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Some Fourier multiplier criteria for anisotropic 
/^(R^-spaces 

A. SEEGER and W. TREBELS 

Dedicated to Professor K. Tandori on the occassion of his 60th birthday 

1. Introduction. In this paper we introduce anisotropic //"-spaces along the 
pattern of COIFMAN and WEISS [7] and discuss the question when an operator T, 
given by its Fourier transform, is bounded on Hp. The multiplier criteria obtained 
partly improve, partly generalize results of MIYACHI [15 ] , [ 1 6 ] and PERAL and TOR-

CHINSKY [17] . Stress is laid on the practicableness of the multiplier criteria which 
are in the nature of best possible. 

To fix ideas let us give some notations. By LP=LP(R"), 0</>S we denote the 
standard Lebesgue spaces with (quasi-) norm || • ||p, by S the set of all C ° ° ( R N ) -

functions, rapidly decreasing at infinity, and by S' its dual, the set of all tempered 
distributions. As Fourier transformation F we define 

F[/m = r ( a - f f(x)e-^dx, fes, 

(when the integration domain is all of R" we omit indicating it). By F"1 we denote the 
inverse Fourier transformation. 

Let A,=tp be a dilation matrix, P=diag (A1; ..., A„), v=t r P, we define 
the dilation operator 6, by dtf(x)=f(A,x). Following BESOV, IL'IN and LIZORKIN [2 ] 

(see also D A P P A [9] ) we call G € C ( R " ) an A,-homogeneous distance function if 
g(x)>0 for x ^ O and g(Atx)=lg(x) for all i>0 , x€R"; all Q'S are comparable 
with the typical distance function £x(x) is the sense that 

(1.1) C e ( x ) ^ Q x ( x ) : = ( Z i \ x j \ x l x j ) 1 ' x S C Q ( x y 0 

(see [3], [20], [9]). ' ' 
A /7-atom a is a bounded function on R" with the following properties: 
i) there is a g-ball B,(x0)= { x € R " : Q(X—x0)^r} 
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with supp a<zBr(x0), 

ii) ||a|U ^ r-"'", 

iii) fx°a(x)dx = 0 for H ^ f j ^ - f i - l ) ] =:iV,Amin = min;.J.. 

Following COIFMAN and WEISS [7] we define H"=HP(R"; P), 0 < / > S l , as the set of 
all f(:S' which can be represented in the form 

;=o 

d j being /7-atoms for ./'=0, and 

I I / I I & " = i n f { 2 

If j = 1, . . . ,« , then these / / ' -spaces coincide with those in CALDERÓN and 
TORCHINSKY [5] (choose there A, diagonal; see[13]). Abounded function m is said to 
be a Fourier multiplier for Hp if Tm, Tmf=F~1 [mf], maps H" boundedly into 
Hp. The set of all multipliers m is normed by the operator (quasi-) norm of Tm: 

IHIMO,,) = sup { | | r m / | | , i P : | | / | | H P ^ 1}. 

Our aim is to give sufficient, nearly best possible multiplier criteria of Hormander 
type for m to belong to M(HP), 1. For this purpose we introduce function 
spaces S(q,y; B,D) as follows: 

Let <p£C°°(R+) be a bump function with support in [1/2, 2] and satisfy 

Let B(t) and D(t) be positive continuous functions on [0, •») with 

: o o ( 1 . 2 ) W S C 

for all s in a compact interval of (0, and assume additionally that 

(1.3) B(t) s c > 0, t > 0. 

Then S(q, y, B, D) consists of all w^L^^RJ) which have finite norm 

||m||s(4(V) = supZ> (/) {|| m || 9 +2?(/)_ 7||Z)T(cp8tm)|| }, 1 < q 
I > 0 

where D ' / = F - 1 [ | i | ' ' / " ] is the y-th, «-dimensional Riesz derivative. Using Stein's 
Lemma [18; p. 133], an elementary calculation shows that 

(1.4) s u p / ) ( 0 5 ( 0 - ^ | | M ( m)( • / 5 ( 0 ) 1 ^ 
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is an equivalent norm on S(q,y: B, D); here Ly is the standard Bessel potential space 
[18; p. 135]. 

We have 
(1.5) IIH|<». - cMls<4,7)> 7 > "/<7, 

if B(t)"l9/D(t) is uniformly bounded in / ^ 0 , since by the imbedding properties of 
the Bessel potential spaces there holds 

M U ^ Csup \\cp(clB{t))5,m{QlB{t))\U B(t)^ID{t))\\m\\siqn). f>0 f=-0 

Our results now read as follows. 

T h e o r e m 1. Let 0< /><l , m£S(2,y, B, D) for y>«( l /p —1/2) and D(t)& 
g B ( i ) » ( i / p - i / 2 ) . Then there holds 

\\Tmf\\HP ^ C\\m\\Si2,y)\\f\\HP, f£H>. 

This will be proved in Sect. 2. Using Theorem 1 and interpolation of analytic 
families of operators acting on Hp-spaces we will derive in Sect. 3 

T h e o r e m 2. Let 1 ^ < 2 and D(0^B(0" ( 1 / p _ 1 / 2 ) - V ?>«( l / /» - l /2 ) , 
l / ? < l / p -1 /2 , then 

\\Tmf\\HP S C||M||s(?,y) 11/IIHP. 

(Note that HP=LP for /»>1). In particular we deduce in Sect. 4 for quasi-radial 
multipliers m(£,)=m0og(£), ma defined on R + , the following 

C o r o l l a r y . Z , e i O < / 7 < 2 , D ( O s B ( O n ( 1 / p - 1 / 2 ) , y>n(l/p-l/2),and Q£Cin+1(RZ). 
Then 

M+1 ( » ds\v" 
Nooelkar-) ^C 2 supD(f)B{i)->\J 1^1^(5)1«- , 

j=o r=-o Y s / 

where q=2 for 0 < / > < 1 and l/q<l/p—1/2 in the case L ^ / > < 2 . In particular, 
if B(t)=D(t) = l, then we have also for fractional y>~n(l/p—l/2), that 

(1.6) ! | m o o 0 | | M ( H F ) C { | |m0 iU + s u p ( / | svm(v) ( s )p^. j 1 / 2J . 

Here the notion of a fractional derivative is that of GASPER and TREBELS [ 1 2 ] 

(see also [6]). 

R e m a r k s . 1 . Theorem 1 is due to MIYACHI [ 1 5 ] in the isotropic case (for 
B = D = 1 see also [ 2 1 ] ) ; Theorem 2 for < 7 = ° ° is proved in MIYACHI [ 1 6 ] (for the 
isotropic case). 

28 
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2. It is not hard to generalize Theorem 1 in the sense that F - 1 [ ( l + |^ | 2) , / 2] , 
V>h((1//>)-(1/2)), D ( 0 £ B ( / ) , , ( 1 / p - 1 / 2 ) is replaced by / ^ [ ( l + ¿ ( 0 ) " ] , 
£>v ( ( l / / ? ) - ( l / 2 ) ) , D(/)s?B(/)C(1 /"-1 /2 ) , where g is a C~(R^)-distance function 
homogeneous with respect to another dilation matrix A, = tp, the eigenvalues of P 
have positive real parts, V = t r P ; thus we could partly regain a result of CALDERÓN 

and TORCHTNSKY [5; II Theorem 4.6] in the case A,=At. 

3. Our results for are nearly optimal. As test multipliers consider the 
well discussed examples: 

(1.7) e ¡ №(l + | í | )-baM(H"), 0 < p ^ 2, B ^ I , 

if and only if é&a / i ( ( l / p ) - ( l / 2 ) ) (cf. [16]) and 

(1.8) ( 1 - | 5 | y + € M ( H ' ) , 0 
n+J 

if and only if a>n((l/p)-(l/2))-l/2 (see [19], [11],. [9]). 

It is not hard to verify the conditions of Corollary for the functions e"°(l +t)~b 

and (1 — 0 + s o t h a t Corollary gives the correct positive results for 0 < / > S L , if we 
choose ^ t = d i a g ( / , . . . , 0 , e(0 = \Z\-

4. The multiplier condition (1.6) is an essential improvement of a result of 
PERAL and TORCHINSKY [ 1 7 ; Theorem 1 .4] in the case of diagonal dilation matrices 
with eigenvalues since y>v((l/ / ;) —(l/2)) + l/2, v = tr f S n is assumed in [17] 
in comparison to our y >«( ( l /p ) — (1/2)). 

5 . The results of MADYCH [14] (see also DAPPA and LUERS [10] in the quasiradial 
case) suggest that Theorem 1 remains valid if the diagonal matrix A, is replaced by 
tp*, P* being a real nXn matrix whose eigenvalues have positive real parts. 

We now give some applications of Corollary. 

i) , (i-g(0Y+eM(H>), 

ii) Let # £ 0 ( R + ) be 1 for. and 0 for t ^ 1; choose 

r f l o g * ( 1 + 0 , / £ 1 r ^ l o g ^ a + Z ) , ( S i 
* < H logc2, ^ 1 , = { logd2, ^ 1 , 

where a, b, c,d^0, then 

4>oQ(£)eiBL°o<-V/DLoq(0£M(Hp), 0 < p < 2, 

if d / c , f t / a S « ( ( l / p ) - ( l / 2 ) ) or 6 / a > n ( ( l / p ) - ( l / 2 ) ) and 0. 
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(iii) Let JBJ, D 1 ; a, b, c, d, $ be as in ii). 

$ O Q ( 0 ( C O S + BI0Q(OY^IDy OQ(£)€ M ( / / " ) , 0 < p ^ 1 

for a>«((l/p)—(1/2)) —1/2>0; it is easy to verify the first condition in the Corollary 
for integer y>«((l/p)—(1/2)); complex interpolation then gives the rest of the 
assertion. 

2. Proof of Theorem 1. This is a modification of the corresponding proof of 
[15 ; Theorem 1] so that we will be quite concise at some part of the proof. We have 
only to prove 

Il û U p = C | l m | | s ( 2 j y ) 

for /j-atoms a with C independent of a ; for it is proved in [16; Theorem 3.4.] that this 
implies Tm to be bounded from Hp into Hp in the isotropic case; this argument can 
be generalized to the anisotropic case by a result of TRIEBEL [22]. Since Tm is transla-
tion invariant we may assume that supp îzc{x: £>(x)^r}; further we choose 0 
so big that g(x)>-Mr and g(y)^r, 0 < i < 1, imply e(x)>2g(5j ) . Then, by 
Holder's inequality, the Parseval formula and (1.5), 

(2.1) / \Tma(x)\pdx^C\\m\\p
si2,y). 

e(x)mMr 
If we set 

(2.2) Kj(o = / <p*(e(m>n(a 
OJ 

there remains to estimate 

(2.3) f \Tma(x)\pdx^ 2 f \Kj*a(x)\pdx. 
e(x)sMr • j=—*= Q(x)sMr 

Now observe that, by the properties of the />-atoms and by Taylor's formula 

(2.4) \Kj*a(x)\ér-"» f \Kj(x—y)\dy, 
Li(.y)3r 

(2.5) \Kj* a(x)| ^ Cr~"lp 2 i f \DaKj (x-sy){ \y°\dyds, 

where Î2 = {(5, >>): 0 < J < 1, G(;')<'"}• In order to estimate the latter integral we use 
a covering argument for Q. First observe that, by the triangle inequality and the 
boundedness of At, there is a ô=ô(j, 0 such that 

(2.6) \\A*(x-sy)\-\A2j(x-s'y')\\ 3= \A2j(sy — s'y')\ j M 2 , ( X - S J O | 

for \sy—s'y'\<5, g(x)^Mr. Now define a family of balls in R"+1 by i 

B.(s,y) = { ( / , / ) : + S e} (s,yKQ; 
28* 
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choose 5 ' > 0 such that jsy—s ,y ,\<.8 for (5', y')£B5S.(s, y) and such that \y—z|s 
S55 ' , o ( y ) < r imply g(z)<2/ \ Then (cf. [18; p. 9]) select a disjoint sequence of 
balls ByiSi, yi)=Bt such that the expanded balls B* (same center as Bi but with 
diameter five times as large) cover Q. An elementary homogeneity consideration 
shows that at most K balls B* overlap; here K does not depend on 8=8(j, r) (but 
only on the ratio [Bf|/|Bf|, |B;| the Lebesgue measure of Bt). We now have by (2.6) 

ff\D'Kj(x-sy)\\y\dyds ^ C Z(l + \A*(x-s,ydlB№\)-» f f \D°Kj(x-sy)\x 

Si 1 B* 

X (1 + \A2j(x-sy)IB&)\)">\y°\dyds 
and therefore, by the Holder and the integral Minkowski inequality, 

( / \r~V'P f f \DaKj(x-sy)\ \ya\dsdy\pdxfp tk 
eCOsMr .Q 

^ CV~ V / P 2 ||(1 + \ A » ( x - s i y J / B ( V ) \ ) - ? p \ \ ^ p J > y X 
i 

(2-7) *¡¡\\{lMAv(x-sy)IB&)\)W<'Kj(x-sy%\y°\dsdy 

=S Cr-v'p(2-0-"d/p-1/2)B(2J)"(1/p-1/2) / \\...\\2\y"\dy == 

eOOs2r 

g Cr»(l-1/P) + i-a (2-/)- »(1/P-1/2)£ (2J)"(l/P-1/2) || ... || 2 ; 

n 

where Xo= 2 Here the second inequality follows by the translation in variance 
j=1 

of the L2-norm and the fact that at most K of the Bf overlap, and the last inequality, 
on account of (1.1) with x = l , by 

/ \y°\dy^C j j ( J \yj\'jdyj). 
(K)>)=52r j=l \Vj\ scrXJ 

Analogously, 

( / \r""P f \Kj(x-y)\dy\Pdx)llp^ 
(2.8) eW^Mr B(y)sr 

g Crv<i-1/,) (2i)-v(i/p-i/2)B(2Jy(i/P-1/2) + \A2jx/B(2J)\yKj(x)\\2. 

Thus there remains to estimate ||...||2 for | a | = 0 and for |<7|=iV + l (recall N= 

= • - 1 ) ] ] - Using the definition (2.2) of KJt the fact that 

| A2JX/B(2J)\ % \A,xlB(t) |, 2 ' S i s 2-i+1, 
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the integral Minkowski inequality and repeated substitutions, we see that ||...||2 

can be majorized by 

C2WB<p)-** f H f - 1 \_^oe^¡B(t))(AtiílB{t)ym{AtclB(t))\ (*)(1 + \x\)% ^ ^ 
2 J 1 

=5 C2jv,2B(2J')~"t2 f ||<T o e(c¡B(t))(At clB(t)ym(A^IB(t))\\L, d± 

2 J 1 

by the Parseval formula. Now observe that 

\\gf\\Ll tí C sup 1 D ^ g l - l l / l l i . = C||g| |H/~ ]+ i \\f\\Ll 
which is obvious for integer y and hence, by interpolation, also for fractional y. 
Thus we have for 2 j ^ t ^ 2 J + 1 , on account of (1.2), 

(2.9) ||...||2 ^ C | | { < p o o ( t ¡ B { t ) ) { A t Z I B ( , ) ) % V T / ^ { 2 ^ ¡ D ( V ) ) | H | S ( 2 , v ) . 

Now, by (1.3), 

(2.10) ||<p o o(t/B(t))(At c/B(t)y\\iv^ + i == Ct"\ 

for |<r|=0 and |<x|=iV+l. Combining (2.10), (2.9) with (2.7) and (2.8) we arrive at 

f \Kj*a(x)\pdx == C(2 Jr)v ( p~ I )min {1, (2^0^} | |m | | f ( 2 > y ) 
a ( x ) s M r 

which clearly implies the convergence of the series in (2.3). Thus Theorem 1 is estab-
lished. 

3. Proof of Theorem 2. We essentially interpolate between S(2,y0; B,Da)a 
czM(HPo), /?0< 1 near 1, and L°°<zM(H2). We use the following imbedding and 
interpolation properties of the Besov and Bessel potential spaces (see [18; p. 155], 
[1; P. 153]): 
(3.1) L2 = By2; L* c B*q for q S 2; 

By-c L- fo r y > 0; [B22
ü, B~~]0 = B f , y ^ y , , 

when 

(y, 1 lq) = ( l - 0 ) ( r o , + 0), 0 < 0 < 1. 

Now choose 

V o > n ( y - y ) , > 0(small), D0(t) = Z ^ / a - * ) 

then D0(OsB(i)" ( 1 / p < , _ 1 / 2 ) . With V=Lq
y or B™ we define the auxiliary function 

space X0(V; B, D) as consisting of those functions, locally integrable away from the 
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origin, which satisfy 
sup||m|U lim | |m|* = 0 , 
tgz 

where 
||m|U0jk = D(2k)B(2k)-nlq\\<poQ5*m\\v. 

Observe that we have for B, D) 

sup IHU„,fc ^ IM| s (<J ,y :B jD) . k 
By the methods in [6] (see also [8]) one can show that 

(F( = Lq
y't or B9

yi9>, q0 = 2, = co) 

[X0(V0; B, D0), X0(Vi; B, A)]e - X0(IV0, VJel B, D) 

where [,]<, is Calderon's lower interpolation method [4]. By (3.1) we obtain 

XoiL«; B, D) c X0{Bf- B, D) = [ X ^ : B, D0), X0(B?~; B, 1)]9 c 

c [ S ( 2 , y 0 ; B,D0),L~]e. 

Now consider the dense subspace H"° of / /"-functions whose Fourier transforms 
have compact support away from the origin; for f£Hp<> let 

m = / V ( i ? ( a / 0 y . 
e 

such that = 1 on s u p p / ' for suitable e and N. Then, by the interpolation of ana-
lytic families of operators on Hp-spaces [5], [7], it finally follows that 

¡ • F - W I U * = I I F - H m M l h ' ^ C\\miP\\s(q,y) 11/11 hp S C| |m| | s ( i ( V ) | | / | |HP, 

l /P=( l -®) ( l / />o)+(©/2) , thus the assertion. . 

4. Proof of Corollary. We observe that a further equivalent norm on S(q,y; 
B, D) for integer y is given by 

sup D(t)B(t)-l« 2 \\D'((cpoo8tm)WB(t)))\\q, 
t=-0 0 S | f f | S 7 

which follows from (1.4) and the identification of the Bessel potential space with the 
Sobolev space [18; p. 135]. If we now consider quasi-radial functions m=m0og, m0 

being defined on R + , then the first part of Corollary is an immediate consequence of 

(4.1) \\D°{,poe(./B(t))mo(tQ(./B(,)))}\\q^ 

S C 2 tJ-*">B(i)"">-M( f \m<
0

J)(Q(O)\"d£)llq; 

for the introduction of polar coordinates g((;)—s, dc =sv~1dsdoj {da being a finite 
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measure on {£: g ( £ ) = ! } leads at once to the assertion. To establish (4.1) we need 
the Leibniz rule 

(4-2) 

D°{<poQ(c/B(t))m0(tQ(tlB(t)))} = 2 (<? ° 6 (c/B (t)))D"' (m0(to (Z/B (i))) 
a=<j'+a" 

and the following consequence of the chain rule: 

(4.3) D-(go e) = 2 s(J) (e (a) 2 n a «), 
j=i ¡=i 

j 
where the sum is taken over all possible representations of <R= 2 NOW 

•=x 

\\iy(q>°eWBm\\- - 2hU)0Q{c!B(t))2 il&u\eWBm\\~ 
j-1 i=1 

which is clearly bounded for ]er'| = 0 on account of (1.3), since ¡p€C°°(R+) and, by 
definition of <p, we have only to consider 

1/2 ^ o(clB(t)) s= 2. 

If <T"=(0, ..., 0), then 

( / \m0(teWB(t))fdi)llq^CB(t)"'<•(-*<<>( f \m0oQ(0\"diylq 

which is of the desired type. Let |<r"|?i0; then 

i/2se(i/B(r))a2 

(4.1) in combination with the above estimates gives the assertion. 
In the particular case B(t)=D(t) = 1, 0 < p < l the first condition in Corollary 

reduces to 
7 ( 2t ¿Si1'2 

SUP 2 \ f |SJ'«OJ)(S)|2— , y integer, 

r=»o j=o \ f s t 

which is an equivalent norm on 

S(2 ,y ; R + ) = { m € £ ? o c ( R + ) : IM| s ( 2 , y ; R + ) <<*>}, 

llmls(2,yi H+) = sup ( / 1 F - 1 [ ( 1 +£*)»« [«,,(.) m o ( z . ) ] ' (0](s)|^s) 1 /2 

(here " and F~ x denote the one-dimensional Fourier transformation and its inverse, 
resp.). 
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Now define the operator 

Te: 5(2, y; R + ) - 5(2, y; 1 ,1 ; R"), Tem0 = m 0 o C . 

Then the above estimates show that Te is bounded if y 6 N0 . Therefore, for y0, y ^ N0 , 
Vo^yi, 

Te: [5(2, y0; R + ) , 5(2, yx; R+]® - [5(2, y0; R"), 5(2, V l ; R" ) f 

is bounded, where is Calderon's [4] upper interpolation method. But it is shown 
in [6] that 

[5(2, y0; R+), 5(2, R + ) f = 5(2, y; R + ) , 

where y = ( l — @)yo+0yi> 0 < 6 > < 1 ; the same argument applies for the «-dimen-
sional situation so that 

Te: 5 (2 ,7 ; R + ) — 5(2, y; R") 
is bounded, i.e., 

l'«ols(a,y;Ji+) = C| |m 0ogl | s ( 2 j y ; 1 > 1 ; R n ) , y > 0. 

Further, in [6] it is shown that IN0||S(2 y ; R + ) for y >1 /2 is equivalent to the con-
dition in Corollary, which hence is proved up to the case p = 1. By the same reason-
ing we obtain for p = \ 

S(q,y, R+)cM(m), y > n/2, 

and q>2 arbitrarily close to 2. A slight increase of y allows to take q—2 by the 
imbedding properties of the L*-spaces, thus the assertion holds. 

Concluding let us observe that we have estimated the «-dimensional potential 
norm of the quasi-radial function m = m 0 o g by a one-dimensional potential norm 
of m0; i.e., loosely speaking, on the space of quasi-radial functions we have majorized 
an «-dimensional fractional differential operator by a tractable, one-dimensional 
fractional operator. 

Added in proof: The authors realized that all the results of the paper remain 
valid if, in the definition of S(q, y, B, D), the diagonal matrix P is replaced by 
a real « X « matrix whose eigenvalues have positive real parts; then we have 
multiplier theorems on Hp(Rn, P*). The key for this generalization is to be seen 
in a right application of Taylor's formula: replace (2.5) by 

IKj * a(x)| s Cr~"lp f f \(y. Vf+1Kj(x- sy)\dyds 
9 • 

and modify, appropriately the following estimates. . 
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