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Holiday numbers: sequences resembling to the Stirling
numbers of second kind

L. A. SZEKELY

Dedicated to Professor K. Tandori on his 60th birthday

1. Introduction. The first appearance of the often rediscovered Stirling numbers
seems to be Stirling’s work Methodus differentialis in 1730, but some mathematicians
attribute them to Euler without prima facie evidences. Although their importance
was clear in that time, Ch. Jordan had to summarize their meaning in finite differ-
ence calculus in 1933 {6). Combinatorial properties of Stirling numbers were exhibited
by E. T. BELL [1], {2], [3], [4], but we must know that Dobinski’s formula for the sum

oo n

1
of Stirling numbers — Z"J‘; was found as early as 1877 [5]!
e j=aj!

The aim of the present paper is to investigate the analytic and combinatorial
properties of two sequences introduced by Z. 1. SZabé. Investigating Hilbert’s fourth
problem, in order to define a transformation on some cylindric functions whose do-
main is R", Z. 1. Szabo introduced the following transformation on continous real
functions of one variable:

) nj2
Sh(x) = f cos" 2o f(x sin o) de,
0
and its inverse transformation for odd and even numbers as follows. We use the
abbreviations E=(1/t)(d/dt), D=1t(d/df) and E™, D™ for their powers. Now the in-
verses are
2m+1)-t 1 pm—1(pm-1 (2m/—\|-1)

= n— l m—

R e R A G A )
for m=1 and

(em)-1 1 1( om—2 (2m) @,
A () =n—(2m—_3)—!!"{5'"' (Bm=2f A ()},
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for m=2. The inverses can be rewritten with some constants a,, ; and b, ; as

@m+1)-t m . (@m+1) .
(N= 2 an:t’if ~ O
i=0
and
@m)~?
A

) =5 by {iH1f R (OYR,
i=0

o 2m m) . . .
if f P (tesp. f(zl\ )) is m times differentiable.

It is time to define the holiday numbers. We call i (m, i) the holiday numbers of
the first kind (resp. ¢(m, i) of the second kind) where

©") ¥o(y) = (E"@E 1) = S gm, iy®
and -
©”) @,00) = E"(Emy) = 3 o(m, i)i'50.

The background of these names will be given in the fourth section.
Now we have by easy calculation that

1 . _ 2 .
Ap,i = mlﬁ(m, i) and b, ;= mq)(nl, i).
We note that Z. 1. Szabo was interested only in the existence of a,, ; and b,, ; and not
in their behaviour.

Our investigation is based on the substitution of the exponential function into
¥, and &,, what is essentially the same as done by BELL [2], RoTA [10], ROTA,
KAHANER, and ODLYZKO [11], where the exponential function is substituted into the
formula
) Sa() =D"(y) = 2 S(m, ) £y®,

The reason of the applicability of the same method is that in

S @+ L,
x~%m(... x7% (x—a(x =2 79 )

the coefficient of 3 is a monomial of x.
If o;=0, we have a trivial case.

If a;=1, wehave (0”), if a;=—1, we have (0’). We mention the Lah numbers,
which have properties similar to the Stirling and holiday numbers [7].
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In the following we number the analogous formulae concerning with S; ¥, @
by ("), (n”), (n”). Even though the present paper does not contain any new result on
Stirling numbers, we sketch proofs for them, since these proofs are carried over to
the holiday numbers. All these results can be found either in RIORDAN [9] or in
LovaAsz [8], in analytic and in combinatorial treatment. More references on
Stirling numbers can be found in [10] and [11].

We are indebted to Z. 1. Szabé and L. Lovasz for the encouraging talks on holi-
day numbers.

2. Generating functions. We complete the definitions with
S(0,0) =¥(0,0) = ¢(0,0) = 1.

Applying S,,, ¥,, and &,, to ¢ we have

{9 S (1) = k"t
a W, () = @m+k—1)@m+k—3) ... (k+1) 2,
a” &, (1) = Qm-+k)@m+k—2) ... (k+2) 1%,

thus applying them to €' we have

@) 5' =¢ Z’ S(m, k) t¥,

2 2m+n—1D2m+n-3)...(n+1)

n=0 n!

" =, () =¢. > ¥(m, k)t*;
k=0

@ 'é:; Cm+n)(2m +nn!— 2)...(n +2)

= Qm(et) tkgn:;(p(’n’ k) .

On the one hand, dividing by ¢ it gives explicit formulae

@) S(m, k) = 2( 1)k+,( )k',
@) = 3 (])(2'"+1 hemsi=3)...GED),

(3") pn, 1y = 3 1y () EADEnAIZD - U3
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and so, the right sides of (3), (3”) and (3”) are zero for k=>m. On the other hand,
substituting t=1 into (2'), (2”), (2”), we have

n™

v nl

"[\48

Zm,’ S(m, k) = i
k=1 e 4

b

m =2m+n—1)C2m+n-=3)...(n+1)
kg lll(m k) T e n=0 n! ’
m = (2Cm+n)2m+n—-2)...(n+2)
g olm, k) = e ,,é', n! )
Calculating from (2'), (2”), (2”) the generating functions, we have
m tn
@ Gsta=1+3 2 14+ 3 3 L e e,
Go(t, ) =1+ 3 22 Sy, g =
4" —H e
1
c© oo — _ -1
143 3 Cm+n—-D2m+n-3)...(n+1) z"'—t—e“= 1 er[ﬁ__2; ]’
n=0m=1 m! n! 1/1—22
Go(t,2)=1+ 2 T Z'qo(m k=
(4///)

1
_ S 3 @m+m2m4n-2)..n+2) " . 1 '( 1_2:”1)
_1+n§m§1 m! T _1—2Ze )

3. Recurrences. Since (ry)‘")=2(’;] (D y=D=1M L pp=1 we have from

), (1", (1”) '
Sm(y) = Sm—l(("y),)—sm—-l(y)

Wm(y) = glm—l((ty’))'i'(z’n_z) qlm—l(y)
¢m(y) = ¢m—1((.ty)’)+(2n1—1) ¢m—l(y)

and the following recurrences:

) Sim, k) =kS(m—1,k)+S(m—1,k—1)
5" Yy(m, k) =QCm+k—0D)yYy(m—1,k)+¢(m—1, k—1)
57 o(m, k)= Q2m+k)em—-1,k)+o(m—1, k—1).

Now it is an easy task to tabulate some holiday numbers.
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" ;{ 0 1 2 3 4 56
0 1 0 0 0 000
1 1 1 0 0 000
2 3 5 1 0 000
3 15 3 12 1 0 00
4 105 279 141 22 1 0 0
5| 945 2895 1830 405 35 1 0
6 10395 35685 26685 7500 930 51 1
k

o k 0 1 2 3 456
0 1 0 0 0 000
1 2 1 0 0 000
2 § 7 1 0 000
3] 4 57 15 1 000
4| 388 561 207 26 100
53840 6555 3045 545 40 10
6 |46080 89055 49185 11220 1185 57 1

We gain some more complicated recurrences comparing the generating functions
with their partial derivatives. Applying 0/0t to the generating functions we notice

% Gs(t, 2) = (€ —1) Gs(1, 2),

P 1
5 Ge(t, )= [ = I)G.p(t 2),

% Golt, 2) = ( - 1) Go(t, 2).

1
V1-2z
Comparing the coefficients in the previous identities we have the following recurrences.

1 m
T 121[ ]S(m—],k) for k=1 and S(m,1)=1,

6" W(m, k+1) =
El—_ﬁ( )(21 DU¥(m—j, k) for k=0 and ¥(m,0)=2m—1!

) S(m, k+1) =

(6/”)
@(m, k+1) =k—1-— Zm'( ](21 DY m—j, k) for k=0 and ¢@(m,0)=2"m!
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Applying 0/0z to the generating functions we notice

a_az' GS(I’ Z) = test(t, Z),

{f_z Ge(t, 2) = {(1—-22)"1 +1(1-22)"¥3 G (¢, 2),

d _ 241(1—27)" 1
a—z Go(t, Z) = —'—‘_‘_—1_22"' Gd)(t’ Z).

Comparing the coefficients (and using for (7"’) the easy identity

2551 {1+Q'—2—t—1,)'—'} = @s+ 1),
we have
) Sm+1, k) = Zm'(mJS(m-—s, k—1),
s=1\§

M Yym+1,k) = Z(T)Zss!lll(m—s,k)+ Z":;[':)(Zs+1)!!tll(m—s, k-1),

s=0

) e(m+1,k)= 5’ (':J 25+15lp(m—s, k)+ Zm' (T] @2s+DMeo(m—s, k—1).
s=0 s=0

From (7°), (77), (7”) we have recurrences analogous to the recurrence of Bell num-

bers (the sum of Stirling numbers of second kind):

N Sm+1, k) = 2"'[’5") 5" S(m—s, k),
x=1 s=1 k=1

;2:1 Ym+l, b= 3 (':) (ZSs!+(2s+1)>!!);§s Y(m—s, k),

s=0

k§1¢(m+1, k)= Zm;(r:)(?“s”(zs“)”)g Pm=sb.

4. The combinatorial meaning of the holiday numbers. The leader of the social
department of a company is to make plans for m married couples for their holidays.
We say that he is to compile a ¥-plan, if his tasks were (1), (ii), (iii).

(i) He is to compile k nonempty, pairwise disjoint groups of married couples.
It is possible that some couples do not belong to any group. :

(if) He is to make a complete matching in the groups made in (i). Every man or
woman of the group can be matched with every man or woman of the same group.
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(iii) He is to make a complete matching in the rest that may have been made in
(i) on the way written in (ii). We say that the leader of the social department is to
compile a @-plan, if (iii) were changed for (iv):

(iv) he is to order the married couples of the rest (for the next year holidays)
and to write in his notebook the name of either the husband or the wife.

Let us denote by y/(m, k) (tesp. ¢(m, k)) the number of all possible ¥-plans
(resp. P-plans) for m married couples into k& groups.

Theorem. §(m, k)y=y(m, k) and @(m,k)=p(m, k).

Proof. We prove that {, ¥ and @, ¢ have the same initial values and obey the
same recurrence. It is easy to see that Y (m, 0)=(2m—1)!'=§(m, 0) and ¢(m, 0)=
=2"m!=@(m, 0). Now we prove that (6”) and (6”) hold with iy and ¢ instead of
¥ and ¢. In both foimulae the right-hand side means the choice of j couples and
a matching on them, and a plan for m—j couples into groups. This way all the
plans are enumerated k+1 times.

We note that (6") has a combinatorial proof on a similar way. The reader can
give alternative proofs on the theorem using other formulae rather than (6”), (6”),
e.g. using (5”) and (5”) and distinguishing cases by the mth married couple (see [8]
1.6); using (3”) and (3”) and sifting (see [8] 2.4); using (7”) and (7”") and distinguish-
ing cases whether the (m+1) th married couple travel or not and by the length of the
alternating circle of couples and matched pairs containing the (m+1)th married
couple in the latter case for ¥ (and by the position of the (m+1) th married couple in
the notebook for &).

As a corollary of the theorem of the present section we give new explicit for-
mulae for the holiday numbers:

1 [m) m—xl) (m—xl...—xk_l]
m, k) = — X
w( ) x,zg’l :,Zg'i x,‘zé'l k! \xy X2 Xx

k k
i=1 i=1

and

1 (mY(m—x m—x;—... —X_

b= 3 3. 3 L()(roR). (rm )

¢ (m, ) xé’lx,é'l x,‘zéllk! X1 Xg Xk X
X3+ tx=m

n— 3 x k k
X2" =1 (m— 3 x)! [T @xi— DI
. © =1 i=1

5. Holiday transformation of sequences.
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Theorem. Suppose b,=2 y(m,k)a, and dm=2 o(m, k)c,. Then
k

o= st 01 3 ()2 35602

and
— Ay t ] . dl
o= 3002 3 () 2560
where s(k, t) is the Stirling number of the first kind.

Proof. At first we state new explicit formulae for the holiday numbers in terms
of the Stirling numbers of the first and the second kind

'R blm, =27 3 (-1 ('t] 2-is(m, i)S(t, k),
8" om B =2" 3 (- 1)m+'( )2 's(m, i) S(t, K).

Having applied ¥,, to %, (0”) and (1”) give
Cm—-14+x)2m—-3+x)...(1+x)= > ¢(m, k)yx(x—1)...(x—k+1).
k

But we have

x 1
(2m—1+x)(2m—3+x)...(x+1)=(—2)"‘m![ 2m 2]
) 1 i n . 1 i i
o gmof- -3 - o zmn(-2) 2
X2 S kK)x(x—1)...(x—k+1),

and comparing the coefficients of the linearly independent polynomials
x(x—1)....x—k+1), we get (8"). '
Analogously, having applied @,, to 5, (0™) and (17) give

Cm+x)2m—2+x)...2+x) = J o(m, b)x(x—1) ... (x—k+1),
k
and we have

=1

Cm+x)@m—=2+%) ... 2+%) = (=2)"m! fn =
— 93 sms ) ~1-3) = (27 Z s(m DD
xz()z 2 S( )x(e=1) ... =k +1).
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Cdmparing the coefficients we get (8”). (8”) and (8”) implies the theorem through a
Stirling, a binomial and again a Stirling inversion as follows:

n=ZU0m Da = 327 31 ([)27s0m DG Day
k k it
is equivalent to

3(0) zsepa = 2s6ry

which is equivalent to
356 va= 30 (i) 3 o560
which is equivalent to the first part of the theorem. Analogously we find that

= Zo(m Mo, = Z27 3 1+ (12775 m, DSC Bey

is equivalent to

3()r 35000 = Z 056

t

which is equivalent to
At cre o dj
256 Ra= I ()2 3060 s
k i 1 j (-2)
which is equivalent to the second statement of the theorem.
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