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Holiday numbers: sequences resembling to the Stirling 
numbers of second kind 

L. A . S Z É K E L Y 

Dedicated to Professor K. Tandori on his 60th birthday 

1. Introduction. The first appearance of the often rediscovered Stirling numbers 
seems to be Stirling's work Methodus differentialis in 1730, but some mathematicians 
attribute them to Euler without prima facie evidences. Although their importance 
was clear in that time, Ch. Jordan had to summarize their meaning in finite differ-
ence calculus in 1933 [6]. Combinatorial properties of Stirling numbers were exhibited 
by E. T. B E L L [1], [2], [3], [4], but we must know that Dobinski's formula for the sum 

1 f 
of Stirling numbers — 2 — w a s found as early as 1877 [5]! e j=ojl 

The aim of the present paper is to investigate the analytic and combinatorial 
properties of two sequences introduced by Z. I. Szabó. Investigating Hilbert's fourth 
problem, in order to define a transformation on some cylindric functions whose do-
main is R", Z. I. Szabó introduced the following transformation on continous real 
functions of one variable: 

(n) / A (x) = J cos"~-af(x sin a) dx, 
o 

and its inverse transformation for odd and even numbers as follows. We use the 
abbreviations E=(l/t)(d/dt), D = t(d/dt) and Em, Dm for their powers. Now the in-
verses are 

(2m+l)-» 1 (2m + l) 
A ( / ) = 2 - i ( m - l ) ! { £ " ' - 1 C 2 m - 1 / A (0} , 

for m £ l and 
(2m)"1 1 (2m) (2) 

A ^ = » ( 2 m - 3 ) l l { g - H ^ - V A (0)>a- , 
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for m ̂ 2 . The inverses can be rewritten with some constants am { and bmi; as 

(2m+l)" 1 m (2m+1) 
A ( / ) = 2 « . / / A (0 W 

i=0 
and 

(2m)-' m-1 (2m) (2) 
A (f)= 2 ¿m„{/ i  + 1/  A (0(O}A', ¡=0 

(2m+ 1) (2m) 
i f / A ( resp . / A ) is m times differentiate. 

It is time to define the holiday numbers. We call *p(m, i) the holiday numbers of 
the first kind (resp. <p(m, i) of the second kind) where 

m 

(O'O Wm(y) = {£m-1(;2ra"V)}' = 2*(m, 
i = 0 

and 
m 

( 0 " 0 <PJy) = Em(t-my) = 2 <P(m, 0 i ' / 0 -
i = 0 

The background of these names will be given in the fourth section. 
Now we have by easy calculation that 

fl-'= 2 - 1 ( 1 - 1 ) ! a D d fc"-,= 7c(2m2-3)!!y ( w , > , ' )-

We note that Z. I. Szabo was interested only in the existence of a„u f and bm> t and not 
in their behaviour. 

Our investigation is based on the substitution of the exponential function into 
*Fm and <Pm, what is essentially the same as done by BELL [2] , ROTA [ 1 0 ] , R O T A , 

KAHANER , and ODLYZKO [ 1 1 ] , where the exponential function is substituted into the 
formula 

m (0') SM (y) = Dm(y) = 2 S(m, i) t>y«\ 
i=i 

The reason of the applicability of the same method is that in 

m 

the coefficient of >,(,) is a monomial of x. 
If «¡=0, we have a trivial case. 
If a— 1, we have (0"'), if a s = — 1, we have (0')- We mention the Lah numbers, 

which have properties similar to the Stirling and holiday numbers [7]. 
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In the following we number the analogous formulae concerning with S, W, 4> 
by (nr), («"), in"r). Even though the present paper does not contain any new result on 
Stirling numbers, we sketch proofs for them, since these proofs are carried over to 
the holiday numbers. All these results can be found either in RIORDAN [9] or in 
LOVÁSZ [8], in analytic and in combinatorial treatment. More references on 
Stirling numbers can be found in [10] and [11]. 

We are indebted to Z. I. Szabó and L. Lovász for the encouraging talks on holi-
day numbers. 

2. Generating functions. We complete the definitions with 

¿•(0,0) = ip(0, 0) = (p(0, 0) = 1. 

Applying Sm, Wm and <£,„ to tk we have 

d') Sm(tk) = &"<*, 

(1") Tm{tk) = (2m + k-))(2m+k-3)... (k + \)tk, 

(1'") <Pm(tk) = (2m+k)(2m + k-2)... (k+2)tk, 

thus applying them to é we have 

m t.1" fi* m 
(2') 2—r = Sm(C) = J Z S(m, k) t\ 

n = 0 k = 1 

(2'0 Z (2m + "~1)(2m'i;"~3)-(" + 1) = Vm(é) = e< Z V(rn, k)t\ 
n=o n! t=o 

J ( 2 m + n ) ( 2 m + n - 2 ) . . . ( » + 2 ) < n = ^ = ^ - ^ ^ 
n=o w! (¡=0 

On the one hand, dividing by <?' it gives explicit formulae 

* (k\ im 

(3') S(m,k)= 

(3") H m , k) = ¿ ( - 1 ) ' - ' i ^ l (2m+j —l)(2m+j—3) ... Q'+l ) ^ 
j=o' v / k\ 

(3"o , 0 » , /c) = ( ; ) ( 2 m + y ) ( 2 ' " + / - 2 ) - o + 2 ) , 
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and so, the right sides of (3'), (3") and (3'") are zero for k>m. On the other hand, 
substituting / = 1 into (2'), (2'0, (2'"), we have 

m 1 co y.m 

k = 1 e n = 0 

Zifr(m k) = - Z(2>" + "~1)(2m + n ~3) -(" + !) 
*=o e n=o nl 

2 Vim. k) = - ¿ ( ^ + »)(2m + n - 2 ) . . . ( n ± 2 ) 
t=o e 7i=o 

Calculating from (2'), (2"), (2"') the generating functions, we have 

co _m m oo co /n 

(4') G s(r, z) = 1 + - r 2 S(m, k)t" = i + 2 2 ~ ~ 7 ~ : r r e _ t = 
m = l W ! k = 1 « — 0 m = l m -

CO 7M M 

M ' » z) = i + 2 2 * K " > , k V = ^»j m = l>m k = 0 

= 1+2 2 ( 2 m + n-1)(2m + n - 3 ) - ( n + 1)=- ' c->- 1 c'fe^H 
H=O M=I M ! nl | / L —2 z 

OO _M M 

M4z) = i + 2 1
T 2<p(m> k)'k = m = l ' » ! fc = 0 

= 1 + v S (2m+n)(2m+n — 2)... ( n + 2 ) _ 1 ' i ^ f b - 1 ) 
+ ^ ^ nl 1 - 2 z n = 0 m = l 

3. Recurrences. Since (0>)(") = Z ? ( i ) /"- '> = we have f rom 

( l ' ) , ( l " ) , ( l ' " ) 

S J j ) = ^ ( ( o O O - S m - i O O 

«'»GO = y'm - 1 (('>')) + (2»! — 2) ,i/
m _ x (y) 

4>,,,(y) = - i {(.ty)') + (2m — 1) 4>,„ _ j ( j ) 

and the following recurrences: 

(5') S(m, fc) = kS(m - \ ,k) + S(m -l,k-1) 

(5") «Km, k) = (2m + k — i)ij/(m — l, k) + iji(m-1, fc-l) 

(5'") q>(m, k) = (2m+fc)<p(m- l , fc) + < p ( m - l , fc-1). 

Now it is an easy task to tabulate some holiday numbers. 
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\ k 
m \ 0 1 2 3 4 5 6 

0 1 0 0 0 0 0 0 
1 1 1 0 0 0 0 0 
2 3 5 1 0 0 0 0 
3 15 33 12 1 0 0 0 
4 105 279 141 22 1 0 0 
5 945 2 895 1 830 405 35 1 0 
6 10 395 35 685 26 685 7500 ?30 51 1 

\ k 
m \ . 0 1 2 3 4 5 6 

0 1 0 0 0 0 0 0 
1 2 1 0 0 0 0 0 
2 8 7 1 0 0 0 0 
3 48 57 15 1 0 0 0 
4 384 561 207 26 1 0 0 
5 3 840 6 555 3 045 545 40 1 0 
6 46 080 89 055 49 185 11220 1185 57 1 

We gain some more complicated recurrences comparing the generating functions 
with their partial derivatives. Applying d/dt to the generating functions we notice 

^Gs(t,z) = {e*-\)Gs(t,z), 

W M T r b - 1 ) ^ -

Comparing the coefficients in the previous identities we have the following recurrences. 

1 m ( m \ 
(6') S i m . k + l ) ^ ^ 2 { j } S ( . m - j , k ) for k ^ 1 and S(m, 1) = 1, 

(6") !P(m, fc + 1) = 
1 m (m\ 

= 7 - ^ - 2 " • \(2j-l)\\V(m-j,k) for fcfe 0 and T(m, 0) = ( 2 m - l ) ! ! 

K + l J = l\j-J 

(6'") 

(p(m,k + l) = 1-^-r for fesO and <p(m,0) = 2 m m! 
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Applying d/dz to the generating functions we notice 

^Gs(t,z) = te*Gs(t,z), 

yzGv{t, z) = {(1—2z)_ 1+/ (1 — 2z)~3/2} (/, z), 

V z W , z ) = \_2z> G0(t, z). 

Comparing the coefficients (and using for (7"') the easy identity 

2 ^ 1 + ^ = ^ } = (2*+1)!!)), 

we have 

(7') S(m + l,k)= fc-1), 
s — X " / 

(7") * ( m + l , f c ) = l i m ) 2 V . ^ ( m - 5 , f e ) + J i m ) ( 2 s + l ) ! ! ^ ( m - s , k - l ) , 
s = 0 \ S J s—0Vs J 

(7'") <p(m + l,k)= 2{mhs+1sl(p(m-s,k)+2im}(2s+l)U(p(m-S,k-i). 
s=0 V S / s=0 V S / 

From (7'), (7"), (7'") we have recurrences analogous to the recurrence of Bell num-
bers (the sum of Stirling numbers of second kind): 

m + l m (m\ m~s 

2 S(m + l , k ) = 2 \ \ 2 S ( m - S , k ) , 

m+l m (yn\ m—s 
2 * ( m + l , * ) = 2 (2 s s !+(2s + l)!!) 2 Hrn-s,k), 

k=0 s = 0 \ S / t = o 

m+l m (yyt\ m—s 2 <p(m+l,k)= 2 ( 2 s + 1 s ! + ( 2 s + l)!!) 2 9 ( m - s , k ) . t=0 s=0 V S / fc=0 

4. The combinatorial meaning of the holiday numbers. The leader of the social 
department of a company is to make plans for m married couples for their holidays. 
We say that he is to compile a IP-plan, if his tasks were (i), (ii), (iii). 

(i) He is to compile k nonempty, pairwise disjoint groups of married couples. 
It is possible that some couples do not belong to any group. 

(ii) He is to make a complete matching in the groups made in (i). Every man or 
woman of the group can be matched with every man or woman of the same group. 
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(iii) He is to make a complete matching in the rest that may have been made in 
(i) on the way written in (ii). We say that the leader of the social department is to 
compile a cP-plan, if (iii) were changed for (iv): 

(iv) he is to order the married couples of the rest (for the next year holidays) 
and to write in his notebook the name of either the husband or the wife. 

Let us denote by k) (resp. <p(m,k)) the number of all possible f - p l a n s 
(resp. <P-plans) for m married couples into k groups. 

T h e o r e m . {¡/(m,k)=tlt(m,k) and <p(m,k) = (p(jn,k). 

P r o o f . We prove that and ¿p, q> have the same initial values and obey the 
same recurrence. It is easy to see that ij/(m, 0)=(2m — l ) ! ! = $ ( m , 0) and <p(m,0)= 
= 2 m m l = ( p ( m , 0). Now we prove that (6") and (6'") hold with $ and <p instead of 
\j/ and (p. In both foimulae the right-hand side means the choice of j couples and 
a matching on them, and a plan for m—j couples into groups. This way all the 
plans are enumerated k + 1 times. 

We note that (6') has a combinatorial proof on a similar way. The reader can 
give alternative proofs on the theorem using other formulae rather than (6"), (6'"), 
e.g. using (5") and (S") and distinguishing cases by the wth married couple (see [8] 
1.6); using (3") and (3"0 and sifting (see [8] 2.4); using (7") and (7'") and distinguish-
ing cases whether the ( m + 1 ) th married couple travel or not and by the length of the 
alternating circle of couples and matched pairs containing the (m-f 1) th married 
couple in the latter case for W (and by the position of the (w + 1) th married couple in 
the notebook for <P). 

As a corollary of the theorem of the present section we give new explicit for-
mulae for the holiday numbers: 

*8si xkmiKl \Xi/\ x2 / \ xk / 

X ( 2 m - l - 2 J * . ) ! ' ff{2xt-l)U 
>=i ¡=i 

and 

i , e i i , s l i k s i K i V*i/\ X2 J \ Xk / 

X 2 " - . ^ ( m - i * , ) - ' 77(2*1—1)!!. 
¡=i ¡=i 

5. Holiday transformation of sequences. 

30 
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T h e o r e m . Suppose bm=2 k)ak ar>d dm— 2 <p(>n, k)ct. Then 
k k 

ak= 2 / ) ( - D' 2 f ! l 2'" 2 " S(i, j) b j -

and 
(-2 y 

Ck = 2 s(k, / ) ( - 2)' 2 ( 1 ) 2 SO, j) J ^ f , 

where s(k, t) is the Stirling number of the first kind. 

P r o o f . At first we state new explicit formulae for the holiday numbers in terms 
of the Stirling numbers of the first and the second kind 

(8") 

(8'") 

0(1», k) = 2m2 ( - l)m+i (J) 2~is(m, i)S(t, k), 

V(m, k) = 2m 2 ( - l ) m + i ( ; ) 2 - ' s i m , i)S(t, k). 

Having applied xVm to tx, (0") and (1") give 

(2m-1 +x)(2m-3 + x ) ... (1 = 2 k)x(x-1) ... (x-k +1). 
k 

But we have 

(2m — i+x)(2m—3+x) ...(x+l) = (—2)mm! 2 2 

in 

= ( - 2 r 2 s(m, 0 - y ) ' - ( - 2 ) - 2 i) ( - 1 ) ' 2 (',) X 

X2 S(t,k)x(x-l)...(x-k + l), 
k 

and comparing the coefficients of the linearly independent polynomials 
x ( ; t - l ) . . . ( ; t - f c + l ) , we get (8"). 

Analogously, having applied <t>m to tx, (0'") and (1") give 

(2m+x)(2m-2+x) ... (2+x) = 2 > K k)x(x-l)... (x-k + l), 
k 

and we have 

U - 1 
( 2 m + x ) ( 2 m - 2 + x ) ...(2+x) = (-2)mm! 

m 

= ( - 2 r i s ( m ; i ) ( - l - | ) ' - ( - 2 ) m 2 s(m, 0 ( - l ) ' x 

X 2 ( j ) 2 - ' 2 % 1) • • • (* - k+1) . 
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Comparing the coefficients we get (8"'). (8") and (8"') implies the theorem through a 
Stirling, a b inomial and again a Stirling inversion as fol lows: 

bm = ><)ak = 2 2 m 2 ( - l ) m + 1 f í ] 2 - ' s ( m , i)S(t, k)ak 
k k i,t \JJ 

is equivalent t o 

2 ( j ) 2 S{f, k) ak = (—2); 2 SO, j ) 

which is equivalent to 

2S(t, k)ak = 2 ( - i r ' j ^ j , 

which is equivalent to the first par t of the theorem. Analogously we find that 

dm = 2<P{m, k)ck = 22m2(-l)m+i ( f l 2 _ ' s ( m , i)S(t, k)ck 
k k i,t V/ 

is equivalent to 

2 ( j ) 2 - ' 2 S(t, k)ck = 2 ( - i ) ' s ( i , j ) j z ^ j , 

which is equivalent to 

2Sit, k)ck = 

which is eqxxivalent to the second statement of the theorem. 
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