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Some Fourier multiplier criteria for anisotropic -
H?(R")-spaces

A. SEEGER and W. TREBELS

Dedicated to Professor K. Tandori on the occassion of his 60th birthday

1. Introduction. In this paper we introduce anisotropic HP-spaces along the
pattern of CorrmMaN and WEISS [7] and discuss the question when an operator 7,
given by its Fourier transform, is bounded on H”. The multiplier criteria obtained
partly improve, partly generalize results of MryacHi [15},[16] and PErAL and ToOR-
CHINSKY [17]. Stress is laid on the practicableness of the multiplier criteria which
are in the nature of best possible.

To fix ideas let us give some notations. By LP=L?(R"), O<p= o, we denote the
standard Lebesgue spaces with (quasi-) norm | -[,, by S the set of all C=(R"-
functions, rapidly decreasing at infinity, and by §” its dual, the set of all tempered
distributions. As Fourier transformation F we define

FIA® = £ ©) = [ (e ®dx, fes,

(when the integration domain is all of R"” we omlt mdlcatmg it). By F~* we denote the
mmverse Fourier transformation.

Let 4,=¢® be a dilation matrix, P=diag (4,, ..., 4,), v=tr P, ;>0; we define
the dilation operator J, by d, f(x)=f(4,x). Following BEsov, IL’IN and LIZORKIN-[2]
(see also Dappa [9]) we call ¢€C(R") an 4,-homogeneous distance function if
0(x)=0 for x#0 and ¢(4,x)=19(x) for all =0, x€R"; all ¢’s are comparable
with the typical distance function g,(x) is the sense that

.10  Co® = 0= _2 b = Co@),” x=0

(see [3], [20], [9D-
_ A p-atom a is a bounded function on R" w1th the followmg properties:

i) there is a g-ball B (xo) {xER" o(x— x0)<r}
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with supp ac B,(x,),
i) fafle=r—",

iif) fx”a(x)dx =0 for |o]= [

(L—' 1)] =:N, Amin = m.'in}.j.
p J

mln

Following CorrMAN and WEIss [7] we define H?=H?(R"; P), 0<p=1, as the set of
all €S’ which can be represented in the form

f= '2‘; niaj, 2 lulP <o,
i=
a; being p-atoms for j=0, and
115> = inf{Z l?: f= 3 pa;}.
If 2;=1, j=1, ...,n, then these H?-spaces coincide with those in CALDERON and
TORCHINSKY [5] (choose there A4, diagonal; see[13]). A bounded function m is said to
be a Fourier multiplier for H? if T,,, T, f=F~'[mf"], maps H” boundedly into
HP?. The set of all multipliers m 1s normed by the operator (quasi-) norm of T,,:
Imlmary = sup {{Tn flne: [f]ue =1}

Our aim is to give sufficient, nearly best possible multiplier criteria of Hormander
type for m to belong to M(H?), 0<p=1. For this purpose we introduce function
spaces S(q,y; B, D) as follows:

Let p€C=(R,) be a bump function with support in [1/2,2] and satisfy

Jol)5-r -0

0

Let B(r) and D(t) be positive continuous functions on [0, ) with

B(st) D(st)

for all s in a compact interval of (0, =) and assume additionally that
(1.3) Bf)zc=>0, t=0.

Then S(g, y; B, D) consists of all mcL] (R;) which have finite norm
Imlse,y = sup D) {los,m|,+B(@)~?|D*(95,m)],}, 1< g<eos,

where D?f=F~1[|£]’f"] is the y-th, n-dimensional Riesz denvatlve Using Stein’s
Lemma [18; p. 133), an elementary calculation shows that

(14) sup DB (@3, m)(- [B®)]sg
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is an equivalent norm on S(g, y: B, D); here L is the standard Bessel potential space
[18; p. 135].

We have
(1.5) Imle = Cllmlsq,»> 7> n/q,

if B(t)"/D(¢) is uniformly bounded in =0, since by the imbedding properties of
the Bessel potential spaces there holds

jml.. = Csup lo(&/B®)é;m(¢[BM))e = C(fgg B()"4[D (1)) m]lseg, -

Our results now read as follows.
Theorem 1. Let O<p<1, meS(Q2,y; B, D) for y=n(ljp—1/2) and D(t)=
=B(1)"MP-YD  Then there holds

1Tafllae = Clmlse,nl flur, fEHP.

This will be proved in Sect. 2. Using Theorem 1 and interpolation of analytic
families of operators acting on HP-spaces we will derive in Sect. 3

Theorem 2. Let 1=p<2 and D()=B@)"¥*~Y®,  If y=n(/p—1]2),
l/g<1/p—1/2, then
1Taflne = Cllmliseg, | f1ue-

(Note that H?=L*? for p>1). In particular we deduce in Sect. 4 for quasi-radial
multipliers m(&)=mqy00(E), m, defined on R, the following

Corollary. Let 0<p<2, D(t)=B(t)"?~Y3, y>n(1/p—1/2), and g€ CI+(RY).
Then

trl+1 o x dsY?
Iimgoellmur = C 2; sugD(t)B(t)_—J (f s/ m{P ()} T) ,
j= > t

where q=2 for O<p<]1 and 1/g<1/p—1/2 in the case 1=p<2. In particular,
if B(t)=D(t)=1, then we have also for fractional y=n(1/p—1/2), 0<p=1, that

2t 1/2
,ds
(1.6) im0 ol = C {Imal+sup ([ lrmP©r%) "],
=0 %
Here the notion of a fractional derivative is that of GASPER and TREBELS [12]

(see also [6]).

Remarks. 1. Theorem 1 is due to Mivacht [15] in the isotropic case (for
B=D=1 see also [21]); Theorem 2 for g=-<o is proved in Mivachi {16] (for the

- . -isotropic case). ; :
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2. It is not hard to generalize Theorem 1 in the sense that F~1[(1 +|&[]»)"3),
y=n((1p)—(1/2)), DO=BE'*~YD is replaced by F(1+&®)],
B=¥((1/p)—(1/2)), D(1)=B(1)*?=Y3 where § is a C=(R)-distance function
homogeneous with respect to another dilation matrix 4,=1?, the eigenvalues of P
have positive real parts, #=tr P; thus we could partly regain a result of CALDERGN
and TORCHINSKY [5; II Theorem 4.6] in the case A,=A,.

3. Our results for O<p=1 are nearly optimal. As test multipliers consider the
well discussed examples:

a.m el (1 +EN~PeM(HP), O<p=2, a=l,
if and only if b=an((1/p)—(1/2)) (cf. [16]) and

. 2(mn+1)
(1.8) (1—=KPireM(HP), 0<p§Tf—3_’

if and only if a>n((1/p)—(1/2))—-1/2 (see [19], [11],.[9D).
It is not hard to verify the conditions of Corollary for the functions e**(1 +1)~°

and (1 —1)3 so that Corollary gives the correct positive results for 0<p=1, if we
choose A,=diag(t, ..., 1), e(®)=|¢|.

4. The multiplier condition (1.6) is an essential improvement of a result of
PerRAL and TORCHINSKY [17; Theorem 1.4] in the case of diagonal dilation matrices
with eigenvalues A=1 since y=>v((1/p)—(1/2))+1/2, v= tr P=n is assumed in [17]
in comparison to our y=>n{(1/p)—(1/2)).” :

5. The results of MapycH [14] (see also DapPPA and Lugrs [10] in the quasiradial
case) suggest that Theorem 1 remains valid if the diagonal matrix A, is replaced by
1", P* being a real nXn matrix whose eigenvalues have positive real parts. -

We now give some applications of Corollary.
N L 11y 1 '
) (1—e(®)yeMH?), a=n 77 2)7 72 O<p=1l:

i) Let #€C=(R;) be | for. t=2 and 0 for ¢=1; choose

Plogl(l+1), t=1
log?2, - t=1,

flogf(1+1), t=1

_;é‘(_t)z{ loge2, =1, P‘(»')z{
where a, b, ¢, d=0, then
| 000()eme D 00EMHY), 0'< p<2,

1f d/c b/a>n((1/p) (1/2)) or bla=n((1/p)—(1/2)) and ¢, d=0.
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(i) Let By, D,,a,b,c,d, ® be as in ii).
‘Pog(&) (C05+ Blog(f))“+iﬁ/D1og(f)EM(HP), O<p=1

for a=>n((1/p)—(1/2))—1/2=0; itis easy to verify the first condition in the Corollary
for integer y=>n((1/p)—(1/2)); complex interpolation then gives the rest of the
assertion.

2. Proof of Theorem 1. This is a modification of the corresponding proof of
[15; Theorem 1] so that we will be quite concise at some part of the proof. We have
only to prove

| Tnal, = Cllm]se,

for p-atoms q with C independent of a; for it is proved in [16; Theorem 3.4.] that this
implies T, to be bounded from H? into HP in the isotropic case; this argument can
be generalized to the anisotropic case by a result of TRIEBEL [22]. Since T, is transla-
tion invariant we may assume that supp ac {x: ¢(x)=r}; further we choose M >0
so big that o(x)>Mr and g(»)=r, O<s<l, imply @(x)>2¢(sy). Then, by
Holder’s inequality, the Parseval formula and (1.5),

2.1) [ ITaa®)Pdx = Clm|ge,y-
o(x)=Mr
If we set '
i 2i+1 o dt
@2) K@= [ ¢(@nm®,
there remains to estimate )
.3) [ Taa@Pdx= 3 [ |Kxa@Pdx.
o(x)=Mr < == a)EMr

Now observe that, by the properties of the p-atoms and by Taylor’s formula

(2.4) IK;xa()| =r" [ |K;(x—y)ldy
e(y)=r .
2.5) K% a(x)]| = c;-—wl ] > [[1D°K; (x—sy)l|y°|dyds,
al= 1%

where Q={(s,y): 0<s=<1, ¢(¥)<r}. In order to estimate the latter integral we use
a covering argument for Q. First observe that, by the triangle inequality and the
boundedness of A,, there is a 6=4(J, r)=>0 such that

26)  |ldes(x=sp)|—|des (x—5y)|

7 ’ - 1
= Ay —s'Y) =5 [A2i (x—sy)| -

for |sy—sy'|<d, o(x) =Mr. Now define a family of balls in R"+! by
' By(s,y) = {(s,0): ls=s"|+Iy—y|=¢ (5)€Q;

28*
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choose &’ >0 suchthat jsy—sy'|<é for (s, )EBss (s, ¥) and such that |y—z|=
=56, 9(y)<r imply g(z)<2r. Then (cf. [18; p. 9]) select a disjoint sequence of
balls B;.(s;, y)=B; such that the expanded balls B (same center as B; but with
diameter five times as large) cover Q. An elementary homogeneity consideration
shows that at most K balls B} overlap; here K does not depend on §=4(J, r) (but
only on the ratio [B}|/|B;|, |B;] the Lebesgue measure of B;). We now have by (2.6)

J[ID°K;(x—syliyldyds = C 3 (1+|Aws(x—s:3)/ B~ [ [ ID7K;(x—sp) X
[7) t B}

X (L+ | A (x—sy)[B)?ly°|dyds

and therefore, by the Hélder and the integral Minkowski inequality,

( [ e [ 1D K, x—sy)l [yl dsdyledx)*® =
o

e(x)=Mr

= Cr™? 3 |(1+142 (x—s5:7)/B@)I) || @257 X
27 X f f (1 +142s (x— sp)/B@9)|)"D? K; (x —sp)|| |y |dsdy =
Bf

= Cr—YIP(29)~YWp-1/» B(2JyW/p—1/2) f [---lelyeldy =

e(y)=er

= Crv(l— 1/p)+ie (2j)~— v(1/p— 1/2)B (2)‘)::(1/1:— 1/2) ” . u 2,

where Ao = 2"’ Ajo;. Here the second inequality follows by the translation invariance

=1
of the L?-norm and the fact that at most K of the Bf overlap, and the last inequality,
on account of (1.1) with x=1, by

f ly’ldy =C ﬁ( fz yjlesdy;).
e(p)=2r i=1 |yf=erts

Analogously,

Ir ~ [ le(x—Y)ldyl" dx)'? =
2.8) . . e(x)=Mr oG=r

= Cpra-yn (27)-+/r-1/2) B(zj)n(llp—llz)”(l + A2 x/BQ2)|) K;(X)|l2-

Thus there remains to estimate ||...[[; for |o]|=0 and for |o|=N+1 (recall N=
1
=[ Av (—— 1)]] Using the definition (2.2) of K, the fact that
min \P -

|40 x/B(29)| ~ |A,x/B(t)|, 2 =t=2/+}, .
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the integral Minkowski inequality and repeated substitutions, we see that |l...||,
can be majorized by

C 272 B(2))~2 f ||F2 [920 0(&/BO)(Ai&/B(@)) m(4,¢/B()] (x)(1+lxl)’llz

2J+l

= C2 B2~ [ |
s

20 0(&/B)(A:E/BOY m(A,E/B®)]uz% <
by the Parseval formula. Now observe that
lefle=C oS 1D gl fll 2 = Clgllws,,, 1f]22

which is obvious for integer y and hence, by interpolation, also for fractional 12
Thus we have for 2/=¢=2/*!, on account of (1.2),

@9) |-l = Cl{e 0 o(&/B®) (A:/BOY Yw,,, 2D @) Imlse, -
Now, by (1.3),
(2.10) ll@ 0 e(/BO)(AE/BO)Y||ws, ., = Cr,

for |¢|=0 and |o6]=N+1. Combining (2.10), (2.9) with (2.7) and (2.8) we arrive at

IK;*a(@)|Pdx = C(2/r)®Ymin {1, Q7r)*?}|m| 3¢,y

o(xy=Mr

which“cleAarly implies the convergence of the series in (2.3). Thus Theorem 1 is estab-
lished.

3. Proof of Theorem 2. We essentially interpolate between S(2,7,; B, Dg)C
CM(H?), py<1 near 1, and L=cM(H?. We use the following imbedding and
interpolation properties of the Besov and Bessel potential spaces (see [18; p. 155],
[1; p. 153]):

3.n L=B®, L1c B for ¢=2;

By=c L= for y=0; [B2, Bi™le=BY, 7,

Y0?
when

0. 19 = 1= (10, 5] +061,0, 0<0 <1

Now choose

Yo>n (% _%) 71> 0(small), Dy(f) = D()V2-9

then Dy(t)=B(t)"Pe~13  With V=L§ or B} we define the auxiliary function
space Xo(V; B, D) as consisting of those functions, locally integrable away from the



438 A. Seeger and W. Trebels

origin, which satisfy

:xellz) Imlx, , <= li?w fm|x,, =0,

k=~
where
Imllx,,, = D(2)B(2Y~ "¢ o gdxm|y.

Observe that we have for me Xo(L3; B, D)
Sl:P Imlix,,. = Imlsc.y: 5,0y
By the methods in [6] (see also [8]) one can show that
Vi=Ly or ByY g¢4=2 ¢, =0)
[Xo(Vo; B, Dy), Xo(Vs; B, Dle = Xo([Vs, Vile; B, D)
where [ ], is Calderén’s lower interpolation method [4]. By (3.1) we obtain
X,(L%; B, D) C X,(B%; B, D)= [X,(BZ; B,Dy),X,(B:~; B,D]eC
C [S(2, 705 B, Dy), L~]e.

Now consider the dense subspace H? of HP?-functions whose Fourier transforms
have compact support away from the origin; for fE€ HPo let

1O = [ o)

such that Y =1 on supp /" for suitable & and N. Then, by the interpolation of ana-
lytic families of operators on H?-spaces [5], {7], it finally follows that

VE 2 mf " Tlme = [F myf  Nar = Clmlisgplflur = Clmlsgpnlflae, |
1/p=(1-0)(1/p,) +(@/2), thus the assertion.

4. Proof of Corollary. We observe that a further equivalent norm on S(g, 7;
B, D) for integer y is given by

sup D) B()™ 2> 1D°((¢ © 23, m)(E/BOY),,

=|o|=

which follows from (1.4) and the identification of the Bessel potential space with the
Sobolev space [18; p. 135]. If we now consider quasi-radial functions m=m,o0 ¢, m,
being defined on R ., then the first part of Corollary is an immediate consequence of

@.1) [D°{@ 0o (- [B@)mo(te(- BN}, =

< Sanpey( [ im(e@)rde;
i=0 T

t=p(5)=2t

fof the introduction of polar coordinates ¢(¢)=s, dé=s""'dsdw (do being a finite
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measure on {&: ¢(£)=1} leads at once to the assertion. To establish (4.1) we need
the Leibniz rule

4.2) . 7 | ‘
Do{poe(e/BO)mo(te@/BON)} = 3 D7(poe(e/BO)D (mo(ie(¢/B())

and the following consequence of the chain rule:

o] i
4.3) D'(geo)= 2 8(e©®) 2 I[ D" e,

. . . J .
where the sum is taken over all possible representations of o= > 7. Now
&

L . Jj )
D7 (@ 0 2(¢/B@))||. = ,é; 09 00(¢/B() Z I D (o (&/B())||-

which is clearly bounded for |6’|=0 on account of (1.3), since p€C=(R,) and, by
definition of ¢, we have o_nly to consider

172 = o(¢/B() = 2.
If ¢”7=(0,...,0), then

mo(re@/B@))Pde)" = CB@yar1( [ |mgoe(@)i*de)”

12 o(8/B(N)=2 2= =2
which is of the desired type. Let j6”|30; then
Do {mq(t0(&/B(N)YdE)" =

1/2=0(5/B())=2

scS( [ mPe@BO)IBO )"

J=1 o= e(é)B(r))=2

(4.1) in combination with the above estimates gives the assertion.
In the particular case B(t)=D(t)=1, O<p<1 the first condition in Corollary

reduces to
12

pf X ds .
sup 2(_[ ls"mf,”(s)]“—] , 7y integer,
>0 j=0 1\ s

which is an equivalent norm on o
S(Z: 7 R+) ={m€leoc(R+): "muS(2,7; RY) <°°},

Il = 590 (f1F 1A+ 0()me )] QIOPds)”

(here "~ and F~? denote the one-dimensional Fourier transformation and its inverse,
resp.).
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Now define the operator
T, S2,y; Ry) - 8Q2,y; 1,1; R, T,my;=myog.

Then the above estimates show that T, is bounded if y€ N0 Therefore, for vy, y,€ Ny,
'YO¢Y15
T,: [S2,70; Ry), S2, 715 Ry ~[SQ2, 705 RY), S(2,7:; R

is bounded, where [,]° is Calderén’s [4] upper interpolation method. But it is shown
in [6] that
[S(Z: yOa R+)’ S(2> YI: -l-)]8 S(2 7, R+):

where y=(1 —0)y,+07y,,0<@<1; the same argument applies for the n-dimen-
sional situation so that

Te: S(2: Vs R+) - S(Zs Vs R")
is bounded, i.e.,

“m()"S(&y;R,,) = C||m009115(2,v;1.i;li")9 y=>0.

Further, in [6] it is shown that ||m0||5(2,?;k'+) for y=>1/2 is equivalént to the con-
dition in Corollary, which hence is proved up to the case p=1. By the same reason-
ing we obtain for p=1

S((I, Vs R+) = M(Hl)’ Y= '1/2

and g=>2 arbitrarily close to 2. A slight increase of y allows to take g= 2 by the
imbedding properties of the LJ-spaces, thus the assertion holds.

Concluding let us observe that we have estimated the n-dimensional potential
norm of the quasi-radial function m=m,0¢ by a one-dimensional potential norm
of my; i.e., loosely speaking, on the space of quasi-radial functions we have majorized
an n-dimensional fractional differential operator by a tractable, one-dimensional
fractional operator. o

. .. Added in proof: The authors realized that all the results of the paper remain
valid if, in the definition of S(g, y, B, D), the diagonal matrix P is replaced by
a real nXn matrix whose eigenvalues have positive real parts; then we have
multiplier theorems on” H?(R", P*). The key for this generalization is to be seen
in a right application of Taylor’s formula: replace (2. 5) by

IK;*a(x)| = Cr‘”/"ffl(y V)"“K (x— sy)ld};ds

and modify appropnately ‘tlhe following estimates. - .
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