is i-multinilpotent. Proposi-
tion 16 then follows from Lemmas 12 and 15.

Proof of Theorem 2, second part. If f is a field of characteristic 0, every
identity is equivalent to multilinear identities, cf. J. M. OsBorN [17], p. 181. Hence,
in &3t every variety is 3-multinilpotent. In fact every variety in &/3f is either &/31
or defined by x;...x,=0 for some n=1. By Proposition 16, (Lo/3%; -) is iso-
morphic to the monoid of ascending chains of ideals of f; this is isomorphic to the
multiplicative monoid of natural numbers.

5. Subgroupoids of varieties and minimal varieties

Lemma 17. If ¥ cLoit, ¥ #E, then VEmFO+F0® for some maximal
ideal m of T, i=0,1,2,3.

Proof. Since V(Fi))SV’'(Fi)=a,Fi+a,Fi*+... and ¥”#&, then a;#%
Thus V(Fi)Sa, Fi+ Fi*CmFi+ Fi? for any maximal ideal m of I containing a,.
Since FO/mFO+ F0?*= FifmFi+ Fi%, VSmFO-+ F02.

Definition 5. A set P of non-trivial algebras is verbally closed if for every
v eLdif, REP, V(R)EP or ER/V(‘.R)EP N(i, P) is the set of all subvarieties of
it containing no members of P.
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Any family of algebras with precisely 2 T-ideals (i.e., T-simple) is verbally closed.
Any family of simple algebras is verbally closed.

Lemma 18. Let MCLs/if. Then M is a subgroupoid of‘ (LLit; ) and a
lattice ideal of (Lsit; A\, V) iff M=N(, P) for some verbally closed set of non-
trivial algebras P, i=0, 1, 2, 3.

Proof. Let P be verbally closed, ¥, W €N(, P), #cLAit, US¥ . Then
WEN(, P). Since ¥ VWSV W, N(i, P) is a lattice ideal of (Lafif; A, V) if
V wWEN(, P). Rey W if W(R)EY,RIWR)EW and ReAit. Thus ¥ W
does not contain any member R of P, otherwise W(R)cP or R/W(R)EP con-
tradicting ¥ €N(i, P), BEN(i, P). Conversely, let M be a subgroupoid of (L&/it; )
and a lattice ideal of (L&/if; A, V). Let K be the set of all non-trivial algebras
obtained from {F¥": ¥ €Lii} by a finite number of applications of: If R€K,
v eLAIE, V(R)#0, then V(R)EK and if R=V(R), R/V(R)EK. Let P be the set
of all algebras R of K such that var@R, i.e., the variety generated by R, does not
belong to M. We claim that M=N(i, P). Let ¥’ ¢M. If Rc¥", then varRS 7.
Hence, var REM as M is a lattice ideal of (L&/if; A, V). Thus, R¢P,ie.,
MEN(@i, P). Let ¥€N(i,P). Then F¥ ¢P. Since ¥ =var F¥, veEM. It
remains to check that P is verbally closed. Let ReoZif, ¥ € Lo/it. If neither V(R)
nor R/V(R) belongs to P, then var V(R), var R/V(R)EM. But

Revar V(R) -+ var R/V(R).

Hence var-ﬂigvar V(R) «; var R{V(R). Smce M is a subgroupoid and a lattlce
ideal, var ReM, .ie., ‘R({P

Lemma 19. The following conditions on a vartety v eLAit, i=0, 1, 2, 3 are
equivalent:

(1) x;+f(x)EV for some fEF;.

2) v’'=6&, ie., ¥V does not contain any nontrivial i-multinilpotent varieties.

(3) ¥ eN(i, {O(m): m is a maximal ideal of T}), where O(m) is the algebra with
zero multiplication on /m as a t-module.

Proof. Let x;+f(x)€V, feF0:. If ¥73¢& then VCmFO+FEQO* (by
Lemma 17), for some maximal ideal m of f. Thus x;+f(x)EmMFO+ F0?, ie.,
x€mF0 — a contradiction. If #’=¢&, then O(m)¢¥". In fact, if # =var O(m)=

" =the variety generated by O(m), then W=mF0+FO0?, # S¥ . Hence VSmFQ+
+F0* and V'CmFO+F0?, ie., ¥’'#4&. Finally, if O(m)¢¥ for any maximal
ideal m of f, then ¥+ F0*=F0. Otherwise, V+ F0? is i-multinilpotent, ¥+ F023=
#F0. Hence VSV+F0CmF0O+F0* for some maximal ideal m of f. Thus
FO/mFO+ F0%c¢¥". This implies: O(m)€ ¥ since the subalgebra of FO/mFQ+ FQ?
generated by x; +mF0+ FO0? is isomorphic to O(m). Now x,€ FO=V+ F0% Hence,
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there are ve ¥V, fCF0* such that x;=v=f. By substituting 0 for all x;#x,, we
can assume f—f(xl) Thus ,\1+f(x1)€V SfEFQ2,

_Corollary 20 The set of uartetzes VeLA, V'=8 is a subgroupozd of
(L.szhf, +) and a lattice tdeal of (Lstit; A, V), i=0, 1,2,3.

This follows from Lemmas. 18 and 19.
Cotollary 21. Let %, V'€ Lotit. Then (% « V').= & if U =¥ =8,i=0, 1,2, 3.

This follows from Corollary 20 and Lemma 19 since ¥'VV'S(%VYY S
S 7Y.
" Let G be a commutative non-trivial ring with 1 and let a:be a homomorphism
of T into G preserving 1. Then G has a natural f-algebra structure: ag=(ax)g, acf,
g€G. This f-algebra structure on G will be denoted by Go.

] Lemma 22. Let G, H be commutative non-trivial rings wtlh 1 and a, B homo-
morphisms of f into G, H, respectively, preserving 1. Then ®a is isomorphic to a sub-
algebra of 9 iff there is an injective ring homomorphism y of G into H such that
ay=pf, y preserves 1.

. Proof. If y is an injective ring homomorphism of G into H and ay=p, then
y is an injective homomorphism of f-algebras. Conversely, if there is an injective
homomorphism y of ®« into H and y preserves 1, then y is a ring homomorphism
and axy=(ax)y=((al)a)y=(ao- la)y=a((la)y)=a(1f)=ap for every act.. '

Lemma 23. Let ¥V €LA2, v'=8, ¥ =8 Then ¥ satisfies x—x"=0 for
some m=1. There are a finite number of non-isomorphic finite fields G;, 1=j=n,
and sets Ij of homomorphisms of t into G; preserving 1,  1=j=n, such that ¥ is
generated by {Gju: aclj, 1=j=n}.

- Proof. Let R=F(, ¥). R is associative and commutative. Since ¥~ =¢&,
by Lemma 19, ¥ satisfies x-/(x) =0 where f(x) is of order =2, Thus ¥ satisfies
x=x2h(x)y where h(x)€i[x], the ring of polynomials in x over f. Thus R is a com-
mutative .and associative von Neumann regular ring. Hence R is a ring subdirect
product of fields. If G is one of these fields, there is a ring homomorphism y of R
onto G. G inherits a f-algebra structure: ag=(ag,)y, acf, g,€R, g,7y=g€G. There
is a homomorphism o of f into G preserving 1: ax=ae where e is the identity of G.
Ga is a homomorphic image of R as f-algebras. Thus Go satisfies x=x2h(x). Thus
G is finite since all its elements are roots of x2h(x)—x=0, |G|=degree xth(x)=
=degree f. -There is only a finite number of non-isomorphic fields satisfying
x=x%h(x). Let Gl, ..., Gn be all the finite fields such that if G is.a field and G is a
homomorphic image of R, then G is an isomorphic copy of G1, ..., or Gn and
GizGj if i#j, 1=i,j=n, and let Ij be the set of all homomorphisms « of ¥ into
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Gj such that Gjx is a homomorphic image of R, 1=j=n. Then there is m=>1
such that x=x" in G1X...XGn. Thus ¥ satisfies x —x™=0. Thus, by Jacobson’s
Theorem ¥~ is commutative and FV is a ring subdirect sum of fields satisfying
x—x"=0, i.e., finite fields. If H is one of these fields, then as above, there is a homo-
morphism « of f into H such that $a is a homomorphic image of F#". Thus Hac¥".
But $a is generated by one element. Hence, Ha is a homomorphic image of
FQ,¥)=R. Thus H=Gj for some 1=j=n, and Ha=Gjf for some pclj.
Thus ¥ is generated by {Gju: aclj, 1=j=n}. That Ha=2Gjf follows from
Lemma 22.

It may be noted that although the non-isomorphic fields in Lemma 23 are
finitely many, the non-isomorphic algebras Gja, a€lj, 1=7=n, can be infinitely
many. For instance, if f is an infinite Boolean ring, ¥ is the variety of associative
f-algebras satisfying x+x2=0, then F(1,¥") is ring isomorphic to an infinite
subdirect power of Z,, the prime field of 2 elements; F(1, ¥)=f. However,
is a subdirect product of {f/m: m is a maximal ideal of f}. f/m is ring isomorphic
to Z,, but ¥/ m=f/m” as f-algebras iff m=m’".

Corollary 24. Let ¥V eLAIE, V7' =8, v #E Then ¥ satisfies x—x"=0
Jor some m=1. There are a finite number of non-isomorphic finite fields Gl, ..., Gn
and sets 1j of homomorphisms of ¥ into Gj preserving 1, 1=j=n, such that F(1,¥")
is a subdirect product of {®ja: a€lj, 1=j=n}.

This follows from Lemma 23 since var (1, )¢ L2t and var F(1, ¥y &
Cy'=8.

Lemma 25. Let ReL2t, [ an ideal of R and J an ideal of 1. If J or 1IJ sat-
isfies x+f(x)=0 for some fEFQ0? thenJ is an ideal of R.

Proof. Let J satisfy x+f(x)=0. Hence by Lemma 23, J satisfies x=x"
for some m=1. Let acR, beJ. Then ab=ab™=(ab™ Y)b. But ab™ '€]. Hence
abeJ. Similarly ba€J. Let {/J satisfy x+f(x)=0. Hence I/J satisfies x—x"=0
for some m=1. If acR, beJ, cel, then c¢—c™eJ, ac, cacl. Thus ab€l, and
ab—(ab)"¢J. (ab)"=((ab)"~'a)b. But (ab)"~'a€l. Hence (ab)"¢J and abecJ.
Similarly, bacJ.

Corollary 26. Let &, ¥, WeLALL If U =& or V' =8, then (U + V) W =
= (¥ W), i=2,3.

Proof. By Theorem |, % (¥ ~W)YC(U ¥) W . Let RE@W V) V.
Then Re 2%, thereisanideal 7 of Rand anidealJ of I such that R/icw , Ic¥U - ¥,
Jeu, 1jJe¥". Since U’'=& or ¥’'=4, by Lemma 19, IfJ or J satisfies x+
+f(x)=0 for some f€ FO®. Hence, by Lemma 235, J is an ideal of R. Thus IJe€¥”
and RJe¥ - #, e, REU (¥ W) :
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Lemma 27. Let Re A2t and S an ideal of R satisfying x+f(x)=0 for some
SfEFQ% Then R is isomorphic to a subdirect product of R|S and an algebra sat-
isfying all the identities of S. If R is finitely generated, then S is a direct summand
of R. :

Proof. By Lemma 23, § satisfies x—x™=0 for some m=>1 and § is com-
mutative. In fact S is central in R. Let a€R, beS. Then ab=ab™=(ab)b™ '=
=b""Yab)=(b""ta)b=b(b™'a)=b"a=ba. Let A=Am S, i.e.,

A={x: x€R, xS =0}. ”

A is an ideal of R, 4=N{Annb: b€S}, Annb is an ideal of R. 4ANS=0, since
b€ ANS implies b=b"=bb""'=0. Thus R is isomorphic to a subdi-ect product
of R/S and R/A. If beS, b™'is a central idempotent and b 'R=5bR. Thus
R=bRPAnn b. Hence R/Ann b=bpRCS. But R/4 is a subdirect product of
R/Ann b=bR. Thus R/A satisfies all the identities of S. If R is finitely generated,
then R/A is finitely generated. As A=Ann S, there are bl, ..., bm€ES such that
bl+4,..,bm+A generate R/A. Hence bl,...,bm generate S. If ei=(bi)™?,
then el, ..., em arecentral idempotents, S=elR+... +emR. There is an orthogonal
set of idempotents f1, ..., fr such that S=f1R®...®frR. Thus S has an identity
element e=f1+f24... +fr, eisa centralidempotent R=eRDAnn e=S@SAnn e=
=SDA.

Corollary 28. Let %, v cLAit, U =E. Then UN YV =U ¥V, i=2,3.

If Rew -, ¥, there is an ideal I of R such that R/Ic¥ and Ic¥. The cor-
ollary follows from Lemmas 19 and 27.

Corollary 29. If %cLoAit, U' =&, then U - U=U, i=2,3.
This follows from Corollary 28. ‘

Corollary 30. Let ¥v'€LA1E, ¥'=& and let vV be the variety defined by
all one-variable identities of ¥". Then ¥V ., ¥ V=y®,

Proof. ¥®eLo/1T since every member of ¥ generated by one element
belongs to ¥". ¥"M'=¢ since ¥ and also ¥" satisfy x+f(x)=0 for some fc F0?
(by Lemma 19). Let R=F(, ¥V ., ¥v®), By Corollary 24, R is a subdirect
product of Gjo, aclj, 1=j=n, Gl, ..., Gn are finite fields. Since Gjucy® ., ¥®
and Gja is simple Gjuc¥ D, ie., Gjac¥. Thus Re¥. Hence, vV ., ¥v®
satisfies all the one-variable identities of ¥~. Thus ¥ MWy . ¥y y®,

Lemma 31. Let G, H be finite fields, o, § homomorphisms of ¥ into G, H, respec-
tively, preserving 1. Then 9Dfevar ®a iff kera=ker B and H is isomorphic to a
subfield of G.

2
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‘Proof: If ker a=ker  ‘and "H is isomorphic to a subfield of G, then $Hf is
isomorphic to a subalgebra of G« since H contains If=fa. Conversely, if HB€ var Ga,
IG|=p", then H satisfies x—x""=0 and ax=0. for all ackera. Thus H is of
order p™, min. As ker o and ker B are maximal ideals of f, $P satisfies ax=0 for
all acker a+ker B, H is non-trivial, kera=ker B and H is isomorphic to a sub-
field of G.

Proposition 32. The set Ti of all varieties ¥V €LLit, ¥'=& is a submonoid
of {Lstit; ) and a lattice ideal of (LAit; A, V). On Ti, the lattice join \/ and the
variety multiplication -; coincide. The lattice (Ti, \, V) is isomorphic to the lattice
of left ideals with a finite number of right components of {{(m, p"): m is a maximal
ideal such that ¥/m is a subfield of a finite field of order p"}; =), (m, p")y=(m’, ¢*)
iff m=m’ and p=gq, nlr’, i=2,3.

Proof. That (Ti, -) is a submonoid of (L&if; ;) follows from Corol-
laries 20 and 26. Also from Corollary 20, Ti is a lattice ideal. By Corollary 28,
U ¥V =U\NY¥.ByLemma23,if ¥ ¢Ti, ¥ #&, then ¥ =var {Gja: a€lj, 1 =j=n}.
By Lemma 31, B¢y iff HP is isomorphic to a subalgebra of Gjx for some «€1l,
1=j=n. Thus ¥°€Ti is determined by the set of all pairs (m, p") such that G
is a field of p" elements and f/m is a subfield of G, Ga€ ¥", where « is the natural homo-
morphism of f onto I/mCG. The set of all such pairs for a given ¥  satisfies
(m, p)=(m’, q "), (W, ¢") is in the set implies (m, p”) is in the set. Thus it is a left
ideal: Since every ¥  involves only a finite number of non-lsomorphlc fields, the
- set of right components in the set of pairs is finite.

Proof of Theorem 4. Let ¥ €L«0F be equationally complete and ¥ #8.
Then ¥ =¥". By Lemma 17, VSmF,+F; for some maximal ideal m of .
Hence, V=mFy+FZ V is a maximal T-ideal of F,, ¥ satisfies ax=0 for all
a¢m,and xy=0. This is the type of equationally complete varieties ¥ € Lof0f, ¥ #~&.
If ¥v¢LLit, ¥’'=8, ¥ 1is equationally complete, then ¥ =var F(l,¥"),
var F(1, ¥)e L&Z3%. By Lemma 23, ¥"=var {Gju: a€lj, 1=j=n}. Hence ¥ =var Ga,
for some finite field G and a homomorphism « of ¥ into G preserving 1. Thus
¥ =var f/m for some maximal ideal of finite index in ¥, since G« contains a sub-
algebra isomorphic to f/ker «. By Lemma 31, var f/m does not contain any non-
‘trivial proper subvarieties. Thus ¥” is determined by the identities ax=0 for all
a€m, x—x” =0 where p"=|f/m|. :
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6. Varieties of algebras over rings with exactly 2 idempotent ideals

Throughout Section 6, we assume that if.a'is an ideal of f, and a*=aq, then
a=p or a=F.

Lemma 33. Let ¥ €LoLit, v ¥ =¥. Then ¥V =oit or ¥’'=6
i=0,1,2,3. : - '

Proof. If ¥ =«/if, then d(i, ¥)<e and dG, ¥)=d(, ¥ ~¥)=d(i, ¥ )
(by Lemma 11). Thus, d(i, ¥)=1, .i.e., there are non-trivial polynomials of degree 1
in Vand V(Fi)SV'(Fi)=a;Fi+a,Fi*+... where a,%0. Hence (Vo V)(Fi)g_
C(V’ o V') (Fi)SalFi+a,a, Fi*+... (by Lemma 15). Thus V(Fi)=(VoV)(Fi)S'
CalFi+a,0,Fi*+...S V(Fi). But.a?Fi+a;a,Fi®+... is i-multinilpotent, whence
V/(Fi)y=a2Fi+a 0, Fi®+...=a, Fi+a,Fi®4... . Hence a’=aq,. But a,o. Hence
a=Ff, ie., V(Fi)=Fi ie, ¥'=8.

Corollary 34. Let ¥ ¢LoAit, V' =sdil. Then ¥ V=¥ iff ¥’'=6,
i=2,3.

This follows from Corollary 29 and Lemma 33.

It may be notéd that if ¥ has an ideal a0, a¥f, a®=aqa, then the variety ¥~
of all f-algebras satisfying ax=0 for all a€a is idempotent, i.e;, ¥ ¥ =7,
V=Y #£E. ’

" Proof of Theorem 5. A set IS FO is attainable on a variety ¥ iff the
T-ideal of FO generated by I is attainable on ¥". It was shown by A. I. MAL’CEV
[13], that if 1 is attainable on ¥, then the variety %¢L¥" determined by I satisfies
U - U=, or equivalently (UoUY(F¥)=U(F¥). If U - U=%, then U=sLi¥
or U'=& by Lemma33. Let i=1,2,3. Then #%N«/2f is generated by
{Gjo: a€lj, 1=j=n}, by Lemma 23, if ¥#&, U=Aif. Let m be keroa for
some aflj, 1=j=n. Let R be the ideal of (f/m)[x] generated by x. UR)=
=N {Vja(R): aclj, 1=j=n), ¥ju=varGja. Vja(R)=R iff m=kera. Also,
G1, ..., Gn are finitely many and each Gj is a finite field, there is only finitely many
Gjx such that Vig(R)=R for some aclj, 1=j=n Vja(R)=0 for any «flj,
1=j=n. Thus U(R) is a proper non-trivial ideal of R. Hence, there is a polynomial
h(x)ER, h(x)#x, h(x)=0, such that UR)=h(x)(f/m)[x]. By the methods of the
proof of A. A. IskANDER’s [11}, Theorem 15, p. 237, replacing the prime field Z,
by f/m one can show that U(U(R))> U(R). Thus U is not attainable on R. Hence,
if I is attainable on i, % is the variety of LsZif determined by I, then % =4/if,
1.e., 1 is equivalent to x=x on «if, or ¥#=§&, i.e., Iis equivalent to x=y on #if.

2%
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7. Varieties of algebras over Dedekind domains

Throughout Section 7, unless otherwise stated, ¥ is a Dedekind domain.

Proposition 35. The following conditions on a variety ¥ ¢LAIt are equiv-
alent: :
(1) ¥ satisfies x"=0 for some natural number n=0.

(2) Y eN(, {f/m: m is a maximal ideal of ¥}), i=1,2, 3.

Proof. Since a field does not contain any non-zero nilpotent elements, (1)
implies (2). Let ¥ € Lo/it, tfm¢ ¥ for any maximal ideal m of £. As F(1, ¥)€ o/3f,
the factor algebra F(1, ¥")/R, where M is the nilradical, is a subdirect product
of rings without zero-divisors. Thus, if M= F(1, ¥7), the algebra F(1,¥") has a
non-trivial factor algebra R without zero-divisors, and it is not difficult to show
that R can be chosen such that for its “characteristic” p<sf one has either
R=x(¥/p)[x] or R=x(/p)[x]}/f(x) where fis primitive irreducible, and R obviously
has in both cases field factors, which, in their turn, must have a subfield of the
prescribed form.

Proposition 36. If tisaprincipal ideal ring or a Dedekind domain and ¥ € L i%
is i-multinilpotent, then V" =% «W, where U(Fi)=aFi, -and W is a nilpotent
variety that is i-multinilpotent, i=0, 1,2, 3.

Proof. V(Fi)=a, Fi+a, Fi*+... where (a,) is an ascending chain of ideals
of I. Since I is Noetherian there is n such that a=a,=a,,, for all m=>n. If fis a
principal ideal ring, a,=a,f, a=af, a,Sa implies a,=ab,, a,b,, a,€t. Hence
a,=a(b,f)=ab, for all r=n, b,=1. If f is a Dedekind domain, a,=ml’. . ms
and a,Sa=ml*t...m implies sl=ul, ..., st=ut. Thus a,=b,a where b,=
=mit. . m#, vl=sl-—ul, ..., vt=st—ut. Hence,

V(Fi) = ab, Fi+-ab, Fi®*+... +aFi" =
= a(b, Fi+b, Fi*+... + Fi") = (aF0)(b, Fi+Db, Fi®+... + Fi").

Proof of Theorem 3. From Definition 2 and Lemma 17, ¥ €Lsfit is
i-pseixdo-indecomposable iff V=A% ¥v'#E and ¥V =U W, U, WeLAIL
implies #’'=& or W’'=¢,i=0,1,2,3. We will write ¥ -7 7%: to mean
one of the products (%] «¥%2) ¥, ¥14 (%2 < ¥;). In general, ¥{ «¥; «... <Y,
will mean any of the products obtained by the introduction of suitable parentheses.

Lemma 37. Let v cLAil, ¥V #Ait and. ¥V =Y¥] «¥; ... v¥.. Then the
number of ¥; such that d(i, ¥;)=>1 is at most equal to the number of primes (including
repetitions) in the prime factorization of d(i, ¥°); - the number of ¥; such that ¥; #&
and d(i,¥;)=1 is at most equal to the number of maximal ideals (including repeti-
tions) in the factorization of (i, ¥") as a product of maximal ideals, i=0, 1,2, 3.
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Proof. By Lemma 11, d(i,% « #)=d(i,%).d(i, ). By induction on n,
d(i, ¥)=d(i,¥7) ... d(i,¥%;). Hence the number of ¥} such that d(i, ¥;)>1 can-
not exceed the number of primes in the factorization of d(i, ¥°). To prove the rest
of the lemma, we show first that for any variety # ¢Lif, d(i, W)=d(i, #”).
In fact, d(, #)=d iff W(Fi)SFi* and W(Fi)E Fi**'. This is true since if
d(i, #)=d, W (Fi) contains elements of degree d and no elements of degree less
than d. Thus W (Fi)CS F¢ W(Fi)EFi**' (due to linearization). Conversely, if
W(Fi)E Fi**?, then W (Fi) contains elements of degree =d; if W (Fi)C Fi®,
then W (Fi) does not contain any elements of degree less than d (again W is closed
under linearization). Thus d(i, #)=d. Now, W’(Fi)2W (Fi), W (Fi)& Fi’*%. So
W/(Fi)E Fi‘t. Also Fi2W(Fi), Fi®=F0*(Fi). If % is the subvariety of «/if
whose T-ideal in Fiis Fi®, then % is i-multinilpotent. Thus %~ 2%, i.e., Fi=U(Fi)2
2W'(Fi). Hence d(i,#')=d=d(i,W). Let ¥ = ‘V ¥ .. Y. Then
V2 % i ¥ 20 %) %) w.) w¥,,  (by Theorem 1).
di, ¥)=d(, %) ... d(i, ¥))=d(i,¥7) ... d(i, ¥,") and

V2V 2((AK %Y ) .Y %Y.
Hence ,
e(i, V) =¢(i,d(i, ¥), ¥) =c(i,d (i, V"), ¥) =
=c(i,d, V)E c(i,d,¥)=1¢(i,¥’)S (byLemma 11)
S iy (AR 95 WY o) HY) =
= (i, 7)€ (i, %5 Ve (i, Y5 Yol .. (i, ¥ Yate-dn-a

by Lemma 15 and by induction on n, where d;=d(i, ¥})=d(i,¥}), i§j=<—_r. If
dii, v)=1,7/#8&, then (i, ¥})#k, c(i,¥;)#0. Since

(i, ¥) € c(i,7)e(i, VY. c (i, 4 Y das © [T{e(i,¥7): 1 =j = n}

and 1 is a Dedekind domain, each non-zero proper ideal of f is uniquely the product
of maximal ideals, possibly non-distinct, of £. If ¢(i, ¥)=ml...mr, where ml, ..., mr
‘are maximal ideals of F, possibly equal, each of the ideals ¢(i, ¥;")#% is a product
of some of ml, ..., mr. Thus, the number of ¥}, such that ¥]'#8&, d(i, ¥})=1,
1is at most r. S . -

We return to the proof of the theorem.

If veloit, v 2Lif, ¥'=4&, then either ¥ is i-pseudo-indecomposable or
V' =9 W for someU, W LA, U= AKX, W < AiX, U #=E, W' #E. Continuing this
procedure, by Lemma 37, after a finite number of steps we get ¥ =% % « ... -i"l’;
where ¥, ..., ¥, are i-pseudo-indecomposable.

If %EL.%Qf, U =&, €=s43, then, by Lemma 23 and Corollary 28, % -, ¢=
=U\VE=%. Thus € +€=% (% ¥). By Corollary26, (¥ %) %=
=F (U wC)=F +C. € «U#E if U#&E Thus the decomposition .of Theo-
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rem 3 is not unique. It is an_opén. question as to whether different factorizations
are due only to this reason. Also, pseudo-indecomposables -cannot be replaced by
indecomposables if T contains a maximal ideal of finite index. For then, if « is:a
non-trivial homomorphism of t into a. finite field G, varGa S ¥ and € -, €=
=(% - var Ga) o €=(...(¢ varGa) - ... - var 50:) »@..where GS...CH are
any ascending chain of finite fields. : L :

If T is a field of characteristic 0, ¥~ ELdzf 1" "=¢&, then x;+f(x)€EV for
some f€ FO? (by Lemma 19). By linearization ax,€V for some a0, acf. Hence
aYax,)€V, 1e., V=F0. Thus, ¥'=&. Hence, over a field of characteristic 0,
i-pseudo-indecomposables are i-indecomposable. This concludes the proof of Theo-
rém 3.

‘Corollary 38. Suppose ¥ c¢Lo/it, d(i, ¥) is prlme and c(i, ¥)=tL. Then ¥
is i-pseudo-indecomposable, i=0, 1,2, 3.

This follows from Lemma 37, since ¥ %t and ¥ <é&.

Corollary 39. Let ¥ €Lsflit. Then either ¥ ¥ =¥ or ¥ is a product
of a finite number of i-pseudo-indecomposable varieties, i=2, 3.

If ¥v'=«if, then ¥ ¥ =¥. If ¥'=8, then ¥ ¥ =% (by Corol-
lary 29). The rest follows from Theorem 3.

Proposition 40. Suppose ¥ €Lt and V contains all words of GO of length
nin x, for someé n=1. Then ¥ is i-pseudo-indecomposable iff ¥~ is i-indecomposable,
i=0,1,2,3. '

Proof. If ¥ is i-indecomposable, then ¥ is i-pseudo-indecomposable. Let
¥ be i-pseudo-indecomposable. Then ¥ 2% =&, ¥ #«/it. Suppose ¥ =% W,
U, WeLsfit. Then #'=& or W'=8&, U, W <¥. By Lemma 19, x1+f(x1)€U
or x;+f(x )EW for some f€F0?. Thus x,= —f(x;) is an identity in % or in #".
By repeated substitutions, x,=—f(—f(...(=f(xy)...)), we can get a term of order
=n on the right hand side. Hence x,=0 is an identity in % orin W e, =&
or W=6. . : '

Corollary 41 If veLoit, V contains aII words of GO of length n in x, for
some n=>0 and ¥ #8&, then ¥ is a product of a finite number of i-indecomposable
varieties, i=0,1, 2, 3.

This follows from Theorem 3 and Proposition 40.

From Corollary 38 &I is i-pseudo-indecomposable for. 0=i<j=3. The vari-
ety of all commutative algebras is O-pseudo-indecomposable. The .variety of all
Jordan algebras is O-pseudo-indecomposable. The variety of all Lie algebras is
0-indecomposable and 1-indecomposable. This follows from Corollary 28 and Propo-
sition 40.
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8. Changing the domain of operators

We will consider the effect of changing the domain of operators T on
(L"V i s A V), ¥ELAOE Let ¥ be a commutative and associative ring with 1.
We assume T’ is non-trivial. Let « be a ring homomorphism of T into ¥’ preserving 1.
Let a=kera. For every f€FO=F/0t, fac F/OV is defined by replacing all the
coefficients of elements of GO in f by their images under a. Let ¥ €0k o¥ is
the subvariety of &/0F defined by {fa: feV}=Va. O is the equivalence relation
on Lo/0t such that #0@¥" iff a¥ =a¥ . Every F-algebra R can be considered
naturally as a f-algebra: ax=(ax)x, aci, x¢R. With this understanding «¥ =
=¥ "NAO0F. For some special cases, cf. J. M. OsBorN [17], p. 187 and M. V. Vor-
Kov [25], p. 62. :

Lemma 42. Let ¥'¢L0t. Then ¥ —a¥" is ahomomorphism of (L'V, ws /\) :
into {La¥"; «y, \) preserving all intersections.

Proof. Let YELY, tel. (S{¥V: t€1))a=3 (V,o: €1}, ie., aN{¥: tel}= '
=N {a¥: te€l}. Let %, #WeLy.

WU oy W)V=(U W)V = (UNa¥) g (W NV = 0 g OW .

Till the end of the present paper S is a submonoid of the multiplicative monoid
of T such that s« is not a zero-divisor in ¥’ for any s€S and ¥ is the ring of frac-
tions of fx relative to Su. Every element in ¥’ can be written as x/s where s¢S,
x€E, x/s=y/t iff 1x—syca=kera. If ReAOL, T(R)={x: xcR, sx€aR for some
s€S} and afR is the tensor product of ¥' and R as f-algebras. Clearly, aRc/0F.
This construction is a covariant functor from the category /0% into the category
##0F. In the case under consideration, which unifies the special case where o is a
homomorphism of f onto ¥, i.e., S={1}, and the one where ¥’ is the ring of frac-
tions of I relative to S, i.e., a=ker a=o, respectively, a® has a simple construction,
cf. P. M. CoHN [6], p. 21. The carrier of a®R is the set SXR/~ where (s, x)~(t, )
iff sy—1x€T(R). The equivalence class of (s, x) will be denoted by (x/s)”. We have

/)" + 07 = (tx+sy)st)s  Gls)" (fe)” = (xylst)”, (als)(it)” = (ay/st)”,
acl, s, 1S, x, yeR.
Put xa’=(x/1)". '
Some of the properties of aR, ¢’ are summarized in the following:
Lemma 43. Let Re¥ ' cLg0t and let R be generated by Y. Then
(i) aRea?’,

(ii) o’ is a homomorphism of I-algebras whose kernel is T(R) and the ¥-sub-
algebra of aR generated by Yo' is isomorphic to R|T(R),

(iii) aR=a(R/T(R)), and

(iv) if B is a homomorphism of Y-algebras from R into R,€ALOY, then there
is a unique homomorphism y of Y-algebras from a®R into R, such that B=a"y. :
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Conversely, let R, 40V be generated as a V-algebra by Y, and let R be the
T-subalgebra of R, generated by Y. Then y—ya’ can be extended to an isomorphism
of R, onto aR. If R, satisfies g=0 (g€ FAOV) and ha=g, h¢ F4Ot, then R sat-
isfies h=0. '

" Proof. That aReO0U is standard. By the methods of the proof of
L. H. RoweN’s [19] Proposition 1.3, p. 393, afR satisfies fa=0 if R satisfies f=0.
(i), (iii), (iv) follow from the construction of aR. To check the converse, let x¢ T(R). A
Then sx=3 {a;y;: 1=i=n}, ay, ..., 0,€0, y;, ..., V,€R. But RER,, sx=(so)x=
=3 {(a®)y;: 1=i=n}=0. Thus -x=(1/s)sx=0, i.e., T(R)=0. Thus « is injec-
tive from R into aR. If z€R,, then z=f(y,, ..., y,) where fEFAOF, y,, ..., y,€Y.
The coefficients in f are of the form ayfs,, ..., a,/s,, a;, ..., A€, 51, ..., S,€S;
they can be rewritten as bl/s, ..., bmfs, bl, ..., bme¥, s€S. Thus z=(1/s)u, where
ucR. The mapping (1/t)v—>(v/l)' is well defined from %R, onto aN. (1/sHu=
=(1/t)v iff (u/s)” =(v/f)". This mappmg is a homomorphism and it is injective,
i.e., it is an isomorphism. If R, satisfies g=0 and’ ha=g, then R satisfies h=0
since in ER ax=(ax)x, acf, xei}t

Corollary 44, If v LAY, then oV is the class of all isomorphic copies of
aR, REe¥". a maps LsA0t onto LoZ0F.

Proof. From Lemma 43, agiea’ff if Re¥” and Rycav” iff R,=aR, Ry,
If WeLAOY, then F# =aR where R is the I-subalgebra of F#~ generated by X.
Let % =var R. Then a% =W, since by Lemma 43, R satisfies h=0 for all h€¢ F#0f,
hacW.

Corollary 45. For any cardinal number n, F(n,a¥)=aF(n, ¥).

Proof. Let ¥ be non-trivial and R,=F(n,a¥"). By Lemma 43, R,=~aR
where R is the f-subalgebra of R, generated by X (n), Re¥". Hence there is a homo-
‘morphism B of F(n, ¥") onto R sich that xp=x for all x€X(n). Hence, by
Lemma 43 there is a homomorphism y of aF(n, ¥) onto &R, i.e., onto R, such
that xa’y=x for all x€X(n). But, there is a homomorphism é of ¥’-algebras from
R, onto aF(n, ¥)€a¥ such that xd=xa’ for all x€X(n). Hence xéy=x for all
x€X. Thus & is injective and so & is an isomorphism. If «¥” is trivial, then F(n, a¥")
is trivial and aF(n, ¥)€cav" . .

For any variety ¥ € L&/0F, T (V)= {f fEFAOf FO, sfe V+aFO for some s€ S}.
Clearly T(¥) is a T-ideal of FO containing V.. -

Lemma 46. Let @, ¥ cLAOL. Then all=a¥" iff T(U)=T(V).

- ..Proof. Let. feT(U). Then sfeU+aF0 -for some s€S. a% satisfies . g=0
iff a% satisfies isg=0. But sf=u+a,fi+...+a,f,, ay, ..., a,€a, f1, ..., /€ FO. Thus
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(sNa=ua+(a, fi +... +a, f)a=ux+0. Thus a% satisfies fu for all f€T(U). Hence
oT(W)=a¥. If TWU)=T(V), then oa¥=aT(%)=aT(¥)=a¥ . Conversely, if
ol =o¥, then aT(#)=aT(¥"). Hence FaT(%)=FaT(¥"). The f-subalgebra of
FaT(%) generated by X is isomorphic to R/T(R) (by Lemmas 43 and Corollary 45),
where R=FT(U)=F0/T(U). Let xcT(R). Then sxcaR for some s€S, i.e.,
if x=g+T(U), then sg+T(U)ST(U)+aFO0=T(U). Thus T(R)=0, and the
f-subalgebra of FuT(%) generated by X is isomorphic to FO/T(U). Hence FO/T(U)=
=~ FO/T(V). Since T(U), T(V) are T-ideals of FO, T(U)=T(V).

T(%) is the smallest variety among the varieties %~ such that a% =a%, since
if aW =a%, then WS T(W)=T(U). In the case a=bo, the least variety ¥
such that a#w =ad is called by M. V. VoLkov [25], p. 66, the S-knotted variety
associated to %. Modifying slightly the terminology of M. V. VoLkov when a#b,
define a binary relation 4 on LAOt by #A¥  iff there is s€S such that sUS V+aFO,
sVSU+aF0. A variety ¥ €L«0F is S-joined if the restrictions of ® and A on
LY coincide. M. V. VoLKov [25], Lemma 9, p. 67, showed that 1 is a congruence
on (La0F; A, V) if a=o. Thus 1 is a lattice congruence on the lattice of varieties
satisfying ax=0 for all aca. However, A is a congruence on the meet semi-lattice
(LZ0%; \). Let U, ¥, WcLotOF, s€S, sUSV+aF0, sVCU+aF0. Then
s(U+W)SV+W +aF0 and s(V+W)SU+W +aF0. Also, A&0. The rela-
tion between A and @ is described by : '

Proposition 47. Let U, ¥ €LAOX. Then el =a¥" iff there are U;, Ve Lo,
ULV, BED, and U= N{%;: i€l}, v =0 {¥: i€l}. '

Proof. Since AS @ and « preserves all intersections, we need to show the
only if part. Let a%=a¥". By Lemma 46, T(U)=T(V). Let I={(f,g): feU,
gevV, sf—tgcaFO0 for some s, t€S}. If i€l, i=(f, g), then %; is the variety of all
algebras satisfying f=0 and ¥ is the variety of algebras satisfying g=0. Thus
SN {%: icl} and ¥ SN {¥: iel}. Let feUST(U)=T(V). Then there
is s€S such that sfeV-+aF0, ie., there is g€V such that sf—g€aF0. Thus,
USU;, i=(f,8). Since U= {%,: feU}, where %, is the variety of all algebras
satisfying f=0, =0 {%;: i€l} and, similarly, ¥'=N {¥: icI}. If i=(f,g),
then sf—tg€aF0. Hence, sU;StV;+aF0 and stU;St*V;+aF0S V;+aF0. Sim-
ilarly stV;SU;+aFO0, ie., U;\¥]. »

It is implicit in M. V. VoLKoV [25] that the join of S-knotted varieties is S-knotted
- (in the case a=o). ‘This also follows once we check that T(UNV)=T(U)NT(V)
if U, V2aF0. If ¥ is a variety satisfying ax=0 for all aca, then a(%V#)=
=a¥\aW for any %, # €Ly . This follows from M. V. VoLkov [25], p. 63.
We give here another proof using T-ideals. The T-ideal alU of the variety a% is the
T-ideal of Fo/OV generated by Ux. Thus aU=aT(U) is generated by T(U)a. If
UZ24aF0, then aU=aT(U) is the set of all elements. of the form ’ (f1s)", feT(U),
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s€S where (f]s) =(g/t)” iff tf—sgcaF0. M (ffs) €aT(UNW), then
fETUNW)Y=TWUINTW), ie., (fI9) caT(U)N«TW). If (fls) €aTU)N
NaT(W), then fls=gft, where feT(U), g¢ T(W). Since sg—1tf€aF0, sgeT(U)+
+aF0=T(U). Thus geT(U), ie., (f]s) €x(T(UYNTW)).

We conclude that #—~a% is a homomorphism of (L¥'; -, A, V) onto
(La¥"; ~y, A, V) for any variety ¥ €Lo0F satisfying ax=0 for all aca. This
follows from Lemma 41, Corollary 44 and a(ZVW#)=a¥NoW if U, WeL¥V .

A number of characterizations of S-joined varieties, in the case a=o, were
given by M. V. VoLkov [25]. The same characterizations can be modified to describe
the case aso. For instance, ¥ is S-joined iff for every subvariety % of ¥", T(#")
is finitely based relative to #"; ¥" is S-joined iff for every subvariety #” of #" there
is s€¢8 such that sT(W)SW +aF0. This is true since if ¥ is S-joined then
WAT(W) since 2=0O on L¥". Thus there is s€S such that sT(W)SW +aFO0.
Conversely, if for every #'€L¥" there is s€S such that sT(W)SW +aF0, then
WIT(W). X U, WELY, e =a¥, then T(U)=T (W) and ULT), WAT(¥W),
i.e., A% . The following will show the behavior of S-joined varieties under muliti-
plication of varieties: '

Proposition 48. The S-joined subvarieties of ¥ €Lsf0Y form a subgroupoid
with 1 of {LY"; +4). ’

Proof. Let %, # be S-joined varieties, %, W €LY¥", and let X' CU -, W,
A €L¥. We need to show that there is s€.S such that sT(K)S K+aF0. In other
words, if x€ Fof and there is ?€S such that tx€aFJ, then sx€aFX4 . Let
R=FA". Then REU -, W, RIWR)EW and RWR)=FA where LW,
W (R)e¥. W(R) generates a variety A, SX. Let. xéR, t€S and ixcaR. Hence
tx€ F{. where X=x+W (R)EFA. Thus there is s€¢S not depending on x or ¢
such that sx€aF.#, ie., sxeW(R)+aR for all x€R such that there is 2€S
and rx€aR. Thus tsx€aR and tsx=0 in W(R)+aR/aR=W (R)/W (R)NaR. x is
a polynomial f from FO, and tsx=tsf(x,, ..., x,)=0 is an identity in W (R)/W (R)N
NaR. Thus tsf=0 is an identity in F.4,/aF.4#,. Hence, there is u€S not depend-
ing on x or t such that usx=0 in FAJaF#,; ie.,usx=0 in W(R)/W(R)NaR=
=W (R)+aR/aR. But sxcW(R)+aR. Hence usxcaR for any x€R such that
tx€aR for some €S, ie., usT(K)S K+aF0. The variety & is S-joined.

Corollary 49. The S-joined varieties of LY, ¥ ¢LO0Y, form a lattice ideal
of (LY A\, V)

Since a subvariety of an S-joined variety is S-joined and #VW S% -, W if
%, weLy, the corollary follows from Proposition 48. o

That the S-joined varieties of L&#/0f (a=0) form a lattice ideal of (L&/0f; A, V)
was shown by M. V. VoLkov [25], Proposition 8, p. 72.
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